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A multilevel two-channel R-matrix analysis is made for both the neutron total and angle-
integrated (n, o.) cross sections of O for 0-5.8-NeV neutrons. Off-resonant phase shifts
are described by scattering in a real Woods-Saxon local potential with a spin-orbit term and
a parity dependence for the weQ depths. The well parameters are chosen to bind the 1d&~2
and 2s&g2 levels at the energies of the lowest two states in 0 and the quasibound Ide~ level
at the centroid of five observed 2+ resonances. The 1d&g2 level is replaced by these five
fragments which contain nearly 100% of the 1dsy2 strength and have their eigenenergy cen-
txoid at 5.74 MeV in ~O. The 5,08-MeV level in ~O has 69% of the strength. The 8-matrix
boundary radius must be chosen carefully inside the tail of the potential in order to subtract
the 1dsg2 state and in order to place the unbound 2p and 1f states at energies consistent with
the observed p- and f-wave fragments. Spech'oscopic factors are deduced for 26 levels in
~~O between 4.5 and 9.5 MeV and the sums of these factors are 1% for 4"= 2+, 5% for 2,
12% for f 9S% for 7+ ~ 0 1% for -'+ ~ 1% for -' and 14% for -' Thus the observed single-

. particle structure of ~~0 in both the bound and unbound region is described by an R-matrix-
plus-potential analysis.

I. INTRODUCTION

Frequent objections are lodged against the 8-
matrix theory' ' because of the arbitrary nature
of the boundary radius and the related arbitrari-
ness of the reduced widths and the 8" functions
for distant resonances. In this paper most of this
arbitrariness is removed by the use of a carefully
chosen diffuse-edge potential to describe the off-
resonant scattering. The boundary radius is re-
stricted to a limited region inside the tail of the
potential and the reduced widths are deduced rela™
tive to the single-particle 8-matrix states for this
potential.

The payer is devoted to the neutron total and
angle-integrated (n, n) cross sections for "0in a
broad neutron energy region from thermal to 5.8
MeV. There is only one neutron channel for each
4' and the resulting multilevel two-channel 8 ma-
trix can be inverted. '. In the past the full power of
the theory for total cross sections has generally
not been utilized. 'nothin the region studied here,
except near the upper end, fluctuations in the total
cross sections must arise from the local reso-
nances and, since these cross sections have been
measured with such good resolution and good sta-
tistics over broad energy regions, a detailed
multilevel analysis can extract information not
available from other measurements. The data in-
cluded here on total cross sections are from a
companion paper' and from several papers~ ' from
Wisconsin. The "O(n, ct)"C cross sections are
from data on the inverse reaction by Bair and
Haas. The resulting fit to these data is good and

the level parameters are discussed here and in the
companion payer. '

The off-resonant scattering is also significant.
For example, theoretical calculations' "based on
two-body forces have been compared previously to
the off-resonant scattering of neutrons from "O.
In an B-matrix analysis, the off-resonant cross
sections are attributed to hard-sphere scattering
plus the tails from all distant resonances. Tradi-
tionally distant levels are introduced as 8" func-
tions with adjustable energy coefficients; however,
the off-resonant scattering can be attributed~' "
to the real part of the optical-model potential. In
fact, this provides significant data on the poten-
tial. The phase shift for a yotential can be ex-
panded into a sum of hard sphere and plus "reso-
nant" phases, the latter being attributed to an 8
function. In this paper, I equate this 8 function to
R". Special treatment is required for d», waves
because the 14+, resonance is inside the region of
interest; I subtract the 1d», term and equate the
remaining 8 function to 8". The final fit to the
off-resonant scattering involves seven parameters
with six for the potentials and one for the R-ma-
trix boundary, ' however, only four of these are
adjusted to fit the scattering. The other three are
used to give the energies of the bound 2s,&2 and
1d,~, states and the quasibound j.ds&, state.

The potential plays a second role in the assign-
ment of spectroscopic factors. For years it has
been realized" "that the traditional Wigner-
Teichman" single-particle estimate should be re-
placed by one deduced from an appropriate poten-
tial. This is fairly straightforward if the observed
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resonances can be compared directly with that for
a quasibound single-particle state. Even then the
spectroscopic factors are somewhat ambiguous
because the width of a resonance for a potential
depends on the well parameters, especially on the
surface diffuseness. In this paper, I choose the
potential to fit not only the energies of the three
s-d states but also the s-wave phase shifts below
3 MeV. In essence, the latter requirement re-
stricts the width of the bound s state. This leads
to a certain width for the 1d,/2 resonance and, in
the final analysis, to a spectroscopic sum of al-
most unity for the five & states observed below
9.5 MeV in "O.

