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An analytic model-independent description of the nonlocal-Coulomb-correction effect in the
turbo-nucleon system is given. A first-order estimate of the effect is found to be consistent
vrith recent measurements of the thoro-neutron sca4ering length which suggest that a„„is
slightly less negative than a~ . A zero-energy nonlocal correlation length of 0.6K/m~c is
deduced from charge-symmetric models and the mean (-16.4 fm) of the measured values
of a„„.A larger value of the correlation length is obtained when symmetry-violating terms
necessary to reconcile the He- H binding-energy-difference discrepancy are included in the
interaction.

INTRODUCTION

It is generally accepted on the basis of theoret-
ical arguments" that the interaction between two
nucleons is nonlocal within a distance of I/2m, c,
but experimental. effects that are a direct result
of nonlocality have proved difficult to isolate. The
best evidence' for an effect due to nonlocality
comes from the observation" that it is not pos-
sible to fit the '8„'D„and '6, p-p phase shifts
with an angular-momentum-independent local po-
tential, but this observation does not require a
nonlocal potential. While a nonlocal potential will
always lead to an angular momentum dependence
in the form of different interactions in each partial
wave, there are no results which suggest that a
test can be devised to distinguish it from an in-
trinsically angular-momentum-dependent local in-
teraction. The complicated nature of the two-nu-
cleon system, the limited numbex of angular mo-
mentum states accessible to study, and the abun-
dance of state-dependent local potentials that have
been constructed to give a good fit to the observ-
ables render the prospects of such a test doubtful.

A test to distinguish between nonlocal and local
two-nucleon interactions should be based on exper-
imental results for a single angular momentum
state. At the present time, off-shell information
has not been decomposed into partial waves. On-
sheD information is subject to restrictions im-
posed by the theory of the inverse scattering prob-
lem; namely, given the phase shift at all ener-
gies in a partial wave that has no bound states, it
is possible to construct an energy-independent lo-
cal potential that reproduces the phase shift. The
result of any test with a single phase shift is nega-
tive. External probes of the deuteron wave func-
tion are not subject to the inverse-problem re-
striction and cannot be easily dismissed as a
source of information on nonlocality, but if the

present uncertainty in the D-state percentage is
any indication, orbital momentum coupling in the
'8, state wiD be a formidable obstacle to progxess
in this direction for some time. The only other
way to get around the inverse-problem restriction
is to consider phase shifts for different isobars of
the two-nucleon system in the same angular mo-
mentum state. In this case, it is necessary to in-
voke either charge symmetry or independence.
Charge independence is known to be violated by
electromagnetic mass splitting of the mesons re-
sponsible for the nuclear interaction. Estimates
of the violation are subject to the uncertainties of
the meson theory of nuclear forces and cannot be
simply disentangled from the question of nonlocal-
ity. Charge symmetry, on the other hand, is not
affected by meson mass splitting because of TCI'
invariance.

A test to distinguish between nonlocal and local
two-nucleon interactions that is based on charge
symmetry for a single angular momentum state
will be reasonably free from other uncertain'ies
in the interaction. Charge symmetry is presently
tested, if not defined, in terms of local-potential
mode1. s.' In order for a test of nonlocality to be
successful, it must be shown that a charge-sym-
metric nonlocal interaction provides an effect that
is equivalent to a violation of charge symmetry as
defined by local-potential models. Such an effect
occurs in the nuclear optical model where the pro-
ton optical potential is slightly more attractive
than the neutron potential on,account of the non-
locality (or velocity depend dence) of the nucleon-
nucleus interaction. '~ It is called the Coulomb
correction, and its existence, which depends only
on the nonlocality of the intexaction, is confirmed
by a number of optical-model studies. ' There is
no reason to believe the Coulomb corx ection should
be absent from the two-nucleon system, and there,
its small size would be magnified in the 'So state
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by the large scattering length. The most recent
measurements'" of a„„=-15+1 fm are system-
atically smaller than the nominal value of -17 fm
determined from charge-symmetric local-potential
descriptions of the $0 state. "" The magnitude
(~1 fm) and sign of the difference are consistent
with a simple estimate'4 of the Coulomb-correc-
tion effect in the two-nucleon system.

[Note added: More recent results for a„„, re-
ported after this paper was submitted for publica-
tion, are considered in an Addendum. ]

The Coulomb-correction effect gives an appar-
ent violation of charge symmetry relative to
charge-symmetric local-potential models. It is
a model-dependent effect and does not represent
a true violation of charge symmetry for nuclear
interactions. However, it cannot be distinguished
from an effect due to a symmetry-breaking local
interaction of the same magnitude and sign as the
Coulomb- correction potential. The questions of
charge symmetry and nonlocality of the two-nucle-
on interaction are not independent.

The purpose of this paper is to give an analytic
description of the Coulomb-correction effect in
the two-nucleon system. Exact results are derived
in the next section. The following section is devot-
ed to a first-order estimate of the effect; sources
of error in the estimate are discussed at length.
The last section is concerned with several other
questions related to the charge symmetry and non-
locality of the two-nucleon interaction.

40
V,(r, s)e~(k~, s)ds.

(3)

The differences between Eqs. (2) and (3), namely
the n-p mass difference and the short-range elec-
tromagnetic structure potentials, violate charge
symmetry. They need to be considered explicitly
in a test to distinguish between charge-symmetric
nonlocal and local nuclear interactions. It is con-
venient to treat these effects separately by intro-
ducing the equations

separated into V~~(r), a long-range electric inter-
action between two-point protons, " and V~~(r), the
difference between the electromagnetic and point-
charge electric interactions. The purpose of in-
troducing V~~(r) is to provide a model-independent
frame of reference for extracting the nuclear-
plus-nucleon electromagnetic-structure phase
shifts from the P-p scattering data. The kernels
V~(r, s) and V„(r, s) are the P-P and n nn-onlocal
nuclear interactions for the '$0 state. We assume
they are charge symmetric, i.e., V~(r, s) = V„(r, s).
The symbol U is used for all potentials to denote
the product m V/h'.

An essential part of a test for charge symmetry
is the hypothetical system of two uncharged pro-
tons. We define the '$, state of this system ac-
cording to the equation

h' d'—q, +Zr —V', (r)) V t(a„r)

EXACT RESULTS

We restrict our attention to a nonrelativistic
description of the '$, state. We assume that the
relative motion of two protons is described by the
equation

and

(
d pOO

d, +E„%'„(k„,r) =
(I V„(r, s)4„(r, s)ds.

(4)

I d , Zr —V, (r) - V', (r))'r,'(a„r)
(m, d~'

and two neutrons by

V~ r, s 4~~ k~, s ds,

(1)

h d
1

—
Z+ Z. —V'„(r)) Vr (a r)„,

I,m„&'

V„(r, s)4'„(k„,s)ds.
0

(2)

The c.m. energies E are related to the wave num-
bers k by E =I'k'/m. The potentials V~~(r) + V~~(r)
and V~(r) are the P-P and n ndirect elect-romag-
netic interactions. They are present if there is
no nuclear interaction. The p-p interaction is

(5)

The phase shifts for Eqs. (1)-(5) can be related
to each other through effective-range functions.
Approximate relations between effective-range
functions were derived some years ago,"and form
the basis for many studies of charge symmetry. '
However, with the availability of a number of real-
istic models of the '$0 state, it is more desirable
to use exact relations and to define model-depen-
dent parameters which give a measure of model
differences. The effective-range functions used
in this payer are described in the Appendix. The
notation introduced for the solutions to Eqs. (1)-
(5) is also used for the effective-range functions.

