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A theory of the optical potential for scattering of nucleons from nuclei is presented. A
development appropriate for intermediate- and high-energy scattering is given in this paper.
For low energies the theory provides the leading term of the optical potential which must
then be supplemented by the effects of compound-nucleus formation and inelastic scattering
to low-lying states of the target. Particular attention is paid to the Pauli principle, and it is
shown how standard multiple-scattering theories must be modified if the projectile is identi-
cal to the target particles. The development proceeds in the spirit of the many-body theory
of finite nuclei, but deals with the problem of the addition of a (continuum) nucleon to an al-
ready known strongly correlated nuclear state. The manner in which the correlations be-
tween target and projectile nucleons develop is explicitly displayed. It is the consideration
of these additional two-body correlations which allows us to introduce the Bethe-Goldstone
type of reaction matrices for the scattering problem.

I. INIODUCrlON

In a previous publications we constructed an
orthonormal set of (A+ 1)-body states I X-„"„),and
indicated that these states could be used in a the-
ory of elastic scatteringof a nucleon (fermion)
from a nucleus (a collection of ferrnions in a cor-
1'elated tloulld state). Ill tllls paper, we descr1be
in some detail the way these states are used to
calculate an optical potential from two-body forces.
In the interest of clarity, some of the results of
Ref. 1 will be recalled, although few of the details
to be found in that treatment will be reproduced
here.

The basic premise of our argument is that al-
though the ground-state wave function of a heavy
nucleus may be considered, to a high degree of
approximation, to be a single Slater deterIQ1nant
the correlations cannot be ignored. (If we were
dealing with a situation in which all the particles
moved in a Hartree-Fock field, the problem at
hand would be trivial. We seek guidance from
this trivial problem in order to find a good begin-
ning point for the real problem we are attacking. )
%'e note that there exists a set of single-particle
bound states

I pb& which may be obtained from a
Brueckner-Hartree-Fock calculation, for exam-
ple. However, single Slater determinants of these
states are not taken as the ground-state wave
functions of the target, but rather as inputs (mod-
el wave functions) for a more elaborate procedure
for the calculation of the correlated nuclear states.
We apply the same general philosophy to the cal-
culation of the scattering states.

Thus we postulate single-particle continuum
states

I
x'-") which together with the discrete sin-

k
gle-particle states

I Qb& form a complete orthonor-

mal single-particle basis. The prescription used
to construct the continuum states

I
x-"') is not

k
crucial to the argument. We have made the explic-
it suggestion' that the states Ix-„"') and

I pb) be
eigenstates of the model single-particle Hamilton-
lan) Ag )

I.=(I-ZI e,&&a. I)I.(I-ZI e.&&a.l)

+BI Ab&~b&dbl

so that the outgoing-wave-continuum-state vec-
tors

I
x'") satisfy the convenient "separable" in-

k
tegral equation,

I
x'-„"& = Ik& -p, „;;—, I eb&&eblI. I x'„-"&.

k 0+

(1.2)

%'e take ho to be the kinetic energy operator in
which case

I k) is a plane-wave state. This i5 not
a necessary choice, however.

We note that the q's defined through the relations

I
x' &=-&t lo&,

where
I 0) is the vacuum state, are fermion opera-

tors. Then we define antisymmetric (2+1)-body
state vectors

I X'„"„&and
I eb „& as

I x'-„"„&-=~-„I~.&

(1.6)

where we ta'ke
I 4„& to be the exact ground-state

eigenstate of the complete g-body Hamiltonian. If
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IXtA& ,I@b A&+.EI @5'.A&&@t-Ittl 4t&
btt

(1 7)

I 4„& were a Slater determinant of the states Ig, &,

then we would obviously have in the (A+ 1}-body
states of Eqs. (1.5) and (1.6) an orthonormal set.
However, because we insist that I 4 „)be an eigen-
state of If, I

4 „& must represent a correlated
state, and so the (A+ 1)-body states of Eqs. (1.5)
and (1.6) cannot be orthonormal.