This takes care of the 1d», state but leaves the
single-particle widths of the higher 2P and 1f
states uncertain. Heavier nuclei have bound 2P
and 1f states but, as the nuclei become lighter
approaching "0, those states rise up and disap-
pear into the continuum. Thus, the potentials
used here do not have well-defined P- and f-wave
resonances, except possibly 1f», . (If each phase-
shift curve were plotted with zero phase at zero
energy, it would finally decrease to -nw at infi-
nite energy, where n is the number of bound states
of the potential. ") One approach to this problem
is to increase the well depth temporarily to bring
the 2P and 1f states back down below the barrier
where their widths can be calculated. That is a
questionable procedure. But the imposition of R-
matrix boundary conditions creates 2p, 1f, and
higher states that can be taken seriously" for
shell-structure calculations. The eigenenergies
depend on the arbitrary boundary radius and, off
hand, it might seem that the reduced widths have
little physical significance. The work of Vogt
et al."suggests, however, that the reduced widths
are meaningful providing the boundary radius is
near the center of the diffuse surface. Then the
reduced width of a single-particle state is not very
sensitive to whether the state is quasibound or not
and the spectroscopic factors for observed levels
can be deduced by comparison.

The discussion is in terms of real phase shifts.
The total cross section for lJ neutrons of center-
of-mass energy E, or momentum Sk, is

o'r =(J+-,')&, (I-ReU, &)

and, assuming neutron capture is negligible, the

(n, a}cross section is

where U, z is the scattering matrix element. In

terms of a real phase shift,

We first treat the single-channel case for which
the I U, ~ I is unity and the R matrix is an R func-
tion. The modifications in Sec. V for the n chan-
nel are relatively minor.

II. POTENTIALS AND THEIR R FUNCTIONS

The potential is a Woods-Saxon well with a
Thomas-type spin-orbit term:

V(7 ) Vop(l ) Vga .
p

where

p(y ) =(1 +eI" +~~e)
(4)
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FIG 1. The potentials. The listed even-parity param-
eters are chosen to fit the experimental energies of the
s and 4 states and the thermal s-wave scattering as
shown in the upper part of the figure. The odd-parity po-
tential (not plotted) has the same ro and u with V0=46

,MeV and V,0=3 MeV.

and A =16 for "O. For simplicity the parameters
are introduced as if they were chosen prior to the
R-matrix analysis. Actually, a preliminary anal-
ysis was required to determine the off-resonant
effects of local resonances. The observed off-
resonant scattering requires different parameters
for s- and d-waves than for P waves.

Figure 1 illustrates the manner in which I chose

20
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the four parameters for the even-parity potential
to fit four observed properties of the single-par-
ticle s-d states in "O. (These calculations re
quire different subroutines for the bound" and un-
bound" region. ) The 2s,„and 1d», states are
bound at the observed energies" of the single-
particle" states, the quasibound 1d„, state is'" 3+near the eigenenergy centroid for five ~ reso-
nant states, and the scattering phase shifts aris-
ing from the bound s state agree with the nonreso-
nant s-wave phase shifts for neutrons below 3 MeV.
More specifically for s waves, the potential is
such that the thermal cross section obtained by
combining the resonant tails of the R matrix with
the potential phase shift agrees with the known
thermal value" of 3.74+ 0.06 b. Figures 2 and 3
include the s- and d-wave phase shifts for scat-
tering in this potential. The dashed curve in Fig.
2 shows the 1d,» resonance which has a width
determined by the barrier of the combined nuclear
and centrifugal potentials. For the analysis (Sec.
IV) this state is subtracted out as indicated by the
curve labeled "d3/2 ldsg2.

"
The P- and f -wave phase shifts for the even-

parity potential (dashed curves in Fig. 3) are
not consistent with the off-resonant cross sections.
The potential P,&, phase shifts are too large to fit
some data, such as the 2.35-MeV minimum; and
the curve for P», is positive, whereas scattering
measurement, ""as well as the present results,
show that it should be negative below 3 MeV. Also
the shape' of the ~2 resonance at 3.766 MeV shows
that the f», phase shifts are too large at the high-
er energies. Some of the parameters must be
changed. Since the energies of the single-particle
states are affected mostly by the well depths, and

ISO

Jt'r. zRrzP
tan6rg=

1 lJ rI r=ry

th Srz=Srs0

The potential R function is given by

Itfz=(fry -&is) ',
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the reduced widths by the surface parameters, we
can facilitate comparisons of observed and single-
particle reduced widths by changing only the well
depths to give the odd-parity potential. To fit P
waves I choose F0=46 MeV and V„=3 MeV; I then
use the same potential for f waves. The phase
shifts are plotted as solid lines in Fig. 3. (The
final fit might be improved by a potential with
more negative P,l, phase shifts. ).

The potential phase shifts can be expanded into
hard sphere and "resonant" components familiar
to the R-matrix theory' ' ";

RAJ'+~rl' ~

where

tan9, ~ = (E,z/G, s)„=„,
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FIG. 2. The deg2 and s~/2 phase shifts for the even-par-
ity potential. The ldo/2 resonance is subtracted to give
the "dey2-1d~g2" curve. The solid curves are used for the
R -matrix analysis.
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FIG. 3. Potential scattering phase shifts. The d-wave
curves and the dashed curves for p and f waves are for
the even-parity potential; the solid curves for p and f
waves are for the odd-parity well. The fsy2 curves are
nearly the same for both wells. The solid curves are
used for the R-matrix analysis.