The relation between the effective-range func-
tions for charged and uncharged protons depends
on the potential used for the long-range electric
interaction. We use the Coulomb potential as in-
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dicated by the superscript C in Eq. (1). Vacuum
polarization is considered sepax ately and the re-
sults given later. The relation between the effec-
tive-range functions for Eqs. (1}and (3) is

X,'(I,) —X',(I,) =-It-'[In{r/It)+2y -1+C(I,)],
(6)

where R =0*/m~e*, "r is a characteristic nuclear
length, y is Euler's constant, and C(k) is a model-
dependent function defined by Eqs. (A25) and (A36).
It is customary to take r = p~~~= 2.8 fm. We take
r =2Ã„where Xo =if/m„oc, in order to eliminate
the experimental uncertainty of p~~~ from the rela-
tion. The effective range functions for Eqs. (2)-
(5) are related through Eq. (A16). We define the

following quantities":

X,'(u, ) —X,(u, ) = e', (I„r)V',{r)e,(u„r)dr
~o

=-ft-'z, (n,),

X'„(u„)-X„(X„)= t vJ'„(u„, r)V'„{r)e„(n„,r)dr
0

E„(0), M(0), and V(0) are relatively constant for a
variety of local potentials that have been construct-
ed by fitting the So p P phase shifts but there
have been few studies with nonlocal potentials. We
have defined these functions for nonlocal poten-
tials, and our next step is to relate them to their
counterparts for local potentials.

Each of Eqs. (1)-(5) and its solutions can be
transformed into an equivalent local equation and
its solutions. "' The equivalent local equations
corresponding to Eqs. (1)-(5) are

= V,'{n„r)yc(n„r),
(12)

(
h' d'—z&+z„- V!(v))(t!()„,v) =v!()„,v)y!(Z„,v),
SZ z

(13)

(
h2 d2

z .+z, —v', (v)) V,'(z„v) = v', ()„v)y,'(a„v),
Sgp

(14)
(6)

x,(u,) —x„(I,) =
JI ,'e, (u„r)[v,(r, s} v„(r, s—)]

x q „(&~,s)dsdr

-=X 5mM(u, ), (9)

(
d
d, +E~ ~ k~, r =V~ k~, rSlp

(15)

(16)

where 5rs = (m„-m~)/m~. The reason for using

Q~ as the argument of X„(k) in Eq. (9) is given in
the Appendix. With these definitions, the effective
range functions for the '9, states of the physical
p-p and g-g systems are related by

x,'(I,) x'„(n,)—
=-ft '[In(2n) +2y - I+C(k~)

—Z,(e,) +Z„(I,) (5m/d)M— (I,)],
(10)

where n) = QB2~/rszo and n) 8 /@& Vacuum polar
ization can be taken into account by using Eq. (A42).
The result is

x'(a, ) —x'(a, ) = -m-'v(1, ) .
The functions C, I'~, F„, M, and Vcanbe evalu-

ated during the course of numerical calculations
with a given potential by direct comparison of the
effective range functions obtained from solving
Eqs. (1)-{5),subject to the constraint that the
phase shifts from Eq. (1) are fitted to the empir-
ical 'So phase shifts. The range of variation of
these functions for a given class of potentials is
indicative of the potential dependence of the class.
It has already been established~' "that C(0), E~(0),

J(k, r) =(2i)t) ' f (k, r)~ f'(k, r)

-f'(k, v)„—j (N, v)) .

It can be shown that Z(k, 0) =1. The equivalent

(16)

The potentials in Eqs. (12)-(16) are called equiva-
lent local potentials. A solution to one of the non-
local equations with a specified boundary condition
is related to the solution of the equivalent local
equation satisfying the same boundary condition
by"

e(a, r) =A(u, r)y(I, r),
where A(k, r) is called the damping function.

A sufficient condition for the construction of the
equivalent local potential and damping function is
the existence for all r of a pair of linearly inde-
pendent solutions to the nonlocal equation. " We
assume that the nonlocal 'So two-nucleon potential
is such that the solutions of the nonlocal equation
satisfy this condition in the energy range of inter-
est." We choose the Jost solutions defined in the
Appendix as the independent pair. Theix Wron-
skian, normalized to one at r=~, is
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local potential is given by'

V(k, r) =———,lnJ(k, r)+- —1nZ(k, r) +
m 2A' ' 4 dr

f (k, s)~ f'{k,r)-f'(k, s)d—f (k, r)

f (k, r)& f'(k, r)-f'(k, r)—f (k, r)

(19)

and the damping function by

W(k, r) =Z(k, r)"*.
Both depend parametrically on 4' and are real for
real jP. The bound-state energies and scattering
phase shifts obtained from the nonlocal equation
and its local equivalent are identical.

The equivalent local potentials in Eqs. (12)-(16)
- cannot be equal because the solutions of the differ-
ent nonlocal equations used to construct them are
not equal. For example, Eqs. (12) and (14) show
an apparent charge asymmetry. The equation ob-
tained by "turning off" V~ (r) in Eq. (12) without

alteringVp (kgb 'r) p

tions for Eqs. {12)and (21) are related by

X (k ) —X~(k ) =-8 '[in(r/fl)+2y —1+C~(k )j

(23)

with a model-dependent function C~(k~) representa-
tive of local-potential models. The effective-range
functions for Eqs. (14) and (21) are related by

X',(0,) -X',(k, ) =f y'(a, )rr,",(a„r)y,'(a„rldr .

(24)

The result for the Coulomb correction,

, +Z~ —V,(r) y, (k„r) = V, (k„r))(,(kp, r),(
f

tPlp dt
(21)

corresponds to the equation for the 'SD state of the
hypothetical system of two uncharged protons with
the local interaction Vg(k~, r). The difference be-
tween V~c(k~, r) and V~~(k~, r) from Eq. (14),

VP(k~, r) = V~ (k~, r) —V~~(k~, r),
is called the equivalent local Coulomb-correction
potential. " It is responsible for part of the appar-
ent asymmetry between the physical p-p and n-n
systems that is characteristic of nonlocal poten-
tials. There are also equivalent local correction
potentials for the short-range electromagnetic-
structure potentials, the n-P mass difference, and
the vacuum-polarization potentia1. . By comparing
the relations between various effective-range func-
tions, the effect of the equivalent local correction
potentials can be isolated, and the model-depen-
dent terms in Eqs. (10) and (11) can be separated
into terms characteristic of local-potential mod-
els and nonlocal corrections. The Coulomb cor-
x'ection is tx'eated first.

The effective-range functions for Eqs. (1) and
(12) are equal, since the phase shifts obtained
from these equations are identical. The same is
true of the effective-range functions for Eqs. (3)
and (14), so the effective-range functions for Eqs.
(12) and (14) are related by Eq. (6) with a model-
dependent function C"(k~) representative of non-
local-potential models. The effective-range func-

C"(k, ) = C'(k, ) —It y„',(k,)V,"(k„r)y',(k„r)dr,
0

(25)

18 obtained by comparing Eq. (6) with Eqs. (23)
and (24). The other corrections can be treated
individually or in various combinations by follow-
ing the same procedure.

