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Subject to the validity of the X-matrix approximation for atomic nuclei, it is shown that the
best single-particle wave functions are obtained from a self-consistent potential with rear-
rangement terms. .These terms are derived from variational calculus and it is demonstrated
that the solution of the Euler-Lagrange equations provides the single determinant wave func-
tion with maximal overlap with the true wave function. We solve the equation for the rear-
rangement term due to the removal of one particle and show' that all X matrix elements are
on the energy shell.

I. INTRODUCTION

Despite progress in our understanding of nuclear
structure, no satisfactory answer has been found
for the question: Vfhat is the shell-model poten-
tial in terms of fundamental theoretical concepts T
The binding energy of finite nuclei is calculated
using the Brueckner reaction matrix'; however,
there is no undisputed criterion established for
choosing or calculating the best single-particle
potential for finite-system wave functions and in-
termediate-state spectra.

In another paper, ' we discuss three different
choices for the potential which have been made in
the literature. %'e show how their eigenvalues dif-
fer due to rearrangement effects, and how each
could be observed with varying degrees of diffi-

eulty. In the present paper, we show that one
choice, that of Brueckner and Qoldman, ' has the
following advantages:
(1) It is "optimal" in that it foQows from a varia-
tional theorem that applies under conditions speci-
fied here. This potential choice gives the single
determinant for which the Brillouin condition~ of
Brueckner's theory hoMs. This wave function
therefore has maximum overlap with the true
wave function.
(2) It is the potential which has eigenvalues equal
to separation-energy thxesholds. It is thus the
choice in accordance with the I.andau-Migdal quasi-
particle theory, ~ and is most closely related to
the phenomenological shell model and the ¹ilsson-
Strutinsky prescription. '
(3) When the rearrangement effects due to the re-
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moval of one particle are considered, the poten-
tial is unambiguously defined with all K matrix
elements on the energy shell.

Vfe assume that the hole-line expansion with K-
matrix renormalization for the binding energy of
the nucleus converges. Vfe also make the original
and natural choice for the particle potential —a
continuation of the hole-potential above the Fermi
sea for both bound and continuum states. It is nec-
essary to specify the particle energies; otherwise,
as has been shown with a counter example (the
Lipkin model' ), any answer for the binding ener-
gy may be obtained unless, of course, the calcu-
lation includes all diagrams. Also, no artificial
gap in the single-particle intermediate spectrum
is thereby introduced as this may also lead to diffi-
culties. "

II. VARIATIONAL PRINCIPLE

To lowest order in the hole-line expansion, the
energy of the nucleus is

where
~
4,) is a single-determinant, model wave

function. Because we do not prove that E is the
expectation value of the Hamiltonian in a space of
admissible wave functions, it is not obvious that
a Rayleigh-Ritz variational minimum can be ob-
tained from this expression. However, supported
by recent findings'" and by analogy with the ordi-
nary Hartree-Pock theory, we may minimize the
above expression with respect to 4, variations in

order to obtain self-consistent equations for the
single-particle potential and its eigenvalues and
eigenfunctions.

The variational problem, as stated by Eq. (11.1),
is to find the best single Slater determinant wave
function, 4, . Variation in such a space of admis-
sible functions is equivalent to a single-particle
density matrix. Therefore, we write the general
variational derivative as 5/6n.