C. H. JOHNSON

where

(8)
Q)J

and u&J is the radial part of the wave function that
is regular at the origin.

For the moment the radius x~ is arbitrary. If it
is outside the well, E«and G,J are the usual wave
functions I, and G„and P,J and S,J are the cor-
responding penetrability and shift factors' PI and
S, . If r, is inside, I',J and G,J are the inward
continuations" of E, and G„and P«and S,J are
corresponding modifications of P, and S,. Figure
4 shows the modified penetrabilities, calculated
in one or the other of the above potentials and di-
vided by the usual penetrabilities for the same
radius in the absence of a potential. (The radius,
x~ = 3.86 fm = 1.256ro A'/3, is used below in the
final analysis. )

The relative contributions of the hard-sphere
and "resonant" components in Eq. (5) depend" on
the arbitrary radius ~,.As ~~ increases, y,J be-
comes more negative and 5,~ more positive while

5,J remains unchanged. Figure 5 shows examples
for P3/2 wave s for the odd -parity potential ~ The
solid curve is the potential phase shift and the bro-
ken curves are the resonant and hard-sphere com-
ponents for two different x» one just outside of the
well at 7 fm and the other inside at 3.S6 fm. Al-
though true resonances do not occur in 5,J, "res-
onances" do occur in 6,& where it passes upward
through (n+3)w. The spacings and widths of these
"resonances" increase with decreasing r, . This

2.4

2.2

dependence of r, does not occur if the "resonance"
corresponds to a true 5,J resonance such as the
one for the quasibound 1d», state. In that case the
hard-sphere component is small and the "reso-
nance" in 6,& is nearly independent of ~~ unless t'~

is very large.
Up to this point b,J has been arbitrary. If we

now impose the boundary condition, fIg(E) = bIg at
x„we can solve for the eigenenergies and expand
the potential R function;

where the reduced widths are calculated from the
surface wave functions at the eigenenergies

2= I'
NPIJ2@x

In the following analysis we introduce the "exact"
B function B

gJ into the R matrix and do not find
the terms of the expansion, except for 1d»„
nevertheless, we must be aware that a unique ex-
pansion exists for a given set of boundary condi-
tions. A "natural" value for b, J is that which
makes S',J vanish at one of the energies where
5",z =(n+ ~)v The.n, for that resonance, the eigen-
energy is the resonant energy. The other levels
in the expansion correspond on a one-to-one basis
to the bound states and to the other resonances.

Although the number of bound and quasibound
states are determined by the potential, the spacing
and widths of the unbound 8-function states depend
on the boundary radius. Figure 6 shows the first
unbound states. for two values of x~ for each par-
tial wave in the appropriate even or odd potential.
Natural boundary conditions have been imposed;
thus, for example, the 2Ps/2 energi. es are the same
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FIG. 4. Ratios of modified to usual penetrabilities at
the same radius, 3.86 fm. The solid and dashed curves
refer to the even and odd potentials.

FIG, 5. Resonant and hard-sphere components of the

p3/2 phase shifts for two different ~& . Arrows indicate
the 2p ey2

"resonance. "
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as indicated by arrows in Fig. 5. We see that
r& is an additional model parameter. Although it
does not affect the total scattering phase shifts
for the potential, it does affect the hard-sphere
and "resonant" components and it becomes impor-
tant when the potential is incorporated into the 8-
matrix theox y to describe the actual phase shifts.

III. SINGLE-CHANNEL MULTILEVEL
8 FUNCTION

For the moment we leave the model and discuss
the actual scattering. The potential R function in
Eg. (7) must be replaced by one representing the
internal wave functions at the surface. The single-
channel multilevel R function is

& =RE"""E (11)
x=x

where E~,& and yq„,~' are eigenenergies and neu-
tron reduced widths for actual levels in "O. Fol-
lowing the usual procedure we separate this sum
into two parts;

It,d =g "' +It",g, (12)Eg)~ -E

where the parameters in the summation are to be
adjusted to fit the widths and positions of the N, I
levels observed within the x'egion of interest, and
the residue R",~ of distant levels is to be chosen to
fit the off-resonant phase shifts.

Both R",& and the hard-sphere phase shift cp, ~ af-

25

1'

feet the off -x'esonant scattel'lIlg. A~.so both affect
the shapes of resonances but in different ways;
changes in p, z merely alter the pattern of inter-
ference between resonant and potential scattering
whereas changes in R",~ also alter the resonant
widths. It would be convenient if we couM adjust
q, ~ rather than 8",z to avoid altering the widths,
but this procedure is not allowed; once t~ is cho-
sen, y, z becomes a known px operty of the exterior
and the R function is to be adjusted to describe the
unknown properties of the interior. In some cases
it is important to recognize the effects of R" on
the observed widths.