One of the equivalent local potentials in Eqs.
(12)-(16) needs to be chosen as a charge-sym-
metric local potential relative to which the net
effect of the different equivalent local correction
potentials is determined. The potential V~c(k~, r)
in Eq. (12), or V~(k~, r) if vacuum polarization is
taken into account, is most likely to resemble the
local potentials that have been constructed by fit-
ting the '5, p-p phase shifts. ~ These empirical
potentials contain the Coulomb-correction poten-
tial if the two-nucleon interaction is nonlocal. We
take V&c(k~, r) as the charge-symmetric local poten-
tial, and define equations corresponding to Eqs.
(13)-(16)with V~c(k, r) as the potential. We denote
the solutions to these equations by y~, X~~, y~, and

Equation (21) is one of these equations. We
denote the sum of the model-dependent correc-
tions for the nonlocal potential V(r, s) given in
Eq. (10) by N(k~), and the sum of the model-depen-
dent correction for the local potential V~c(k, r),
defined according to Eqs. (7)-(9), by L,{k~). The
quantities N(k~) and Qk~) are given by

N(k, ) = -~-'[C"{k,) —F,"(k,) +F„"(k,}—(6m/a)M"(k, )]

(26)
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and

L(k~) = -R '[C~(k~) —F~~(k~) + F~(k~) —(5m/n)M~(k~)],

(27)

where, for example

M~(k~) =-X, t y~(k„r)U~(k„r)y„(k~, r)dr
4p

without altering V„(k„,r). The effective-range
functions for Eqs. (16) and (36) are related by

X~(k„) —X„(k„)= t P~(k„, r) U~(r))I)„(k„,r)dr
0

=R F (k) k

and those for Eqs. (13) and (36) by

(37)

and

F„(k~)=R ~ty~(k~, r)U~(r)y„(k~, r)dr.
Jp

They are related by

(28}

(29}

X„(k„)—X~(k„) = $~(k„,r)[U~(k„, r) —U„(k„,r)]
0

x y~(k„, r)dr, (38)

in which case I'„(k~) is given by

r„(k,) =F'„(k,) F'„(k—,)

N(k~) —L(k~) = t y~(k~, r)[Uc(k~, r) —U~(k~, r)]
Jp

x P ~(k~, r)dr

+A ~ k», x U~ k», r —U„k», r
0

x (t)&(k„r)dr . (39)
-=-R-'r(k, ), (30)

where U„(k, r) —=m„V~c(k, r)/I'. The quantity I"(k~)
represents the model-dependent correction due to
the nonlocality of the two-nucleon interaction.

It is convenient to break up I"(k~) into a sum of
three terms. %e define

I'&(k&) =C(k—) —F& (k&) —C (k ) + F& (k&),

r„(k,) -=F"„(k,) F'„(k,), —

I (k,) -=-(6m/a)[M"(k, ) -M'(k, )],
and write

(31)

(32)

(33)

I'~(k(, ) = -R I y~(k~, r}[U~c(k„r)—U, (k~, r)]
40

x p~(k~, r)dr . (35)

The second term in Eq. (34) representsthe equiva-

lent local correction for the n-n direct electro-
magnetic interaction. An expression for I „(k~) is
obtained by introducing the equation

that is the result of turning on V~(r) in Eq. (16)

I'(k ) = I' (k ) + I'„(k ) + I' (k ) . (34)

The first term in Eq. (34) includes both the equiva-
lent local Coulomb correction given by Eq. (22)
and the p-p electromagnetic structure correction,
V~~(k~, r) —V~(k„r}. The vacuum-polarization cor-
rection, V~(k~, r) —V~~(k~, r), can be included by
starting from U~(k~, r) and Z(k~) instead of V~c(k~, r}
and C(k~) in the development from Eqs. (26)-(34).
The first term in Eq. (34) is the equivalent local
correction for the entire p-p direct electromag-
netic interaction, ' it can be written

The first two terms in Eq. (39} represent the dif-
ference between the symmetry-violating n-n direct-
electromagnetic interaction corrections for the
two local potentials V„(k~, r) and V~~(k~, r) The. y
occur because V~~(k~, r) was chosen as the charge-
symmetric local potential relative to which I'(k~)
is defined. The last term in Eq. (39) is the equiva-
lent local correction for the n-n direct electromag-
netic interaction relative to the local potential
V„(k„r).

The third term in Eq. (34) represents the equiva-

lent local correction for the n-p mass difference.
It can be written as

I' (k~) =-(6m/n)[M (k~) -M (k~)]

—R f k, (k„v) U~(k„r) — U (kUr))— „

x (t)~(k~, r)dr, (40}

where

M (k~) =-X,—~ t P~(k~, r)U„(k~, r)g„(k~, r)dr
'm„gp

(41)

and P~(k„r) satisfies

S' d'—&,+E» k», r =V„k»,r» k», r . 42
m» r

The origin of the three terms in Eq. (40) is sim-
ilar to the origin of the terms in Eq, (39). The
quantities I'~(k~) and I'„(k~) have the characteris-
tics of a symmetry-violating indirect electromag-
netic effect in that they vanish when the nuclear
interaction is turned off; I' (k~) behaves like a
symmetry-violating nuclear interaction.

The result of the preceding analysis is a rela-
tion between the physical p-p and n-n effective
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The first three terms on the right are independent
of two-nucleon-interaction models, while the re-
maining ones are model-dependent corrections
with values characteristic of charge-symmetric
nonlocal-potential models. Of the remaining
terms, the first four have values characteristic
of charge-symmetric local-potential models and
the last three are corrections due to the nonlocal-
ity of the model interaction. The nonlocal correc-
tions are identically zero for charge-symmetric
local-potential models; they are also zero if the
electromagnetic interactions and n-p mass differ-
ence are turned off. Equation (43) is exact. With-
in the framework of our assumptions, it is inde-
pendent of a theory of nuclear forces.

FIRST-ORDER KSTIMATES

In this section we make first-order estimates
of the nonlocal corrections in the zero-wave-
number limit and compare these estimates with
the measured p-p and n-n scattering lengths.
Two intermediate scattering lengths are intro-
duced to simplify the discussion. The first is a
model-independent n nscatteri-ng length a~„de-
fined by

c =-R '[ln(2n)+2y —1]=0.0740346 fm ',
a'„„a~~,

(44)

where a~c~ is the p-p Coulomb scattering length. "
We use the value a~~~ = -7.82+ 0.01 fm which is ap-
proximately the mean of the values (-7.814+0.004
fm, -7.823 + 0.01 fm) determined in recent anal-
yses. "" We obtain a„„=-18.57+0.06 fm from
Eq. (44). The purpose of introducing a'„„, whose
magnitude is dependent on the choice of r made
in the last section, is to magnify the uncertainty
in a~~~ and to keep it separate from the model-de-
pendent estimates. The second intermediate n-n
scattering length a„„is defined by

—,——,= -R-'[C —F,'+F'„—(5m/n)M'] (45)
ann ann

and is related to the measured n-n scattering
length by

1 1———=-R-'(r, +r„+r.).
ann +nn

P n ™ (46)

The arguments of the model-dependent terms are

range functions:

X,c(k,}—X'„(k,)

=-R ~[in(2n) +2y —1+C (k&}—F& (k&} +F„(k~)

—(5m/n)M(k, ) +r, (k, ) +r„(k,) +r.(k,)].
(43)

omitted with the understanding that they are evalu-
ated at k~ =0. The magnitude and sign of the non-
local corrections in Eq. (46) can be determined
from the experimental n ns-cattering length when
the value of a~„ is established from Eq. (45}.