The states given in Eqs. (1.5) and (1.6) define a
subspace of the full (A+ 1)-body Hilbert space. It
is shown in Ref. 1 that an orthonormal set of states
which span the same subspace can be constructed
from these states by writing

does not connect states in P with states in the re-
mainder of the Hilbert space, i.e., we write a
Harniltonian of the form

XO=PKOP+QXOQ,

where P+Q = 1. We then define B, to be,

Ho-—P&OP= Xk"A dk &k +F-A Xk'A

Thus, we may write a formal integral equation
for l@'„"„&as

Ix-"'
&

=
I
x'-" &+ I

x'-"
&

dk'&x'-"
I
t

I x'-„"&
k, A k, A k'

(1.8)+ 4b', A b' K
bl

Straightforward prescriptions for obtaining the
matrix elements of the one-body operators u, g,
and ge, which appear in Eqs. (1.7) and (1.8), are
given in Ref. 1. It is also shown in Ref. 1 that,
when the states

I
X„-"'„)are calculated according

to the prescriptions therein, then

(I.is)

where I4'-'
& is the complete eigenstate of the full

k, A.
Hamiltonian H, satisfying the usual many-body
Schrbdinger equation

(z-a)le'„"„&=o. (1.14)

We may also find a formal integral equation for
PIC'-"„&, which suffices for a description of elas-
tic scattering. The formal integral equation for
PICA ) is readily obtained by operating on Eq.
(1.14) with P and Q separately to obtain

&@~I u(r) I x~k"„& = &rl x'"&
~OQ k

(1.9) (Z -PIC) PI e'„"„&=PaQ le'„"„& (1.15)

where a(r) is the destruction operator for a parti-
cle at r. Thus the states IX-'" ) may serve as

k, A
channel states for elastic scattering.

The states
I

X"' ) have been used to define a pro-
k A

jection operator For elastic scattering, P,

(E -QffQ) Q l~'-„"„&= QffP l~'-„"„&

From Eq. (1.16) we observe that

(1.16)

(1.17)

(i.io)P= X+ dk X
k, A k, A

We construct a Hermitian Hamiltonian BCO which
so that by substituting Eq. (1.17) into Eq. (1.15)
we obtain an equation containing P I+ & alone. This

equation is

(1.18)

or

0
(1.19)

Now we also obtain an expression for the elastic scattering T matrix elements by noting that

&k'I T.il» =& I 'I ToRTsl&&+&X-„', '„I ff-so. l+'k'„&

=&k'I To slk&+&x-„' '„I(ff s6o}PI+'-„"„&+&x„' „'I(ff-sco)QI+'-"
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Here To„» refers to the so-called orthogonality scattering of Ref. 1. This contribution to the elastic scat-
tering amplitude is a consequence of the use of the distorted waves IX-"' ). Substitution of Eq. (1.1V) into

Q, A
Eq. (1.20) then gives

(&I& ll&)=&R'I& Ik) +(x-„', P & & +&~ q~q (, 8 & @'„- )
Thus we see that if our interest lies only in elastic scattering we may use

(1.21)

V,ff =P H-Ho+H . @jr &E -QHQ+ie (1.22)

as an effective interaction in the P space.
In this representation the wave function Pl 4-"'

& is given by

(1.23)

and the elastic T matrix elements are

&k I T„I k) =&It
I T„,„I k& +&x'=, '„I v,„,lq"„'„& . (1.24)

II. OPTICAL POTENTIAL

The effective single-particle potential (optical-model potential) v, , is defined to be a one-body potential
which can be used in the one-body Schrodinger equation

(Z-a.„)l j&=(Z-a, -v.„,)l,j&=0, (2.1)

where h, , is a one-body Hamiltonian and A, is the kinetic energy operator for a single particle. The only

properties that the one-body potential v, , must have is that it be short-ranged and that the elastic scatter-
ing calculated from Eq. (2.1) be identical to the elastic scattering calculated from "first principles. " We

may also require that Eq. (2.1) have discrete solutions I &t), & as well as continuum solutions
I &t)(, ) and that