Figure 7 illustrates interference effects foi. two
3+

overlapping ~ resonances. No other resonances
are included here except those in R".For the
solid curve the ratio of observed widths is 6/1
even though the ratio of reduced widths is 2/1. If
a narrow level occurs within the width F„ofa
broad one, it always appears narrower than ex-
pected from the familiar single-level expression,
X'„=2J'y„'. The other two curves show related ef-
fects; both resonances become broader for R»,+
=+0.5 and narrower for -0.5. The sign of this
effect, i.e., whether a resonance is made broader
or naxrower by interferference with 8"depends
in part on the boundary conditions. Here 80=0 at
1.42 MeV. (The eigenenergies have been adjusted
to make the peaks occur at the same energies for
all three curves. )

These effects make it difficult to define reso-
nant energies and observed widths. I define a
resonant energy by reference to the single-level
approximation. Near each level an expansion
could be made' for Eg. (5) in which only a single
level would be included in a new resonant phase
shift 6",d, and the tails of all of the other reso-
nances including R",& would be incorporated into a
modified y,'& term. Then the resonant energy
would be where 5",d = v/2 or, equivalently, where
5~&~ has a point of inflection with maximum slope.
If we assume q»~ varies linearly with energy, we

3 d3]

rb ——~.ee &m t'b ~?.0 fm

/ 5j&

~( f~

y2 d6(
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~2p]/
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td~
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A~~,
o.o---+ o,5

FIG. 6. Energies for the first unbound 8-function
states for the, 'Mtural boundary conditions for t%'0 boun
dary radii. The even- and odd-parity levels correspond
to the even and odd potentials.

3.4 3.8
NEUTRON ENERGY (MeV)

4.2

FIG. 7. Interference of adjacent +&+ resonances with
each other and with 8".
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can find the point of inflection of the tota/ phase
shift. Thus, I define E„&~ as an energy where

g2

tials; thus,
oo P

R~q =R)~ .
For d,~, waves, I subtract the 1d3/2 state;

(14)

I then define the observed width I'),„» as the en-
ergy difference between points which are w/4 on
either side of the phase shift at E„,~. For a nar-
row level this is the same as obtained in the sin-
gle-level expansion and for a wide level it is about
that obtained by a phenomenological Breit-Wigner
fit with a constant potential term. In general the
single-level expression, I'„=2Py„', is a good ap-
proximation only for isolated levels.
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FIG. 8. Fragments of single-particle states: (a) The
bound d5~2 and s&p states contain nearly all of the single-
particle strength. (b) The de fragments from 0 to 5.8
MeV are nearly 1009' of the 1degm strength. (c) and (d)
The p-wave fragments for 0 to 5.8 MeV depend on the
assumed radius rq .

IV. R"AND THE BOUNDARY CONDITIONS

For all but d,~, waves I replace R",& by the R
function from one or the other of the above poten-

(15)

Some justification for this procedure has been
given by Westin and Adams. "

The concepts embodied in Eqs. (14) and (15) are
shown schematically in Fig. 8, which applies to
neutrons on "0and is based partially on the re-
sults of the R -matrix fit. Within our energy re-
gion of 0-5.8 MeV there are obviously three pos-
sibilities for each partial wave; either the ob-
served fragments add up to a negligible fraction
of the single-particle strength, or to nearly all of
it, or to a nonnegligible fraction. The estimates
from Eq. (14) or (15) are rather good for the all-
or-none limits but approximate for the intermed-
iate case. Figure 8(a) represents the case of
negligible fragments. The observed 2 and &

resonances do have small widths and the bound
states contain most of the nearby single-particle
strengths. The sum of reduced widths is also
small for f»s neutrons. In these cases Eq. (14)
should be a good approximation. Figure 8(b) il-
lustrates the other limit, which applies for d, &,
neutrons. The observed fragments add up to near-
ly 100%%uo of the 1d»s strength and Eq. (15) should be
a good estimate for the remaining distant states.
Figure 8(d) illustrates for p waves. The observed
sum is about 10% for P,» or Ps&„' thus, the single-
particle state must be relatively far away and Eq.
(14) is a fairly good approximation. The sum for
f»s resonances is slightly larger; Eq. (14) is still
adequate but it would probably fail rapidly if the
analysis were extended to higher energies.

The boundary radius must be chosen carefully.
If the only purpose were to subdivide the potential
phase shifts into "resonant" and hard-sphere
components, the radius would be arbitrary, ' but
for the R-matrix analysis the radius must be near
the nuclear surface. This still leaves some free-
dom of choice and, specifically, it allows bound-
aries either inside or outside the tail of the poten-
tial. Takeuchi and Moldauer" used a potential
similar to ours for the n+ "0 system and placed
the boundary outside at either 7 or 10 fm. Westin
and Adams" insist that the boundary be outside.
Vogt etal. " found good reason to put it inside. I
put the boundary inside for theoretical reasons,
a priori, and for reasons, a posferiori, specifi-
cally related to n+ "O.