The nominal value of a„„=-17 fm determined
from local-potential models" " is larger in mag-
nitude than the recent measurements of a„„. Kuhn

et al.' have deduced a„„=-15.0+ 1 fm from a Wat-
son-Migdal analysis of the 'H(t, n'He)n reaction.
Zeitnitz et a/. "have deduced a„„=-15.2+0.9 fm
from a similar analysis of the 'H(n, 2n)H reaction;
they also subjected their data to an analysis using
three-body calculations" and found a„„=-14.5 + 0.8
fm. Earlier measurements of a„„tend to give val-
ues slightly more negative than -16 fm, but the
uncertainties are large enough to be consistent
with the latest results. '" We find the value a„„
= -15.0+ 1.0 fm to be representative of a trend in
the various measured values of this quantity.
There is a discrepancy between the local-poten-
tial models and experiment of about 1 fm. More
recent results for a„„, which indicate a smatter
discrepancy, are considered in the Addendum to
this paper.

In order to estimate the importance of the non-
local corrections in Eq. (46), it is necessary to
have a better understanding of the model-depen-
dent terms used to calculate a„„. The Michigan
State group" has constructed several local poten-
tials, including both hard- and soft-core poten-
tials, that give quantitative fits to a~~ and the 'S,
p-p phase shifts for energies up to 350 MeV. They
find a surprising degree of model independence,
as is indicated by the range of the value of C~

=0.120+0.006 that we have extracted from their
results. If the other model-dependent terms in
Eq. (45) are neglected, the value C~ =0.126 would
give a„„=-17.17 +0.05 fm. Kermode and Sprung"
have examined a number of 'So state p-p poten-
tials. The largest value of C~ obtained from their
work is less than 0.120, but values as small as
0.083 were encountered for potentials with super-
soft cores. We take C~ =0.126 as the empirical
upper limit of this parameter for local-potential
models. The remaining model-dependent correc-
tions in Eq (45) are s. mall and tend to cancel each
other. The short-range electromagnetic poten-
tials V~~(r) and V~(r) in Ref. 11 are weakly repul-
sive with similar magnitudes for r&0.8 fm, but
V~(r) changes sign and becomes attractive for
smaller distances. The change in sign of Vt~(r)
renders F~~ small compared to I'~. The n-n elec-
tromagnetic potential V„(r) contributes about +0.3
fm to a„„, while the n-p mass difference gives
roughly -0.3 fm. The two terms F~ and (5m/n)M~
cancel each other remarkably well. We note for



580 L. G. ARNOLD AND R. G. SEYLER

future reference that 1.0 cM~ ~ 1.4 for the local
potential models of Ref. 11.

The available results for the scattering lengths
of charge-symmetric local-potential models of the
'S, state satisfy the inequality

1 1
c +0 069 fm

ann app
(47)

from which we obtain a„„&-16.98+0.05 fm. This
limiting value of a„„is an empirical upper bound.
It is necessary for a local-potential model to vio-
late Eq. (47) by about 0.003 fm ' to attain a value
of -16 fm for a„„.

The equivalent local potentials constructed from
a nonlocal-potential model of the 'S, state depend
on the wave number, and represent a larger class
of local potentials than the empirical ones which
satisfy the above inequality. It is not obvious that
we can extrapolate Eq. (47} to include the class of
equivalent local potentials. The importance of dis-
tinguishing between these classes of local poten-
tials is illustrated quite simply by noting that the
theory of the inverse-scattering problem men-
tioned in the Introduction applies only to the class
of energy-independent local potentials. With ref-
erence to Eq. (47), it is legitimate to expect a
result of this type from energy-independent local-
potential models that have been constructed by
fitting the 'So p-p phase shifts from 0 to 350 MeV
because the inversion process over this finite en-
ergy interval defines a reasonably unique potential
at large distances. No corresponding result holds
for energy-dependent local potentials, and the ex-
trapolation of Eq. (47) to include this class is ob-
jectionable. However, the empirical potentials
constructed thus far define a fairly unique local
potential only for distances greater than about 1.2
fm. These potentials show marked differences at
smaller distances which do not affect the inequality
in Eq. (47). If we impose the reasonable restric-
tion that a nonlocal-potential model of the 'So state
must have a local equivalent which, for distances
greater than 1.2 fm, is practically independent of
energy and has the same shape as the local-poten-
tial models, then it is unlikely that Eq. (47) will
be violated. This restriction is consistent with
the view" that nonlocal effects are small correc-
tions at large distances, but become increasingly
important as the two-nucleon separation gets
smaller. We extrapolate the inequality estab-
lished for the empirical local potentials with the
above reservations in mind.

The various terms that make up the nonlocal cor-
rection in Eq. (46) can be divided into two groups.
The first group consists of the terms I'~ —I'~ from
I"„in Eq. (39) and -(5m/n)(Mz -M~) from I' in

d
VI z(k, r) = V«(k, r}—U(r)

d k, V«(k, r), (49)

where LE denotes the local-energy approximation
to the equivalent local potential. There are many
nonlocal potentials for which V„z(k, r) is not a good
approximation to V(k, r). We have observed in
several numerical calculations that the exact
equivalent local potentials satisfy

V(k, r)= V(k, r)-U(r)„, V(k, r) (50)

rather well, even when the local-energy approx-
imation to the potentials is not accurate. The er-
ror in Eq. (50) is typically less than 10% of V'(k, r}
—V(k, r), while in Eq. (49) U(r)d/dk'V„z(k, r) may
differ from V'(k, r) —V(k, r) by as much as a fac-
tor of 2. We make another approximation, also
motivated by results established in the local-ener-
gy approximation, by writing

d, V(k, r)=, Ink(k, %} ~V(k, r), (51)
d d

where A(k, R) is the Born-approximation scatter-
ing amplitude in the forward direction for a non-
local potential V(r, s}. The potential V(r, s) that
we have been considering is the l =0 partial-wave
component of V(r, s). The importance of the loga-

Eq. (40) which can be combined in the form

I' = [+' —(5m/n)M'] —[F —(6m/n)M ], (46)

and estimated from the resul. ts for l.ocal-potential
models. Each of the bracketed terms in I', is
roughly zero due to the cancellation of the n-g
electromagnetic and n-p mass-difference correc-
tions that occurs for local-potential models, " and
their difference probably gives further cancellation.
The contribution to the nonlocal correction from I',
is negligible.

The second group con'sists of the remaining
terms in the nonlocal correction, each of which
has the form of an integral over the difference be-
tween two equivalent local potentials. The local-
energy approximation" is used to obtain a simple
formula for the difference in the potentials that
allows the integrals to be estimated from the
known results for local-potential models. The
local-energy approximation is summarized as
follows.