(2.2)

In that case we may rewrite Eq. (2.1) as

(E-Zle & (e l-uh. „u)li& =o. (2.3)

(2.4)

The continuum solutions of Eq. (2.3), I &t)-„&, hav«he property

ltv&=&IN~&

so that we may reexpress Eq. (2.3) as

(2 5)

(2.6)

where the states
I

X'„-") are the eigenstates of the operator ph, p, and are given by Eq. (1.2).
for elastic scattering is then immediately seen, by inspection of Eq. (2.6), to be

(k'I T„lk& =&It'I T„„I»+&x'„=.'IPv.„PI0'k &

The Born expansion of Eq. (2.V) is readily seen to be

(2.V)

(2.8)(&'
I &., I» =(&I &,.„~I »+&x'; I) ~ „& I xr) ~ (xg' . (~.„.& p„p„., (~p( 'x'„-") ~

This expansion may be compared, term by term, with the analogous expansion for the expression for the
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elastic scattering matrix element given in Eq. (1.24). That expansion is

(&»'~I rI&»&, =(&»'~I &'r» I&»&+(x», '„~I&'&', Plx»"„& (x», '„&'&»„,P &'v, &' x»&»„)

Now we note that we have arranged matters so that

Xg+) ~ Xg+) (+) ~ (+)
Pll A g g Qtlt A /kgb p Pg p

QPPrf

(2.9)

(2.10)

where for simplicity we have taken Z„=O, above. Thus the two different expressions for (k'I T„Ik) are
identical if

and

&x'-„'I pv.„pl x'-„"& =&~'-„„IP~.„PI~-„"'„& (2.11)

(2.12)

Now we know that Eq. (2.12) is an identity because we recognize the right- and left-hand sides of this equa-
tion as two different expressions for the same matrix element of the orthogonality scattering $ matrix.
Therefore it suffices for us to define Pv, ~, P by means of Eq. (2.11). With this definition of the one-body
operator, pv, ~, p, we have achieved our goal, and we recognize that Eq. (2.11) is the relation we seek. We
shall discuss methods for calculating the right-hand side of Eq. (2.11) in the next section.

At this point, it is perhaps in order to belabor the obvious and point out that the optical potential, as we
have constructed it, is given as

v,p, =pv, p, p+I. QI4'~& a&&4' I+&(ph pOho) j.
b

(2.1s)

With this definition of v„„one automatically satisfies Eq. (2.2). This is not a necessary condition, how-

ever, and various "optical-model wave functions" may be defined which have the same asymPtotic behav-
ior but differ at small distances.

This point can be clarified further if we note that a one-body "wave function" may be defined in the y
representation as

&x'-",
l

0-'"& -=&&'-" le'-"
&

=&x-", ' I Pl+'-" & =&x",' Iq"-" ) .k' k k')A kA k', A k, A

With this definition, we may reexpress Eq. (1.2S) in the X representation as

(2.14)

(2.16}

or

&x'-„",
l

0'-„"& =(x'-„",
I x'-„"&+, , „., «g'„IPl'. PI«„;.'„&&x'-„',ll 0-„"&dk"

If we then define the optical potential as in Eq. (2.11), we obtain the result that

(2. i6)

(2.1V)

This, of course, is just Eq. (2.6).
This analysis only defines the p-space representation of Iti»'-", pl g'-„") =

I
&t»'-„";

I
p-„"& is an eigenstate

(with eigenvalue e~) of the one-body Hamiltonian

(2.18)h =p(ho+ v, , )p.
In the following we discuss various possible specifications of ql tj»'-„" .