In the terminology of variational calculus, the
"Lagrangian" of the energy expression, Eq. (II.1),

E= diI i, n, K, i, n, I=ni Ti + —'K, i, n

(11.2)

involves a functional operator K, (the potential en-
ergy)

g, [i, n] =f d(,g, (i, i„n(i,),g, [i, i„n]&,

g, =s(i,)K, [i, i„nj,
which in turn depends on functional operators K,
(the reaction matrix K)

g, [i, i„n]—f di, g, [i, i„n]a(i, - i,),

Determination of the variational derivative
5Ejt)n then requires a generalization of Edelen's
theorem" to a multistep "chain rule. " (We con-
jectured this generalization; Edelen" furnished
the proof given in the Appendix. ) Applying this to

our problem, yields

[g] g]„(a& =[n]l &(g)]„((&+fdi, ,g ((,)(g]lg, ]„((&,

where

[g]g,".].(a) =. [nlg,"(g)].((&+f d(. Ig' (()[gl(ga&'].((&

[a'Ii}„(()=g(i)+-*'g,[i, nl+-.'f d(n(i )g, [i i„n]+fain(()[g](ii a) ](i)

g()+g, [(, ].,f d,d, [g=l(ga) ]„(;) (11.8)

because ihe variation of Kt) vanishes except at i, =i Equation. s (II.8) and (II.9) are the Euler-Lag»nge
equations derived by the methods of the variational calculus whose solutions will yield the extremal en-

ergy. The third term on the right-hand side of Eq. (II.8) is the rearrangement energy [see Eq. (IV.10)]
which we discuss in detail in Sec. IV.



Now we show that, because the resulting eigen-
functions and eigenvalues are the true variational-
ly -stable solutions, optimal determinantal wave
functions have been found that fulfill a generalized
Brillouin4 condition.

As discussed in Sec. II, equivalent to the varia-
tional derivative with respect to the density, the
most general variation of a single determinant is
to add particle-hole excitations. Then, in the
usual Hartree-Pock derivation, it follows that,
at the variational minimum,

(m. 2)

This is the "classical" Brillouin condition. ' How-
ever, if the interaction v is replaced by the reac-
tion matrix, the above proof holds only if the xe-
action matrix is held fixed in variationally deter-
mining wave functions a3 In other words if the
variationally determined wave functions are sub-
stituted back into the reaction matrix for self-con-
sistency the Brillouln theorem is Qo loQgex' satis-
fied unless the changes in the reaction matrix are
included in the original variation. Note: The for-
mal exact self-consistent field method used by
Kobe'~ to show that maximal-overlap wave func-
tions could be obtained without the rearrangement-
terms does not apply to realistic (approximate) re-
action operators. "

In the x'efex'ence-spectrum method» the 1nter-
mediate-particle spectrum is not made self-con-
sistent. It pxovides a prescription for calculating
the energy, but clearly does not determine self-
consistent single-particle densities. A discussion
of the exact self-consistent fieM theory and refer-
ence-spectrum method in this context is given in
another paper. '3

The changes in the reaction matrix fall into two
categories, usually symbolized by their first or-
der, the Brueckner-Goldman' rearrangement dia-
grams. I See Figs. 1(a), 1(b), and 1(c).j The gen-
eral variation of

I'
K=5+v —K

e (»I.B)

&&@.I T+2vlc'0&= &&Col &+ 2vl@0}=o (»I 1)

Then, if 4» is a particle-hole excitation of 4„

II + -4'all = minimum

is equivalent to

(»I.B)

(»1.7)

Here t is the "exact" many-body reaction matrix.
Therefore, in so far as E is the "best" aPPxoxi-
mation to t, the single-Pm title Potential svith te-
0'FKQsgepl ent gvves tk8 single -dete'Fst&Mst $vg've

function uith maximum overlap with the tnce wave
function.

IV. SOLUTION FOR THE REARRANGEMENT

ENERGY

In order to solve for the rearrangement energy
from Eqs. (II.B) and {III.4), let us be more explicit
in the equations. The ground-state energy from
Eq. (ILI) is

E Qn)T) + p g ngny(Kgy gy Kgy y )
&ed

(».Ia)

where n, is the occupation probability for the ith
level. From Eqs. (II.B) and (».9),

(IV.I)

(x.)f += E + +
2 ~ning (logy gy Ku gg) ~nc

4y

with

(Iv.2)

(IV.B)

The &~~~'s are the unrearranged eigenvalues
which are equal to a centroid of states in the nu-
cleus with either a hole or particle created in the
ath level. ' The 6~ is equal to tI16 separation-en-
ergy threshoM for removal of the eth particle.
It is the eigenvalue pxescribed by the Landau-
Migdal many-body theory. "

Recall

the Pauli operator, and the second is due to the
shift induced in the spectrum .(This is worked
ou't ln detail 111 Sec. IV.)