Let V(k, r) be the equivalent local potential con-
structed according to Eq. (19) from the solutions
of the equation for the nonlocal potential V(r, s).
Let V'(k, r) be the equivalent local potential con-
structed from the solutions of the equation for the
nonlocal potential plus a local potential V(r). In
the local-energy approximation, VIz(k, r) and

V«(k, r) are related by
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rithmic derivative of A(k, R) in connection with
nonlocal interactions has been demonstrated by
Monahan and Thaler. '9 They introduce the quan-
tity R„(}t), defined by

R„(}t)*=-6„,inc(f, k), (52)

(55)

where 8, =1.3 fm is the radius of the uniform
charged sphere. %8 take B, =%0 for convenience.
The remaining integral in Eq. (54) is

J(' gp(0, ~) U, (0, r)y, (o, r)dr~-f(. , 'N'+7&/R& (56)

where the first-order estimate of Eq. (28),

M = -Xo }(~(0,r)2'(0, r)dr,

has been used. The second tex'm on the right in
Eq. (55) is due to the difference between U& (0, x)
in Eq. (54) and U~c(0, r) in Eq. (5V). By combining
Eqs. (54)-(57) we obtain

r, = & x„'~'/(1+@,x„n/5R) =&x„2~', (58)

where X„=R„(0)/X,.
The same approximations can be applied to the

third term of the nonlocal corrections for the n-n
direct electromagnetic interaction in Eq. (39) and
the n Pmass d-ifference in Eq. (40). The third
term in 1 „ is much smaller than F~, since V~ (t')
« V~c(r)+ V&~(x) for rz 0.3 fm. ft has the opposite
sign, however, and would tend to cancel I'~ if it

Rnd call lt the nonlocal cox'x'elRtlon lellgth. Fox
local potentials, R„(k) is identically zero. We
have found the nonlocal correlation length to be
R convenient measure of the nonlocality of a poten-
tial. The diHerence between the two equivalent
local potentials is written

v'{}t,~) —v{~,~) = —,'R„(u)'U(r) v(}t,r). (53)

Equation (53) is slightly less accurate than Eq. (50),
but more useful.

The nonlocal correction for the p-p direct elec-
tromagnetic interaction is given by

r, = )()(g(-o-',) fx, ('0; ~)(((,'(r) + V, () )I))(O,H

x y~(0, y)dr (54)

when Eq. (53) is used in Eq. (35). To evaluate this
integral, we note that U~ (r)+U~(r) varies slowly
with j for z~0.3 fm Rnd is not singular at the ori-
gin in current models (see Fig. 5 of Ref. 11). We
estimate the mean value of the integral with a uni-
form-charged-sphere average potential,

The difference between the potentials in the inte-
grand of the third term in Eq. (40) is given by

P [v,(n„~)- v„(~„~)]

U~(kq, v')U„(k~, r)

and resu1ts in"
(61)

We estimate (U~(0, r)) =-M /if, ' by the method
used for (U~(t')), and obtain

Vfith these estimates, it follows that I'„and I'~
cancel because Ef and (6m/a)1P~ cancel.

The preceding estimates based on the local-en-
ergy approximation are valid only if the nonlocal-
ity is in some sense small, but no px'ecise crite-
x'ion of smallness hRs been given. An lndicRtlon
of the validity of the approximation can be ob-
tained by comparing the individual nonloca1 cor-
rectloQs with their col responding locRl potentlR1-
model terms. The ratios

F Fn Xn
-(6m/6)J(d' F~ 6 ' (64)

where M~=1, indicate that the estimates should
be reliable when X„'=1, but that they are likely to
deteriorate rapidly for X~&1. In addition, it is
unlikely that they are appropriate when the non-
local correlation length is much larger than the
range of the nuclear interactions' if for no other
reason than that X~&1 is inconsistent with the
view" ' that nonlocal corrections are small at
large distances. For X~= ~, which corx'esponds
to the often quoted distance ff/2m, c where non-
local effects become impoxtant, ~6X„'= -0,04, and
the estimates are likely to be quite accurate.

The small size and cRncellRtlon of I n and I ~
render these terms unimportant for X„~1. The
importance of the remaining tex'm I'~ can be seen
by comparing it with the local-potential model

were not so small. The third term in Eq. (39) can
be writtenso

1"„=—&m, (U'„(~)) x„nu', (M)

where (U~ ())')) is a suitable average potential en-
ergy. We estimate, with the help of Eq. (3V),
(U~(x)) =E~/RX„ in which case
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n-P mass-difference term. The ratio

-(5m je)~' 55
(65)

shows that the nonlocal correction for the P -P di-
rect electromagnetic interaction is important.
This nonlocal correction is almost twice the size
of the local n-P mass-difference term for X„=-,',
and would still be important in the event that our
estimate of F~ is too large by a factor of 2. It is
opposite in sign to the local n-P mass-difference
term and will increase the n nsca-ttering length.
We obtain

x„'m'
= -0.00' X„2 fm-' (66)

when Eq. (58} is substituted into Eq. (46}and M~

is taken to be one. The final result of our esti-
mates,

=0.070(1-X '/10) fm '1

aHN app
(6'I)

yields a„„=-16.5 fm for X„=—,
' and c„„=-15.2 fm

for X'„=1. Equation (67}is valid only if the nu-
clear interaction is charge symmetric; the effect
of violations of charge symmetry is considered
later.

In arriving at the estimate in Eq. (66), we have
attempted to minimize the size of the nonlocal
correction by choosing a somewhat large value
for R, in Eq. (55) and taking the smallest value
we could find for M . The magnitude of the cor-
rection for a given value of X„is sensitive to
these choices, as well as to the errors in the ap-
proximations we have made. We believe the un-
certainty in the numerical factor on the right side
of Eq. (66) to be less than 30%.

RELATED QUESTIONS

A. Discrepancy Between Local-Potential
Models and Experiment

We have weighted heavily the most recent mea-
surements" ' in determining an average value for
a„„. Had we adopted a more uniform weighting,
we would have obtained a value of a„„which would
have reduced the discrepancy between local-poten-
tial models and experiment. Clearly, additional
measurements of a„„ from kinematically complete
experiments are desirable. The empirical bound
we have established in Eq. (47} from available
local-potential models may not be absolute. This
point could be tested by attempting to construct a
local-potential model which violates the bound. If
one were so inclined, one might attribute most of
the 1-fm difference, which we consider to be a

nonlocal effect, to the uncertainties in the mea-
sured values of a„„and the results for local-po-
tential models. We think such a view is overly
pessimistic if one considers the absence of other
means of determining the nonlocality of the inter-
action. The following argument, based on the
proven methods of isolating nonlocal effects in
the nucleon-nucleus interaction, is the source of
our belief that the effect of a nonlocal interaction
is most likely to be observed in a comparison be-
tween the measured values of a„„and the results
from local-potential models.

The first evidence for the nonlocality of the nu-
cleon-nucleus interaction came from the observa-
tion that the real part of the local optical potential
determined from nucleon-nucleus scattering is
energy-dependent. The difference in the strengths
of the neutron and proton optical potentials was
also noted in the early studies, but the explanation
of a substantial part of this difference as a non-
local Coulomb correction was hindered by the
presence of an effect of similar magnitude due to
the Pauli exclusion principle and the spin depen-
dence of the two-nucleon interaction. By analogy,
one might expect that the nonlocality of the two-
nucleon interaction could be established by looking
for an energy dependence in local model potentials.
The theory of the inverse-scattering problem,
which guarantees the existence of an energy-in-
dependent local potential, renders this analogy
impotent. For the same reason, it is unlikely
that the energy dependence of the nucleon-nucleus
optical potential could be established by attempt-
ing to construct a potential from data for a single
nucleus. The intended purpose of constructing
nuclear optical potentials is to describe the aver-
age behavior of nucleon-nucleus scattering
throughout the Periodic Table. The effect of this
global construction procedure, as far as estab-
lishing the existence of nonlocal effects is con-
cerned, is to circumvent any restrictions that
might be imposed by the theory of the inverse-
scattering problem and to permit a dete mination
of the energy dependence.