We note that just as Eq. (1.18) or (1.22) is an equation for PI%„"„&,so Eq. (2.6) or (2.17) is an equation
for ltt&it&&=-ply&&». Thus we could, sofar asthis discussionis concerned, addto ltt»" & an arbitrary
amount of the single-particle bound-state wave functions I &P~& in order to obtain an equally acceptable op-
tical wave function lg&&&. We recognize, of course, that the coordinate space representatives of Ig-'„"&
and

I tt&& ') would have the same asymptotic behavior and would hence correspond to the same elastic scat-
tering.
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(2.19)

&X~'~IX~, g) =-(r14,& (2.20)

Another insight into the inherent-ambiguity in
the "optical-model wave function, "even if that
"optical-model wave function" is calculated from
first principles, becomes apparent from the fol™
lowing considerations.

I et us define an orfhosm marl set of (A + I)-body
states IX-", „'), which span the same space as the
states (IX~&'„), IX, „)). We require that these
states have the property that

this one-body amplitude is

(2.26)

%'ith this definition we obtain after a straightfor-
ward ealeulation that

I 0'-„'& =(1 p)-HI+&IPePw)Prp+ePell 0'-,'&,
(2.29)

where P, q, p, y, p are as defined in Ref; 1, and

I
&f&&-„') & is given by Eqs. (2.26) and (2.27).
Another one-body amplitude has been given in

Ref. 1. This amplitude is defined through the Fesh-
bach-Friedman states

I g;„),

Ix~"„)= fix-', ;,'&xx&x)xp ), ' (2.21)

(2.30)

This amplitude is easily seen to be related to the
amplitude we have defined in Eq. (2.26), viz. ,

(2.22) I
0"-„' & =& '(I+e8eP&fp)PrPI 0'-„'&, (2.31)

and conversely, where F is defined such that

(2.23)

It follows immediately from the above properties
that these states are normalized such that'

y -1 (1 p)1/2

Likewise the one-body amplitude defined as

(2.32)

(2.33)

If we now define the spatial representative of the
one-body amplitude to be

ls given by

I
0""„-"&= & '(~1+&IPqP&fp) prp+/fp&f] I

y'„-"
& .

(2.34)
(Pl ~&+)& &x&+) I@&+) ) (2.26)

we see immediately that

I
y&+)& t l~&+)& dl & (x&+) I@&+)

&

(2.26)

(2.2V)

where l&t&&-„"& has been defined above as the solu-
tion of Eq. (2.1V). This ansatz then yields a per-
fectly definite prescription for obtaining the one-
body amplitude I

g&„')) from the complete (/I+ 1)-
body wave function I4'-„")„&.

Such a prescription may be perfectly definite,
'but it is far from unique. Another definition that
suggests itself as an equally valid candidate for

This amplitude may serve equally well as a one-
body amplitude.

A.ll these amPlitudes are identical at large dis--
tances but differ inside the nuclear interaction ra-
dius. These remarks may perhaps serve to make
more definite the very mell-known argument that
the "optical-model wave function" may not be
treated as a true one-body wave function. %e have
shown that several single-particle amplitudes can
be obtained from the exact many-body wave func-
tion. Different "spectroscopic" amplitudes may
be obtained for different purposes. It is also wor-
thy of brief note that for a 81ater determinant p =q,
y= P = I, and therefore in that limit we have

I
0"'& =pl 0'-"& =

l
0"-"&=

I
4"'-"& =

l
0'"'-"&

k

In the following sections we will study the quanti-
ty (X&;)„IP V,«P IX-„"'„& from which we may obtain
the operator P&),~, P, which was defined in Eq. (2.11).
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III. CALCULATION OF THE OPTICAL POTENTIAL

We consider the expression

(3.1}

Q=&-&=Q~+Q +Q +. (3.2)

with the aim of providing a diagrammatic analysis
appropriate to a systematic hole-line expansion.
Such a treatment is suited to the study of the op-
tical model at intermediate and high energies. '
To this end, it is useful to divide the Q space into
orthogonal subspaces containing various numbers
of holes created on the correlated ground state,
IC„). Thus we may let

here. Rather, the assumption we suggest is large-
ly for the purpose of keeping our treatment from
becoming unnecessarily complicated, where the
complications would be concerned mainly with
very small effects. It should be kept in mind that
there is no difficulty, in principle, involved in in-
cluding such effects in the present treatment.