The a Priori reasons follow Vogt's analysis. "
He showed that a boundary near the center of the
surface allows one to interpret the wave proper-
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ties in terms of the penetration of the barrier, the
reflection at the surface, and the resonant behav-
ior in the interior. The boundary represents a
"sphere of ignorance"; it seems reasonable to
make this sphere small by placing r„ inside of the
tail of the potential so that the 8 function repre-
sents only the resonant properties of the interior,
not the additional effects of penetration.

The work of Vogt et al."shows also that an
inner boundary should be used to derive spectro-
scopic factors consistently for aQ partial waves.
If me were concerned here only with the ~' states,
the radius mould not be critical in this regard be-
cause, with minor corrections for penetrabilities,
the widths of the five 2 fxagments could be com-
paxed directly with the nearby 1d,~, resonance.
For other partial maves, however, there are no
such resonances. To approach this problem let
us define a dimensionless single -particle reduced
midthp

g 2 Qp/J' 2

P11 ga/~~ 2 '

Figure 9 shows 8»~' for the above potential as a
function of 1; for the first unbound states (If r. ,
= 3.86 or 7 fm, these widths refer to the levels in
Fig. 6.) The barrier effects are relatively large
for the quasibound ld„, state but not for the other
8-function states. Thu's, the spread in 8»~' is
less if the boundary is inside at about 3.5 to 4 fm.
Furthermore, the dependences on the mell depths
and on the px'incipal quantum number for a given
pa, x'tial wave are less at an inner boundary. For
simplicity I decided, a Priori, to let r~=3.86 fm
so that the dimensionless 1ds&, width is exactly
unity. Let us define a dimensionless midth for an
observed resonance,

2 ~X ntJ'
e~n SJ' 2 2

rq =S.SS S~

For a ds&, resonance, this is the spectx'oscopic
factor. For other resonances it may be 30 to 50%
too large. [In retrospect, the figure shows that
a boundary radius of 3.5 fm with a corresponding
change in Eq. (17) would give more realistic
spectroscopic factors for all but f waves. ]

Now, let us consider the reasons revealed, a
Posteriori, for an inner radius. Since the solid
curves in Figs. 2 and 3 give a rather good fit in
the final analysis, they are essentially correct
whether a potential model is used or not. If me
mere to choose an outer radius of 7 fm, the off-
resonant values for 6» would have to be large and
positive (except for s waves) to compensate for
the large negative hard-sphere phase shifts. The
energies of the associated single-particle states
mould be located as shown by the 7-fm diagram in

Fig. 6. The proximity of these states to the re-
gion of the analysis is inconsistent with the smaQ
widths actually observed for aQ but the ds&, reso-
nances. Even for d», the 7-fm boundary mould in-
troduce a second single-particle state neax' 6.5
MeV in contradiction to the observed fragments.
This inconsistency is particularl, y obvious for p
waves because the 2P states for rtI, =7 fm ax'e ac-
tually inside the region of the analysis. If they
mere really there, me mould expect to find about
V0% Of the slllgle-pal'tlcle sil'811gtll COIlc811tl'a'ted

in the observed fragments as illustrated in Fig.
8(c) rather than about 10% as actually observed
and illustrated in Fig. 8(d). Even if this problem
of intex'pretation mere ignored, interference ef-
fects similar to those shown in Fig. 7 mould make
it nearly impossible to fit the observed widths of
levels close to the 2P state. The reduction of r&
to 3.86 fm moves all but the quasistable ld», state
upward {Fig.6) and results in better agreement
between the observed w'idths of the fragments and
the locations of the single-particle states.

Finally, an inner radius is critical for subtrac-
tion of the 1d,~, state. The "d», -ld», " curve in
Figs. 2 or 8 would be quite negative {-26'at 6
MeV) if r, were 7 fm. The curve for 8.86 fm
leads to a good fit to the data; in fact, the fit
above 3.4 NeV could be improved by reducing r,
to 3.5 fm in order to make the "d», -ld3»" curve
even more positive.

P..Q--

~2 de~1

5$ )gp
~ p~/a
2 p~g~
3 fop

rb (f fI))

FIG. 9. Dimensionless single-particle reduced widths,
81 =V /{S /11r&t), for the first unbound states with natural
boundaxy conditions for radii inside the potential tail.
Solid and dashed curves refer to the even and odd poten-
tials.
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Figure 10 shows curves for R«calculated from
Eg. (14) or (15) for x, = 3.86 fm. These all increase
almost linearly with energy. Those for s,/, and

d,/, are negative because the nearby 2sy/3 and
1d,~, states are bound, and those for P and f waves
show the effects of the higher 2P and 1f levels.
'I'be d3/& 1d3/g curve is nearly constant because
the 2d3/2 state is very far away.