Since the global construction procedure cannot
be meaningfully extended to the A=2 system, we
do not have a method for determining the energy
dependence of the two-nucleon interaction. This
leaves the nonlocal Coulomb correction effect as
the only possibility for observing a nonlocal effect
in the two-nucleon system. The spin dependence
of the two-nucleon interaction, which tends to ob-
scure the nonlocal Coulomb correction in the nu-
cleon-nucleus system, presents no problem in the
analysis of a single angular momentum state in
the two-nucleon system, and since the scattering
lengths in the 'S, state are extremely sensitive to
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small changes in the interaction, this state is the
obvious place to look for the nonlocal-Coulomb-
correction effect. The effect would be obscured in
a comparison of the 'S, states of the n-p and p-p
systems by violations of charge independence. A
comparison of the '8, states of the n-n and p-p
systems is the remaining possibility. If one ac-
cepts the picture' ' that the two-nucleon interac-
tion is noniocal within a distance of about 5/2m„c,
then on the basis of the results of the previous
section, one would expect a difference between
the measured values of a„„and those obtained
from local potential models.

8. Binding-Energy Differences
of Certain Mirror Nuclei

The experimental results"" for a„„and the non-
local Coulomb correction can be thought of as be-
ing due to an n-e interaction that is slightly weaker
than the P -P interaction. Theoretical calcula-
tions"'" of the binding-energy differences of the
mirror nuclei 'He-'H and 4'Sc-"Ca with charge-
symmetric local nuclear interactions do not agree
with the observed binding-energy differences, and
can be brought into agreement only by making the
n-n interaction slightly stronger than the p-p in-
teraction. Thus, both the experimental results
for a„„and the first-order nonlocal Coulomb cor-
rection effect appear to be inconsistent with the
indirect evidence from these mirror nuclei. The
following argument resolves the inconsistency.

A comparison of a«and a~~ is equivalent to a
comparison of the average strengths of the equiva-
lent local n-n and p-p interactions at the same
energy, while the binding-energy differences of
mirror nuclei reflect a comparison of the n-n
interaction at an energy E, with the p-p interac-
tion at an energy E, + 4~, where 4~ is the average
Coulomb energy of the two protons. As is well
known from the independent-particle model, ~ the
first-order nonlocal Coulomb correction is can-
celed by the increased energy h~ at which the
p-p interaction is evaluated. More precisely, the
average potential energies of the p-p and n-n
equivalent local potentials satisfy

(68)

to first order. Thus, one would expect to see the
apparent charge asymmetry due to nonlocaiity in
a comparison of a„„and a~~, but not in the binding-
energy differences of mirror nuclei which should
exhibit charge symmetry to first order in the non-
local Coulomb correction.

If the two-nucleon interaction is nonlocal, there
are three possible sources for the disagreement
between the theoretical and experimental binding-
energy differences of the mirror nuclei 'He-'H

and "Sc-"Ca, instead of one source for local po-
tentials. First there is the customary explanation
that the two-nucleon interaction is not charge sym-
metric. Second, the discrepancy may be due to an
incomplete cancellation of the first-order nonlocal
Coulomb correction due to many-body effects not
taken into account in the independent-particle
model; and third, it may be due to a second-order
nonlocal Coulomb correction. We are unable to
eliminate the latter two possib. lities, but we sus-
pect that they are not the primary source of the
discrepancy. Friar" has obtained an estimate of
the 'He-'H binding-energy difference from an ap-
proach that does not involve the direct use of the
two-nucleon interaction. This estimate is in very
good agreement with the results obtained from
local-potential models, and we do not see any way
in which Friar's approach mould be subject to
modification by allowing the two -nucleon interac-
tion to be nonlocal. The situation is less clear"
for ~'Sc- 'Ca, but the 'He- H case is sufficient for
our purposes. While it may be premature to con-
clude that a violation of charge symmetry is re-
sponsible for the binding-energy-difference dis-
crepancy, it appears to be the only viable candi-
date in connection with the question of the non-
locality of the two-nucleon interaction.

C. Symmetry-Violating Interactions

We have not considered a real violation of
charge symmetry in the analysis of the last two
sections, but we pointed out in the Introduction
that a real violation of charge symmetry of the
same magnitude and sign as the nonlocal Coulomb-
correction potential cannot be distinguished from
the apparent violation characteristic of nonlocal-
potential models. If one were to accept the ex-
planation of the discrepancy in binding-energy
differences as being due to an n-n interaction that
is slightly stronger than the p-p interaction, then
it would be possible to distinguish between this
real violation of charge symmetry and the appar-
ent violation due to the nonlocality of the interac-
tion. This explanation is most appealing from the
point of view of determining the magnitude of the
nonlocality of the two-nucleon interaction.

Symmetry-violating terms in the two-nucleon
interaction are expected because of the mixing of
isoscalar and isovector mesons, ' "'"but there
is considerable uncertainty with regard to the ef-
fect of these terms on a„„. Okamoto and Pask"
have argued that the discrepancy in the 'He-'H
binding-energy difference could be resolved with-
out substantially altering the value of a„„obtained
from charge-symmetric models. On the other
hand, Henley and Keliher" have estimated that
the mixing of isoscalar and isovector mesons
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necessary to resolve the discrepancy would re-
sult in a decrease of a„„by roughly 0.8 fm.

The present analysis can be extended to include
a symmetxy-violating interaction. The result of
such an extension is two additional terms in Eq.
(43) which would modify Eqs. (45)-(46) as follows:

In Eq. (69}, 8 is the local-potential model-depen-
dent coefficient due to a symmetry-violating term
in the interaction. The value of 8 that corre-
sponds to a, decrease of a~„by 0.8 fm is about
0.0'I. In Eq. ('IO), I'z is the correction to 8 due
to the nonlocality of the interaction. The term I'~,
which exists in principle, is taken to be zero,
since it must be smaller than S~ and is px'obably
much smaller than the present uncertainty in 8 .
It then follows that a symmetry-violating term in
the interaction does not alter our estimate of the
nonlocal correction given by Eq. (66). The only
change is the value of a„„obtained from local-
potential models. Thus, any decrease in a„„due
to a symmetry-violating interaction necessary to
reconcile the 'He-'H binding-energy-difference
discrepancy will tend to cancel the nonlocal cor-
rection described in this paper. If we take a„„
= -1V.9 fm, as suggested by Henley and Keliher, "
then Eq. (66) yields a„„=-17.4 fm for Ã„= ~ and
a„„=-15.9 fm for X„=1. The charge-symmetric
local-potential model value of -1V fm is obtained
when X~=0.6. For reasonable values, the non-
local and symmetry-violating corrections almost
completely cancel each other.

D. One-Pion-Exchange Potential

We have not specifically included the one-pion-
exchange potential (DPEP) in the analysis of this
paper. This potential is the long-range part of
most local-potential models, and its role in the
discussion of the nonlocal-potential models was
not made clear in the first section. The OPEP
potential can be added to Eqs. (1)-(5) and Eqs.
(12)-(16)without altering the results in an essen-
tial way. '9 Alternatively, it can be x etained in the
charge-symmetric nonlocal interaction as a com-
ponent with zero nonlocal correlation length.