We shall assume for simplicity that both

&xx I p14»& = &c'~-ln'snT, I c~& =o (3.6)

Qi =Z Indi& P4, di I
. , (3.3)

where Q, is the projection operator onto the space
spanned by the states

I X»&, i.e.,
&c' Ing n& )7& n I@ ) =o (3.7)

s& 9$ 7)d lB I A&pB (3.4)

where

Note that states of a particle created on the corre-
lated ground state are in the space spanned by
P+Qb. Insofar as the virtual occupation of the
states

I X, „) is unimportant in the description of
high-energy scattering, we may neglect this space
in our discussion.

It is useful at this stage to make a distinction
among the bound states, b. If we neglect the dif-
fuseness of the Fermi surface due to long-range
correlations (e.g. , pairing}, we may divide the
bound states into those that are largely occupied
and those that are largely unoccupied. The former
states will be denoted by B and the latter by B.
(The states psl4)„& and i}el 4)„& will have norms
close to unity while the states its I 4„) and i}st I@„&
will have small norms. ) This distinction is a
meaningful one for nuclei, in which the depletion
of an orbit due to short-range correlations is ex-
pected to be about 10-15'.

The states spanning Q, are constructed as fol-
lows. We define the state

The quantities appearing in Eqs. (3.6) and (3.7)
are expected to be much smaller than quantities""a &@~l'}si'}sml@~&d &@~l'}k"7) I@~&d

&@A In-', , })d,nod, }I),I +~& &+~ I )}BPB 1B 1B I
C A)

so that the loss of generality in making these as-
sumptions is of little practical importance. With
this ansatz, we are now able to neglect the dis-
tinction between the states

I x'-„"„)and
I x '-„"„& of

Ref. 1.
In analogy to the construction of the states

IXV ) from the states IX-'„"„)—= i}it I4„&, i.e. in the
notation of Ref. 1,

I x-'„"„&= Jt I x)",„& (x'-„", Ir I x~~" &dh'

we introduce a matrix o such that the states

(3.8)

I I'-'„",-„, ,&
=- g ~~j" I

I &,,'-„, , &

Bl

&«k'dk&X"'X'-".
I o IX~"X~"&1 $1 k2 B'B kl k2

(3 9)
form an orthonormal set. 4 Note that these are
automatically orthogonal to the

I
X-„'„) and the

IX~ „)in the approximation of Eqs. (3.6) and (3.7).
Thus we define

Ps =&4 a Insns I c'~& (3.5} q, =—Q J)y'-„"-„)dkdiN()d„" (3.10)

and proceed to construct an orthonormal set of
(+)

states, (I F-„,-„,s&j, based on these states. We
also require that the states

I I'-„-„,s& be orthog-
onal to the states IXg „) and IX, „).

At this point it is useful to introduce a simplify-
ing assumption as to the structure of the various
density matrices for the correlated state I@„). It
should be understood, however, that this assump-
tion is not necessary to the treatment proposed

In a similar fashion, starting from states with two
destruction operators, such as qIt qt i7t )} i} IC ),k2 k3 B1 B2 A
we proceed to construct orthonormal states orthog-

(+) (+)
onal to the IX)-, „) and IY')„k,s). From these states
we form the projection operator Q,. This proce-
dure may obviously be continued until we have
spanned the entire (A+ I}-body space.

From Eq. (3.1) we see that we can define an ef-



500 C. M. SHAKIN AND R. M. THALER

fective Hamiltonian H,«by

so that

~e« -jeff —0 ~

(3.11)

(3.12)

(3.13)

Since Eq. (3.15) is most awkward, it may be re-
arranged according to the procedure indicated
below.