Because variations in K a,re included, the 40 de-
termined from Eq. (».B) satisfy the Briliouin con-
dition in the Brueckner theory,

(Ill.s}
Then it follows' "that the requix'ement that

&4 I4,)=maximum

or

where the first term is due to the shift induced in (m.sa)
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mhere the e's are unspecified at this stage. It follows that

&&~y. I i 1-n0 (1 —bb, )(1 —I,) ' 5=-2Z «~)0e Ke nbi — Kiieb,
)

Ksbbi (8i + 8i —8a —8b) ~

~n. eg+ey —80 - 80I jeq+ e& —e, —e&~
' 5n

(IV.4)

(Exchange terms will no longer be written explicitly. ) Substituting Eq. (IV.4) into Eq. (IV.2) yields the re-
arrangement energy

~a=&a-&o( j.) (IV.5)

which contains contributions from changes in: (1) the occupation function, (2) the single-particle energies,
and (3) the wave functions which appear in the matrix elements.

Equation (IV.4) is only an implicit equation because 58/5n„depends on 5K/5nn. To determine the rear-
rangement energy for the removal of one particle, neglecting effects from the removal of two or more,
we choose the 8's to be given by Eq. (IV.3), and the n's to be 1 for occupied states and 0 for unoccupied
states. Then

g~(x) M.
+ja, ja+ ~ ng

na
~

na
(IV.8)

5Kiybi ~ (1 ebs)
kf0a e +e e e 0okl

GE 0 0 u

(1 —bb, )(I —n, ) (1 —bb, )(1-bib)2~ Kiieb +8 8 8 inin Ksnsn +8 8 Kabbi
s b s b

(1 —N, )(1 —nb) ~ 5K,b, b 5K,b,b (1 —bb, ) (1 —nb)

eg + ey —e0 —ey 5n„gn e)+ e~ —e, —eq
(IV.7)

By substituting Eq. (IV.V) into Eqs. (IV.5) and (IV.2) and solving for Q, i N, n& 5K,i,i/5n, the following ex-
pression for the rearrangement energy in terms of K is obtained:

(1-n, ) (1 —N, )(1 —nb) '
~n +Pi I Kiian Kanii+ Kiisb Kabli

e&+e~ —e, —e„ e&+ e& —e, -e~
4j 0 00

(I-bb, )
&&a~a-&.~&+2 n &0 0 a +0 "CI0fft

0 "fat
-e +e —e ri —e0 Ift 0

(1 —bb, )(1—ibb )
+ n~ &0~0»O" (Kmnmn ~a "na "n}Ka"b"om

yg 0 tty tt + e —e n —e~if0 IS 0

(1 —n, )(1 —I,)
X 1 —2+bi Ki,b

' K bie, +e -e, -e,

(1. -bb, )(l -bib) ' (1-bi,a)(1- nba)
m 'g ' b ia b" a b"eiKbmm'

e&+e& —e, —e~
0 0 e +e e, e 0 . 0 stfÃ j

waft' 05 0 fly tt

(IV.8}

The six terms in the numerator are presented dia-
grammatically in Fig. 1 for the hole-rearrange-
ment energy. The equation for 4 applies equally
mell to particles. Care must be taken in deter-
mining the energy denominators from the dia-

grams, but Eq. (IV.8}gives the correct expressions.
Throughout the derivation, all K matrix elements

are on the energy shel/, in that the starting energy
is given by the sum of the energies of either the
two initial or final particles in the K matrix ele-
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a»

j» 0»&&i

{a)

g»

g»