The boundary parameters, b,J, are chosen to
make 8',J vanish at the energies shown by the ar-
rows in Fig. 10. The d„, condition is the natural
one and is carefully chosen for Eg. (15). For the
other partial waves b« is not so important be-
cause the exact R functions rather than the expan-
sions are used in the analysis. Actually, one
could get into difficulties by choosing b, » so poorly
that it places one of the single-particle levels too
close to our energy region. The off-resonant
phase shifts would then still be correct, but inter-
ference with the single-particle level could make
it nearly impossible to fit a local level except with
a very large reduced width. This phenomenon
would occur, for example, if the s-wave boundary
condition were chosen to make S vani. sh near 2.3
MeV where the potential scattering is near 90
even though there is no true single-particle reso-
nance. (In retrospect, this report might read
better if natural boundary conditions had been used
also for P and f waves, but the fact that the final
reduced widths for the isolated levels are consis-
tent with those from single-level analyses shows

that no serious single-particle interference ef-
fects have been introduced by the boundary condi-
tions. )

where

d = (1 -R(gL,"g)(1 R",~L-,"g) Lf~(R-,"q)'L",q

(16)

and L",J and L,J are the usual functions of shift and
penetration factors. For the three R functions,
R",~ is the same as in Eq. (11)and, with the ne-
glect of the e-particle widths outside of our en-
ergy region,

Nf J
Rrz= Z rx (z'l(Euz -E) (19)

X»&

and

N)J

R)g = Q r), „(gr~~(gl&y)g -&) ~

X.= i
(20)

For consistency I use a real diffuse-edge potential
for the n channel and place the boundary inside
the potential tail; the parameters are from Fig. 9
of the paper of Michaud, Scherk, and Vogt. "

By analogy with the single-channel approxima-
tion, I define the observed o.-particle width as

tX 2I y„,J=2P (21)

where the penetrability P « is calculated at the +-
particle energy corresponding to the neutron reso-
nant energy E„. This width is about the same as
from a single-level analysis if multilevel inter-
ference is negligible in the e channel. If I'~ „,J
&I'q, J, the definition of I"q„,J, as given in the
text following Eg. (13), is nearly the same as the
neutron width that would be obtained from a single-
level analysis. It is not the total width.

VI. R-MATRIX FIT

V. ALPHA-PARTICLE CHANNEL

For the "0(n, e)"C reaction the spine and pari-
ties are such that l~= l„+1 for J= /„+ &. To sim-
plify the notation let us use only the subscript
I,-=l„with the understanding that the a-particle
penetrabilities and shift factors are to be calcu-
lated correctly with /„= E + 1. The elastic scatter-
ing matrix element is given by'

U, ~e ""'~=1+2i P, Id '(Rfz -L",z[R)~R",~ -(R»)']],

-0.3
0

I I I I

2 3 4 5
NEUTRON ENERGY (MeV)

FIG. 10. Curves of B&~ from Eqs. (14}and (15) for a
3.86-fm radius and boundary conditions that make the
shift functions vanish at the energies of the arrovw.
The solid and dashed curves refer to the even and odd

potentials.

The fits to the data were obtained visually. Fig-
ure 11 shows the total cross sections from 0.2 to
5.8 Me V. The points are measurements obtained
with a 'Li(p, n) source in the companion paper' and
the crosses are from Wisconsin. 4 ' Narrow reso-
nances not included in the R Inatrix are indicated
by X or R. The lower figures are the partial cross
sections. Table I lists the level parameters with
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I I

0
0.2 2.2 2.6 5.0 3.4 5.9

NEUTRON ENERGY (MeV)

4.2 5.8

F&G. 11. The 8-matrix fit to the total neutron cross sections of ~80. In the main upper fi re the dots a
companion paper {Hef. 3) and the crosses from th U

'
ity f & . — a

the lower figure. Part of Fig 12 ' i rted th
rom e nxversity of Wisconsin &Refs. 4-7 a

xs nse at the upper right.
ity f ( . —). Partial cross sections are in
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level numbers referring to the first 41 known ex-
cited states' in "O. The primary experimental
data for the assignments of widths and energies
are indicated by footnotes in the table.

The angle-integrated (n, o.) cross sections are
shown in the insert at the upper right in Fig. 11
and also in Fig. 12, which includes the partial
(n, ct) cross sections. The data are deduced from
measurements on the inverse reaction by Bair and
Haas. ' Since these workers used a flat response
4w detector, their excitation function has the right
shape except for finite resolution effects. They
quote a +20@ absolute uncertainty; I have reduced
their absolute cross sections by 20yo to give better
agreement with the average from several investi-
gatipns ' ' and tp make it easjer tp pbtajn a fit
consistently with the total cross sections. The &

resonance at 3.3 MeV is included to fit the broad
flat region in Fig. 12.

In regard to Table I, the definition of Eq and E„
are given above. The energy E~„„refers to the
point where the real phase shift is an odd multiple
of n'/2 and where the total cross section is a max-
imum. The energy E~„z corresponds to the (n, n)
peak for the given partial wave. The excitation
energy E,„in "0 is computed from E„with Q
=4142.6 keV. Of these energies, only Eq enters
directly into the 8 matrix. In regard to the widths,

y~ „'enters directly into the 8 matrix and the n-
particle width I'& enters indirectly. The signs
assumed for the products y„y„are listed in the
last column. The other widths are derived quanti-
ties. The observed width I'q„ is defined above fol-
lowing Eqs. (12) and (21).