We write the equation

(3.16)

as the set of coupled equations,

and Ko is the zeroth-order Hamiltonian defined in
Eqs. (1.10}through (1.12). We now have written
the projection operator Q as the sum of projection
operators

(E-PHP)PIq& =PH+q„ly&,

(E —Q&&HQ8)@SIP&=Q8HPI&)}+@HAH Z Q~l&l&} ~

and Eq. (3.11) becomes

(3.14) These coupled equations may be solved for P I P),
and we observe that PI &I» is the solution of the
equation

1
H s:H H+(QQ ) (p ) (p ), (QQ5)H

(3.15)
I

given below, viz. ,
0(0)

[E —PH,s P] P
I &I»

=0, (3.18)

(3.19)

where H,ff is obtained from the iteration scheme

(n) (n-5 + (n-9 (n-1)Beff jeff jeff ng ~ II(n-9 ~ ~ @n+eff
Vn+eff Vn+&&

(v)
Heff H eff t (3.21)

and v is defined in Eq. (3.14). Truncation of this expression for H,s by approximation of H,s as H', ~ is
alternative to the direct truncation of Eq. (3.15).

For the present, we shall content ourselves with the truncation' H,« =H',«, in which case we may write

PV,sP=P(H-HO)P+PHQ& . Q&HP+E —Q HQ +st

We will now study the various terms in this series.
The use of Eq. (3.8) and the definition of H, leads to

(X-„",„I P(H —H&&)P I X'~ '„)=(X-'„",„IH I X-'„"„)—(eT, +Z„)5(%—k')

X$ 'Y X]f dk X]f „0X~- „dk" X],„, y X'~' —Kg+Ex 5 k-k' .

By making use of the definition of the states IX„"„)and the fact that H
I C„&=E„I4&„}, we then have

(3.23)

&x-'„".
, „IP(H -H.}PIx-'„",„&

=
Jl (x-",.'Ir Ix-'„"&&@w In-„.,[&,nt„,ll c»& &x-'„",„lr I x~'&dk"'dk" —eu5(k -&') . (3.24)

Now if we separate H as H =X + V, where X is the kinetic energy operator, and use Eq. (3.6) we may easily
show that

+
Jl &x~" lr Ix&', ,l&&4'~lnT [I' n-„„,]l@~&&x-'„',l. lr Ixj'&d""dk".

In obtaining Eq. (3.25) we have used the fact that the one-body kinetic energy operator is diagonal in the
states Ix.'-„"& I e &x& Iholx'-„"& =e76(k' —k).
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The part of Eq. (3.25) independent of V may be written, with y~
—=pyp, p~—= ppp, etc. , as

&x'-„", Ir&(1- p~)(& 0- &-~)r, lx'-„"& =&X~", Ir& '(Ao-~t, )r&lx~"&

= &x'-„", Ir~ '(ho —&T)(r~ —1) I
X'j' &

where we have recalled the relation,

r, (p a,)-r, =p, » r&(p p&-) =y, 'i
and

(X-„„Iho I X ) = e--,5(k" —k"') .
We have also seen earlier' that y~ —1= ~p~ is a small quantity, so that to lowest order

&x'k", lr, '50 —~T)(r, —1}I
x-'„")= (&T, - &T)&x'-„". l (r& —1)

I X~'&

= 2(~T, —~T}&x'-„".I p IX'-„"&

(3.26)

(3.27)

(3.28)

(3.29)

The foregoing approximations thus yield the result that

&x'-„".„II -Ho)I'I x~"„&-=2(eT, —~k}&x~".
I pl x'-„"&+ t &x'-„". Ir I x&'l& «'~ lqT-ll' n-'„„,& l@~& &x-'„'!,Ir I

x'-„"&dk" dk"'.