CONCLUSIONS

If the two-nucleon interaction is charge sym-
metx ic and nonlocal, then one should expect the
measured value of a„„ to be smaller in magnitude

than the value of a„„obtained from charge-sym-
metric local-potential models. Recent measure-
ments' "are systematically smaller than the
available results" '3 from the local-potential
models, and are consistent with a zero-energy
nonlocal correlation length of about 0.65/m„c.
This value of the correlation length is in agree-
ment with theoretical expectations. ' '

The apparent violation of charge symmetry due
to the nonlocality of the two-nucleon interaction is
canceled to first order by the Coulomb-energy
difference in the binding energies of mirrox nu-
clei. Therefore, there is no reason to expect
agreement between the measured value of a„„and
violations of charge symmetry deduced from ex-
isting theoretical calculations"' 3' of these binding-
energy differences.

ADDENDUM

Since this paper was submitted for publication,
several new results were reported in contribu-
tions to the conference on Few Particle Problems
in the Nuclear Interaction. These results suggest
that the discrepancy between the measured values
of Q~~ and the value of 1V fm deduced from
charge-symmetric local-potential models fitted
to the P-P phase shifts is not as large as the
measurementss, io weighted heavily in this paper
indicate. More important, however, there is now
better agreement between the values of a„„ob-
tained from different experiments and a consensus
that a„„ is slightly less negative than -1V fm. The
purpose of this Addendum is to compare our es-
timate with the results reported at the conference.

Wilkinson~' has suggested that at present one
adopt a„„=-16.4+ 0.9 fm, which is the mean of the
measured values reported at the conference, and
which is to be compaxed with -1V.1+0.2 fm de-
duced from charge-symmetric local-potential mod-
els. The estimate of the present work, Eq. (66),
is compared with these suggested values in Fig. 1.
The solid curve in Fig. 1 is the estimated value of
a„„asa function of the zero-energy nonlocal cox-
relation length RN(0) with a~„=-IV.I fm; the
dashed curve is a similar estimate with a„„=-1V.9
fm. The 0.8-fm difference between the two values
of a~„represents the estimate by Henley and
Keliher" of the change in a~„due to a violation of
charge symmetry necessary to reconci1.e the
3He- H binding-energy-difference discrepancy.
The dotted lines in Fig. 1 denote the suggested
value of a„„and its 0.9-fm uncertainty. While the
uncertainty in the suggested value of a is too
large to make a definitive statement, it appears
that there is only marginal consistency with local-
potential models for which R„(0}is identically
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zero. The mean of the measured values of a„„
points toward R„(0}=0.6k/m, c, and it is of some
interest to note that a definite statement about the
nonlocality of the two-nucleon interaction could be
made if the uncertainty in the measured values
can be reduced by a factor of 2. The conclusions
of the present paper are consistent with the sug-
gested value of a„„.

APPENDIX: EFFECTIVE-RANGE
FUNCTIONS

(A1)

The solutions to this equation which satisfy the
boundary conditions

lime" "f'(k, r) =1r~ (A2)

Consider the radial equation for the s-wave
relative motion of two identical particles of mass
m interacting through the potential V(x) =k'/m U(r):

isfies the boundary condition

lim r 'y(k, ~) = 1
Y~O

(AS)

P'(k) =limf'(k, r}
g~ 0

(A5)

is called the Jost function. The Jost function is
related to the phase shift 5(k) by

e'(k}= iS'(k) is""'. (A6)

The quantity ~p'(k}
~

' is the probability of finding
the two particles at r =0 in the presence of the
interaction V(r ) relative to what it would be if
there were no interaction. An integral represen-
tation for the Jost function is

is called the regular solution. It is related to the
Jost solutions by

y (k, r) = (2ik) '[ P ( k}f '(k, r) - tt+ (k)f (k, r )],
(A4)

where

are called Jost solutions. The solution which sat- (t'(k) =1+
~

f,'(k, r)U(r)y(k, r)dr,
+Q

(AV)

I8

l6A + 0.9
~ ~ $»

where f,'(k, r) =e" " are the Jost solutions for a
free particle. The regular solution for a free
particle is y, (k, r) =k 'sinkr, and its Jost func-
tion is unity. The solution defined by

8(k, r) =2 '[P'(k) 'f'(k, r)+ P (k) 'f (k, r)]

(AS)

l7—

i6

l6—

is called the irregular solution. The irregular
solution for a free particle is 8,(k, r) =coskr.
Both 8(k, r) and q&(k, r) are even functions of k.
The inverse of Eqs. (A4) and (AS) is

P'(k) 'f'(k, r) =8(k, r) haik (g'(k) ( 'cp(k, r).
(A9)

The above defined notation and nomenclature will
be used throughout this Appendix.

The above results are easily generalized to the
radial equation for a nonlocal potential:

l6

CP p 00

+k' P(k, r) =
J U(r, s)P(k, s)ds.

0
(A10)

l5
0

RN(0) (Pion Colnpton Wavelengths)

The integral representation for the Jost function
that corresponds to Eq. (AV) is

~DO p OO

8'(k) =1+, f,'(k, r)U(r, s)y(k, s)dsdr.
0 0

(A11)

FIG. 1. Comparison of a„„given by Eq. (66) for a„„
=-17.1 fm ( ) and a«=-17.9 fm (—--) with the
suggested experimental value of -16.4 fm and its 0.9 fm
uncertainty (......).

It reduces to Eq. (AV) if the local potential U(r) is
written in the nonlocal form U(r, s) = U((r +s)/2)
x 5(r —s), where 5(r —s) is a radial 5 function.

The effective-range function for a short-range
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potential is defined by

X(k) —= k cot5(k) = -[1+Ie (k}]/Iq (k),

where

(A12)

in which case the relative Jost function is

p 00

g (k}= 1 + g (k) '
J f ', (k, r) U(r)y, (k, r) .

0

(A19)

I„(k)=
&0 40

g(k, r) U(r, s)y(k, s)dsdr (A13) A relative effective-range function, defined by
analogy with Eq. (A12), is

-1
lim X(k) =-—,
k~0 Q

and the effective range by

d2
lim dk, X(k)—= p.
k~o

(A14)

(A15)

The effective-range functions for equations with
different potentials V(r, s) and V(r, s) or differ-
ent masses m and m are related by

X(k) -X(k) = t P(k, r)[U(r, s) —U(r, &)]
o ~0

where

xg(k, s)dsdr, (A16)

g(k, r) —= y(k, r)/I (k) (A17)

is the solution that behaves like sin[kr+5(k)]/
sin5(k) as r becomes large. " The standard first-
order or variational formula for X(k)-X(k) is
obtained by replacing g(k, r) by P(k, r), or vice
versa. It should also be mentioned that Eq. (A16)
is a fixed wave-number relation. When it is ap-
plied to equations with different masses, the en-
ergies E and E are related by mE =mE.