The product 2P„yq„' is included in the table for
comparison to I'q „. It is seen that I'z „—- 2P yz „'
for the narrow isolated resonances, ' thus, a single-
level analysis for each of these would lead to re-

500

400—

E
a

b 100—

0

100

50—
t (~/-—~k+ '

3.0 3.4 3.8 4.2 4.6 5.0
NEUTRON ENERGY (MeV)

54 5.8

FIG. 12. Fit to the angle-integrated 80(n, o.) GC cross sections. The points are from data on the inverse reactions
by Bair and Haas (Ref. 8) normalized by a factor of 0.8. The lower figures show partial cross sections.
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duced widths in essential agreement with the mul-
tilevel analysis. For isolated but broad reso-
nances, such as the one at 442 keV, the product
disagrees with the observed width because of the
variations in penetrability, shift factor, and po-
tential scattering over the width of the resonance.
For the strongly overlapping levels, whether some
of them are broad or not, the product disagrees
strongly with the observed width. In these cases
a single -level analysis would not be valid. This
is so particularly for the five & states.

VII. DISCUSSION

Most of the individual levels are discussed in
the companion paper. ' The & and & assignments
are determined from the total cross sections. In
regard to the & and & states it is interesting to
speculate on how many of the parities could have
been assigned from this broad-range fit without
the aid of angular distributions. The presence of
the broad 2 1-MeV resonance makes the other 2

resonances much less symmetric than those for

TABLE I. Parameters of fit to ez and 0„

~~Q Level No. b

Energies ~ (lab)
&p k ~y~Z

(keV) (keV) (keV) (keV) (keV)

Widths ~ (c.m.)
~An ~An 2~n ~An ~).n

2 2 2 c

(keV) (%) (keV) (keV) (keV)

23ev'
4061 ~

44vo ~

2351 6354
4051 4048 7950
4470 4469 8347

24
14
1.8

0.81
0.47
0.06

115
80
10.5

124
84
10

6,7
2.2

19oe' 19os
398o' 4oe3
43o5' 4346

1908 5937 15
4090 7990 100
4289 8177 20

0.51
3.4
0.68

32
380

81

31.5
250 14

68 0.8
d

7 d

19 d

2Vd
33d

51
jo d

16 d

25
34

399' 443
1310' 1313
3540 3649
4321~ 4323
4S3O I 484O
5586 ' 5630

709' 1000
1838 ' 1834
3536 3295
4311& 4191
515eg 5os5

442
1312
3632

4313 4310
4840 4833

5610

1000
1833
3248

4179 4167
5051 5054

129
5377 27
7559 150
8197 12,7
8689 10.5
9420 27

5083 2035
5867 28
7198 500
8062 252
8897 123

0.91
5.1
0.43
0.36
0.91

68.9
0.95

16.9
8.5
4.2

55
42

560
53
47

130

180
9.6

515
394
260

45
41.5

500
48
42

120

96
6.6

280
71
68

0.08
4.0
1.8

0.12
15
9.7

17
29

301

3208 e 3211
3441 3441
4644g 463v

1651' 1651
3815' 3vee
5188~ 5131

3438 3438 7377
4532 4532 8406

3211 7163
3441 3441 7380
4637 4637 8505

1651 5696
3766 3766 7685
5131 5131 8969

0.35 0.01
2.3 0.08

14 0.47
9.7 0.33

11.8 0.40

9.4
2.9
1.5

1.e o.53

0.2
5.1

1.4
1.2
3.5
3.6

15.4
20

0.03

0.5
4.8
1.4
1.2
3.4

0.01 +1
0.54 +1

0.0027 +1
0.0032 +1
1.9 +1

0.01
2.3

' Subscripts IJ are implied by J".
b Level number refers to Table III of Itef. 3. Bound levels No. I, ~2 and No. 2, $ included effectively inft" for real

well. Bound levels Nos, 3 and 4 and narrow unbound levels Nos. 6, 9, 13, 14, 20, 22, 31, 35, 37-40, and 42 are omit-
ted fl om analysis.

All I"&~ to fit (n, e) cross sections of Qef. 8 normalized (xo.s),
Spin and parity from Qef. 20 confirmed.

e Energies assigned from measurements of az in companion paper (Ref. 3).
~ Parity of level established by analysis.
g Energies chosen to fit (e, n) data from Ref. 8.

Level discovered and J assigned.
' Energies assigned from Wisconsin data on o~ from beefs. 4-7,
& J" assigned by present analysis of Wisconsin data from Ref. 6."J value confirmed.
1 Analysis shows that this levelnot No. 31 observed in o& in Qef. 6,
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2, and it seems probable that most of these par-
ities could have been assigned if the 1-MeV reso-
nance were the only one known initially. In any
case there is little chance that any of the &,
3+ 32, or 2 resonances have the wrong assignment.