(3.30)
The second term of Eq. (3.30) may be developed further by writing

&4, ln)-l:y;n-„„,llc~&-&c~l(n~ I:I',n-„„,l),14,&
—&C~II:I', n-„„,lm-l4~&.

The treatment of Eq. (3.31) may be facilitated by means of the well-known relation,

(m, ll, n-'„„,l), =Z &XT'„',~ l~l ~x,'„~&.n!n,a

(3.31)

(3.32)

(3.33}

&x'-„„I ~(g -H,}PI
x'-„"„)= (~-„,—~-„)&x-'„", I (y, —1) I xg'&

where n and P run over the complete set of single-particle states lx~~+') and
I P,& and the subscript A indi-

cates the antisymmetrized state vector, lx„",„P)„=lx-'„",„P& —
I Px~,'„&. The matrix element of interest is thus

&4'~ 1&m- I:I' nk I), @~& =2&x-'„"o'I ~lx'-„".-P&~&&l pl ~&
a5

where, as usual, &Pl pl n) represents an element of the density matrix. '
At this point we have, then, that

+Q Jt &x-'„", Ir I x~~.l&«" &x'-„'.l~ I ~IX'k,!.P& &PI p I
~&dk" &x~.l. Ir Ix~"&

&x'-„"Ir I
x'-„',!&dk" &@' I I: I' n-'„„,leT,- I@ &dk"' &x'-„',!,Ir I

x'-„") (3.34)

(I', n&„,ln« =k P n'.n'a&~PI ~IX~!,r&,n, np-
af8y

From Eq. (3.35) we see that in order to evaluate the right-hand term in Eq. (3.34) we need to know the
quantity &C„ lqtqtsq~q~ I4„&. This quantity is of course a two-body correlation function. If we define this
correlation function as

(3.35)

To complete this part of the discussion we now need to look at the last term of Eq. (3.34}. We again use
Greek letters to denote the complete set of single-particle states and, in this notation, we may write

(r51 p'"I Po-') -=&@~ In nsn, ns Ic'~&

then we may rewrite Eq. (3.34) in the form

(3.36)

&&'&',„I
p(t'I -Ifo)I'I&'j,'„)=

(&7, —&T)&x& I (r& 1)
I
X'-„"&-

Xk 'Y Xg dk Xg- Xg-P P p

1——g &~P I
& I x'-„'!,r &~ &x'j!r I

p'"
I ~P& dk"' &x~~!,Ir I x'-„"&

a, s, y (3.3'I)
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The correlation function of Eq. (3.36) has been investigated in connection with nuclear structure studies.
This correlation function is given through two-body cluster terms, by7

&}()Ip"'I Pc(& = z Z ~&esps, l (I+f») I o(P&&()r I(I+f») I es,, (t&s,, &a(es„l pl ts, &&As;I pl 0s, &+" '

ay~By~

where (1+f») is the wave matrix for the Bethe-Goldstone equation, viz.

(1+5»)=1- "I~» ~

8
(3.39)

In Eq. (8.39), E» is the Bethe-Goldstone reaction matrix as defined for finite systems. With this reduc-
tion we have

&@» II:I' t)&„,~n-„„l@»&=3 g&(rP I t&I)('-„',l, »& &rx~ lie"'I &8o&

nby

~&Os, (t s, I (I+I~z) t » I)('-„'!,}('-„",&xdk' &)('-„"..x'-„", I f» I es,.es,.&~

3jiaal

&&es,. l pl es, & &es,. I pl es, &

ff

--2 Z J (&,& .&&-&~I'-~'-"& &x-"'~'-"~"*~&,& .»,&". (8.40)

where we have used the fact that K» = t&» —t&»((I)/e)K», and have also assumed that p is diagonals in the
space spanned by the

I P~). The energy denominator in Eqs. (3.38) and (8.39) is e=ek„+sk, —(ss, +as,).
The expression given in Eq. (3.40) may be inserted in Eq. (3.34) to complete the specification of

(X-'„",
I P(lf -Hc)PI X'-„"„). We may develop this expression further by writing the continuum matrix ele-

ments of y as

&x~'I } I)(~ ) =()(tt- (t') +&x~'I (} —I& I }(~"&

=&(I -&')+z&x~"'lpl}(('&+ " (3.41)

where we have used the fact that the(} ~- I) term is smaU. The various terms of Eq. (8.34) may be ex-
pressed diagrammatically. This development is presented in Figs. 1 and 2. It should be noted that the
presence of the (y —1) terms, which appear in the external lines, is particular to the theory developed in
this work.