In charged-particle scattering the phase shift
is determined relative to the phase shift for the
long-range electric potential, and the effective-
range function defined by Eq. (A12) must be modi-
fied. The way it is modified can be seen by con-
sidering the simpler case of a short-range ref-
erence potential. Let P,'(k) be the Jost function
for the reference potential V,(r}. Let P2 (k) be
the Jost function for the potential V, (r) = V, (r)
+V(r) If we writ.e $~(k) =6,'(k)g(k), the phase
5„(k) defined by g (k) =

i 6,'(k)
i
e" "~ ) is the phase

shift for the potential V,(r) relative to the phase
shift for the potential V, (r); i.e., 5„(k)=5,(k)
—5,(k). Also, i 8'„(k) i

' is the probability of find-

ing two particles at r = 0 in the presence of the
interaction V, (r) relative to the probability for
V,(r)

The Jost function P', (k) can be written

6,'(k) = P', (k) + f ', (k, r) U(r)y, (k, r)dr, (A18)
0

and X. denotes a function of k and r. The effective-
range function is an even function of k. The scat-
tering length is defined by

where
(A22)

(n(r)) =I2~,(k} 'Jt n(r)y, (k, r)U(r)y, (k, r)dr.
(A23)

The relative scattering length a" and effective
range p" are defined from Eq. (A22) according to
Eqs. (A14) and (A15}.

The effective-range functions X"(k) and X(k)
are related by

X"(k) —X(k) = -a(r) —R(k) . (A24)

Equation(A24) defines the function R(k), which is
given by

R(k) =(n(r)) —o.(v)+[1+I', (k)+I (k)]/I2~ (k)

—[1+I,,(k)]/I„(k) .

(A25)

X„(k)= -[1+Ie,(k)]/I~, (k) = k
i g (k) i

2 cot5„(k) .
(A20)

The superscript in I„'(k) denotes the solution

y, (k, r) in the integrand of Eq. (A13). Equation
(A20) is not an optimum choice for a relative-
effective-range function in that 8,(k, r) contains
a component of the regular solution p, (k, r) which
results in terms of X„(k) that are independent of
V(r) through cancellation in the ratio Ie (k)/
I~,(k). Specifically, 8, (k, r) can be written as"

8,(k, r) = 8,(k,.r) +[o.(r) +P(k)]y, (k, r)+ t},(k, r),
(A21}

where the remainder t},(k, r) and its derivative
are zero at the origin, and u(r) +P(k) is deter-
mined from the behavior of d8, (k, r)/dr for small

The quantity o.(r) is equal to a constant plus
singular terms, less singular at r =0 than r ',
if the latter are needed. The quantity P(k) is de-
fined to be 0 at k =0. A representation of n(r)
+P(k) can be obtained by examining the behavior
of the integral equation for 8,(k, r) in the limit as
r- 0. The customary definition of the relative-
effective-range function is

X"(k)—= ki 5'(k)i 'cot5„(k)+ P(k)

= -(o.(r)) —[1+I', (k)+I'; (k)]/I', (k),
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The value of r for the argument of n(r) in Eq.
(A24} is arbitrary; it is usually chosen to be a
length that is characteristic of the system under
study, for instance, y =- p". The above results
for the relative-effective-range function can be
used with the long-range reference potentials if
the reference Jost function I,'(k) is known. The
remainder of this Appendix is devoted to the Cou-
lomb and vacuum-polarization reference poten-
tials.

The radial equation for the s-wave relative mo-
tion of two identical particles interacting through
the Coulomb potential is

where y is Euler's constant,

h(g} =Ite[((t)(1+ iq)] —in@,

(2PR) + i k
2P+ 1 (A34)

and (p, c(k, r) is the regular Coulomb solution for
ox'bital momentum E.

The relative-effective-range function for the
Coulomb potential is obtained by comparing Eqs.
(A21) and (A32). This gives a(r) =R '[ln(r/R}
+2y —1] and P(k) =h(g)/R. The standard expres-
sion for the relative-effective-range function,

(
d'

, + k' ——(l),c(k, r) =0, (A26) kc, (q)'cot6 (k)+h(ri)/R =Xc(k) (A35)

where R =h '/me'. Since the Coulomb potential has
a long range, the boundary conditions at y=~
must be modified. The solutions to Eq. (A26)
which satisfy the boundary conditions

hm et i(kr-gina&) f s (k r}

where g =(2kR) ', are called the Coulomb Jost
solutions. The solution to Eq. (A26) which satis-
fies the boundary condition (AS) is called the regu-
lar Coulomb solution. It is related to the Coulomb
Jost solutions by

(p, c(k, r) = (2ik) '[ s,c (k)f,+c(k, r) —5,'c(k)f,c (k, r)],
(A28)

mhere

(A29)

is the Coulomb Jost function. The Coulomb phase
shift is o, = argI'(1+ ig} and the quantity

c,(n)'=lg.' I
'= +.„", (A30)

+ R 'g [2-' —(-I)']Re[q,'(k)](pc(k, r),
, I I+I

(A32)

is the probability of finding two charged particles
at y = 0 relative to what it would be if the particles
were uncharged. The regular Coulomb solution
is related to the regular Coulomb wave function"
E,(g, p) by E,(ri, p) = kc, (g)(p, c (k, r), where p = kr
The irregular Coulomb solution is defined by

8,c(k, r) =2 '[5,'c(k) 'foc(k r)+Soc(k) 'f, c(k, r)] ~

(A31)

It is related to the ixxegular Coulomb wave func-
tion~' Go(q, p) by Go(g, p) = Co(q) '8«(k, r). The ir-
regular Coulomb solution can be written~'

8oc(k, r) = 8O(k r)+R '[ln(r/R)+ 2y —1+h(q)] (poc(k, r)

is obtained from Eqs. (A22) and (A30). The effec-
tive-range functions X (k) and X(k) are related by

(k) —X(k) =-R '[in( r/R)+2y —1+C(k)],

(A36)

kc,(q)'
[ (1+}(,)cot6'(k) —tanv, ] + [h()7) + l, (g)]/R1-yo

= Xs(k)

(AS'I}
The quantity (1 —(((),)/(1+ }(,) is the magnitude
squared of the relative Jost function for the vac-
uum-polarization potential with respect to the
Coulomb potential. The phase of this Jost func-
tion is r, The -qua.ntity n(r) from Eq. (A21) is

n(r) =R '[ln(r/R)+2y —1] -AR '[(in(zr) -1)(y-+)
+ —,

' ln'(zr)+ v],
(A38)

where )). =2e'/Svhc, z '=I/m, c, and

v=lim Ooc O, y (9oe O, y I y-dy

e~o y

—)n(nn)(n ~ —,
' —', )n(nn))) . (A39)

In this last expression, 80,(k, r} is the irregular
solution for the Coulomb-plus-vacuum-polariza-
tion potential, [I+A f(r)]/Rr, with f(r) given by

(A40)

The relative-effective-range functions X'(k) and

where C(k) —= RRc(k) with Rc(k) given by Eq. (A25).
The generalization of the relative-effective-

range function for the Coulomb potential to include
vacuum polarization is straightforward. Equations
(A21) and (A22) yield Heller's formula~
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X(k) are related by

X'(k) —X(k}= R-[ln(Fc/R) +2y —1]

+XR '([In(trF„) —1J (y ——,')

+-' ln (ar„) + v}—R 'E(k), (A41)

same value it would have in the absence of vacuum
polarization. There is no present need to keep the
second and third terms separate as vacuum polar-
ization is a small correction to the Coulomb poten-
tial; it is sufficient to redefine E(k) to include the
second term. With this latter definition, the rela-
tive-effective-range functions X'(k) and Xc(k) are
related by

where E(k) ~RR'(k) with R'(k) given by Eq. (A25).
The first term on the right in Eq. (A41} is the
Coulomb term and r~ may be chosen to have the

X'(k) —Xc(k) = -XR 'V(k),

where X V(k) =E(k}—C(k).

(A42)
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