, [ a b], }}j

{bj

pl

{c)

techniques. They are the thresholds, i.e., the en-
ergy differences between the system before and
after particle removal or addition, which appear
in the single-particle Green's function. That the
best density would be obtained by including rear-
rangement effects is suggested by the fact that the
single-particle density is tested by a physical sin-
gle-hole propagation and that these methods give a
good description of transport properties. "

V. CONCLUSIONS

m» 0"I »j b&i lrj
m)

b) l&j

ml
0'

0

0,

{e)

FIG. 1. (a) -(f) Representative diagrams for the hole-
rearrangem ent energy.

ment. Thus an unambiguous rearrangement poten-
tial is displayed by rewriting Eq. (IV.2)

(IV.9)

plus exchanges. The quantity in parentheses is the
single-particle potential which: (I) includes rear-
rangement effects, (2) has eigenvalues equal to
separation-energy thresholds, and (3) is variation-
ally stable and provides the optimal wave function.

As pointed out previously, ' the eigenvalues are,
in general, complex. This reflects the finite life-
time of the excitations.

The self-consistent eigenvalues in Eq. (IV.2) are
equal to those defined in the Landau-Migdal many-
body theory" which employs Green's-function

We have shown, using variational calculus, that
the stable, self-consistent solution for the single-
particle potential which gives the lowest energy
and the best wave functions contains rearrange-
ment effects. The only assumption required in the
proof was that the reaction matrix, which sums
particle-particle ladders only, is a good approxi-
mation to the exact nuclear reaction matrix. Clear-
ly, this is an assumption which underlies all the
work on the Brueckner many-body theory.

Present estimates" for the accuracy of the K-
matrix approximation are based on the size of the
wound integral, and suggest an error in the total
energy of the order 2-4%. On the other hand, the
rearrangement corrections appear to be much
larger. Old estimates by Brueckner-Goldman'
and more recent models" indicate that the 5K/Gn
term is about 20-40% of the single-particle ener-
gy. A recent discussion of the size of these effects
is given by Engelbrecht and Weidenmuller. "

It should be noted that no variational problem
exists, and any single-particle basis is acceptable
for the exact reaction matrix. However, in prac-
tice we are forced to make approximations. As a
result, the choice of the single-particle potential
and intermediate-state spectrum is crucial. Other
prescriptions may be successful in calculating
some specific property of the nucleus. But the
theory discussed here is truly self-consistent and
yields an optimal single-particle description.

APPENDIX

We have defined our terminology involving "functionals" and "functional operators" in the Appendix of a
recent paper coauthored by two of us." In the following, we introduce Edelen's"" full (nonlocal) Euler-
I,agrange operator (h j Ljfc, rather than the symbol 6Z/54' used previously.

If in the notation of Ref. 11 we are given a functional J that depends on a functional operator K, which in
turn depends on K, etc. up to a point where the series is terminated by an ordinary (local) functional, i.e., if

(O} d[d]=f dx(x)d (»d(x), ((,[xd]),

(() d, Ix id I fd(x (x.,)d, (x,=x„d(x,),&.[x„dI),

(d) K, [x„d]=fdx(x)d(x„x„d(x},K, [x„d]},



(» .—& ) &&„ , [»„ „» ] = f « (»„ ,) »„ ,(»„ „»„ „» (» ),» [» ;» ] &

(n) Z„[x„„e]=J«(x„)g„(x„„x„,e{x„)j,

then me get for the Euler-Lagrange derivative, de6ned by

)»I»+»] )»[=»]+f «(»)[()I.]»(»)»(»)+o(II»Il),

from the nth and (n —l)th relations

&.-, [».-..»+»I =&.-, I*. „@I+1 «(*. ) [()IZ.-,]»(».-,&»(». —&+o(II»II&.