The cluster of (n, n) resonances from 3.4 to 5.2
in Fig. 12 shows interesting interference between
the two 2 resonances. This occurs because of
the y„y„ term in Eq. (20). If the sign of this pro-
duct is the same for the two levels, the cross sec-
tion vanishes at some energy between resonances,
but if the sign is different, it does not. The large
contribution between resonances, which is pre-
dicted by opposite signs, accounts for the observed
background. The J' values of these two reso-
nances was deduced previously from "C(o., n) and
"C(n, n) angular distributions. " It is important'
to verify these particular assignments and this fit
to the interference pattern is a verification. The
peak for the 2 doublet (24 and 26) also has an un-
usual shape; the sign of y„y„must be different for
the two members.

Probably the most interesting results are em-
bodied in the neutron dimensionless reduced
widths, 8q „'. In Fig. 13 the known levels with
8 ~+ and l & 3 below 9.5 MeV in "0are repre-
sented by symbols with areas proportional to the
dimensionless reduced widths. The bound and
first excited states are shown as -10(% on the
basis of (d, P) stripping. " The other two bound
states have spectroscopic factors" of about 3%.
A few unbound levels with very small widths
are shown as dots and the symbols for the re-
maining levels represent the dimensionless
widths from Table I. The sums for these un-

bound states are shown at the top of the figure.
The d, &, sum is significant. The unit sum

means that the total widths for the five ob-
served states is nearly equal to the width of the
1d3/2 single-particle state. This justifies the
subtraction of the entire 1d», state from the
potential A function. The centroid of eigenener-
gies for the five states is 5.74 MeV, whereas
the eigenenergy for the potential is 5.4V MeV;
this discrepancy would be removed by trivial
adjustments in the well parameters. (The cen-
troid is defined by gqyqmEq/Qqyq' for the five
levels. )

The small sums for & and —, show that be-
low 9.5 MeV in "0 there are negligible s,&, and

d,&, fragments other than the ground and first ex-
cited states, and they justify our use of an B func-
tion which concentrates all of the 2s», and 1d„,
strengths in those two states. The (d, P) stripping
analysis" had already given spectroscopic factors
of 1.0+ 0.2 for those states, and the fact that there
is negligible additional strength up to 9.5 MeV
suggests that the spectroscopic factors are at
least 9@0.

An interpretation of the P and f fragments must
be more qualitative because the dimensionless
widths, particularly for f waves, may differ by
30 to 50% from the spectroscopic factors. Since
there are no bound f states the observed f -wave
resonances are associated with the unbound 1f
levels. The strengths in Fig. 13 are consistent
with the levels in Fig. 6 for the 3.86-fm radius.
The p-wave fragments could arise from either the
bound 1P or unbound 2P states. Since the spin-
orbit effect enhances the contribution from the un-

d5/z
2

)0 -~&Eex~J
lI

s t/p dp/p

9970
~~/z P~/z ~7/z

5/0 12/0 1410

0 00
0

0 ww

iI n+ 0 ea0

0

0
-100 /0

-)GO%00~

FIG. ].3. Observed fragmentation of single-particle strengths below 9.5 MeV in ~~0. The areas of the symbols repre-
sent approximate spectroscopic, factors. The unbound states and the sums are from Table I. Shell-model energy calcu-
lations (Ref. 29) for the first four levels of each partial wave are shown by small circles to the right of each scheme.
Some of the known levels (Ref. 3) at 5.21, 5.73, 6.86, 6.97, 7.57, and 8.48 might belong in this figure.
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bound 2P,&, state, the relatively large reduced
widths for the observed 2 states suggest that
these come mostly from the 2P,~, orbit. For the

states, shell-model calculations" indicate that
the bound and, at least some of the unbound states
have strengths imported from the 1P~)2 orbital~ A
comparison with the 3.86-fm structure in Fig. 6
shows qualitative agreement. Certainly the ob-
served fragments are not consistent with the 7-fm
structure.

In Fig. 13 the small circles show the energies
for the first four levels of each partial wave from
shell-model calculations by Wildenthal and
Mcorory. " These authors treat five particles in
the &P,&» &d»» and 2s», orbits around an inert
"C core. Even though the ld,» orbit is not in-
cluded, the predicted levels show fairly good one-
to-one correspondence with those observed. Of
course, neutron spectroscopic factors are not
predicated for other than the 1P„» 2s»„and
1d„, orbits. (Six more observed states' with un-
known Z" may belong, in part, in this figure. )

In summary the total neutron and angle-inte-
grated (n, n) cross sections for "0are well de-

scribed by the multilevel analysis in which the
distant bound and unbound levels are the single-
particle states in a composite model which has a
potentid. l well for the bound and quasibound region
and an B-matrix boundary radius chosen care-
fully inside the potential tail to give, with appro-
priate boundary conditions, the unbound states of
the continuum. The potential is a Woods-Saxon
well with a Thomas-type spin-orbit term and,
since it is local, "its well depths are parity-de-
pendent.
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