Thus, from the (n- 2)th relation, we have

Z„,[x„„C+a]-Z„,[x„„C] —o([)I )()

=+ dVx " hx " dVx Sg @x kx

dv {x„,) g"-', + «{x„,) g"-' {x„,) (g~ g„,),(~„,) I (x„,).

Working up the line then yields

[('I&]»(»)=[»l&(&,)]»(»)+I «(») z (»,)[()I»,]»(»),
8Ky

khlni)e(~) =(ell, {K.)]e(~)+ «(~.),~' (~.) (@In.]e(~),

[))I».-,]»(»&=[»IZ.—,(&.)] (»&+f «(». ,),Z~
' (*.—,)[»I».] (*)

The bars indicate interchange of the sth and (s —l)th variable (here in g). If g, in tbe Little Euler-La-
grange operator (e~g}e involves derivatives up to the kth order in an I-dimensional x space;
x —{x(g)» $(g)& ~ ~ ~

& x(g))& then '

~~ { )
exI'„] e(s)"/(]x" )

P=Q V=1

Por further details see the appendix of Ref. 21.
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It is shown theoretically that the 'Be(p, y) B reaction cross section contains substantial
contributions from p and d partial waves at laboratory energies, and extrapolations to stel-
lar energies based on the assumption of pure s-wave capture are therefore erroneous. How-
ever, there is no change in the predicted solar neutrino Aux, because the calculated low-en-
ergy cross-section factor, 31 eVb, is essentially the same as the empirical value in current
use.

I. INTRODUCTION

The recent experiments of Davis' have set an
upper limit of 1.0 3NU on the neutrino flux from
the sun (1 SNU = 10 "captures per target atom per
sec), in sharp disagreement with the theoretical
prediction of 9 SNU, calculated by Bahcall and Ul-
rich. ' The rare termination of the p-P chain 'Be-
(P, y)'B(e' v)2o results in energetic neutrinos and
is calculated to contribute 7.3 SNU. It is therefore
important to have an accurate estimate of the rate
of this reaction in the solar interior. Very de-
tailed measurements of the cross section for
'Be(P, y)'B have been carried out by Kavanagh ef
aL' (see Barnes') at laboratory energies E~=0.165
to 10.0 MeV. A theoretical extrapolation to lomer
energies based on a calculation by Tombrello'
yielded a zero-energy cross-section factor' S(0)
of 0.034 keV b mhere, if 0' ls the cross section
and g~ the lab proton energy in MeV,

S(E~)= 0 87441eE~ exp. (3.9734E~ '")
for the 'Be(p, y)'B reaction. A calculation by
Aurdal'. similar to that of Tombrello gave S(0)
= 0.044 keV b, but the nem data of Kavanagh et al.
mere not used in that extrapolation. The value
S(0) =0.030 keV b actually adopted by Bahcall and

Ulrich2 is lomer than either of these, and is pre-
sumably the result of an empirical extrapolation.

Proton capture by 'Be involves the radiative
transition of a proton in a continuum state to the
2 ground state of 8, bound by 137.2keV. Only
dipole radiation is of importance at the energies
considered here. Because the spin and parity of
'Be are —,', capture from the s and d partial maves
leads to Fl radiation, and from the P mave, M1.
Higher partial maves cannot contribute to dipole
radiation; The calcul. ations of Tombrello' and
Aurdal' assumed that only s-mave capture mas sijgy'-

nificant. The present moik shoms that mhile this
is approximately true in the solar environment
(E~= 20 keV), it is not the case at laboratory ener-
gies, even as lorn as 150 keV. The small binding
energy of 'B xesults in a spatially extended mave
function, enhancing capture from the p and d par-
tial maves.

The total cx oss section for dipole capture in the
reaction A(a, y)B is

~, = (M/9)vE„'(ac} '(M.c'j2E.)'-"

x P (2s+1)-'(2Z„+1)-'~T~~',