( x~()l(y-p}lx-( })k"
P k g &X„- (tl, iXk- p&&pl~)(t&

{+) {+)

6„--Ek }+X„-, l(y'-p} IXtP
+ +

FIG. 1,. A schematic representation of some of the elements appearing in Eq. (3.34). Upward going lines represent
particles in the orbits IX+ ) and downward lines represent holes in the orbits Ig~). (a) The black dot represents the
one-body operator (y&-p . (b) In this figure we represent the first term of Eq. (3.34). (c) Here the cross-hatched cir-
cle represents the ground-state density matrix and the horizontal dashed line represents the interaction, o. We also
indicate an expansion of the density matrix in a conventional representation. (Only direct terms are drawn. ) The wavy
line represents the reaction matrix, E. The first and third terms in (c) may be written as a single term if we associate
the occupation factors with the hole lines. These occupation factors should also be associated with the down going lines
in the second diagram of (c).



IV. RESUMMATION OF THE PERTURBATION SERIES

It is evident that Eq. (8.84) may not be considered alone, since it contains the matrix elements of the po-
telltlRl wlllcll may be sillglllRI' (due to R hard col'8) ol", Rt 18Rst, vel'y 1RI'ge. W8 11111st collsidel' the effects
of the spaces, Q„Q„etc., to provide the possibility of developing an expansion in reaction matrices such
Rs is collv8lltionR1 fol' high-energy scatt81'lllg of 8'tl'ollgly illtel'Rctlllg pRI'tic188. Tile division of the Q spRce
into VRrlous orthogonal Hllbert spRces vfas made 'with )Qst this purpose in mind.

We now wish to consider the second term of Eq. (8.22), PHYSI(E —QIHQI+is) 'QIHP. There are two
types of matrix elements which occur in the analysis of that term. These are matrix elements of the type
&y~k,'-„,, IH I X&"„& Rnd &I"-„-„,, (H I I'j,'-„,, & For example, we have

&I'j,';„,,, IHlX~".,& =Q Jl &XT'„'XT'„'toss IX( X'-„",&dkldkl&y'-„, ,-„,, IH IXg,'„&d&'&X-'„", IVIX('&, (41)
gyt

(4.2)

The last term in Eq. (4.2) may be discarded at this stage since it does not contribute to Eq. (4.1), since
[F'-„-„, ) and ~X~1", „)are orthogonaL

kg, kI2, 8 1~

Further 'the kllletic energy colltl'lblltloll 'to Eq. (4.1) 111Ry be olltRilled fl'Gill

(4~ I ns'el pT„lst n)1 l 4~& =2(+a I nstnT„nT„ni'I 4 ~& &O' I h. I)t~" &+sl&+~ I na'nT pT p$ t 4~& (4.8)

From Eq. (4.8) we can see that the kinetic energy term may also be neglected. The second term of Eq.
(4.8) is small and may be dropped. The first term of Eq. (4.8) is quite small as it stands and also does not
contribute to the (y'(,'-„, [H [X&,'„& matrix elements if the states of the Q, space are orthogonaiized to
those of the P and Q, spaces. (More generally we may note that the kinetic energy operator does not cou-
ple the different Hilbert spaces, P+Qs, Q„Q„.. . , etc. , to any significant extent. ) This is most clearly
seen if use is made of the commutator method, as above.

With these comments in mind, me consider

&+a I@atm,q1,f & nTtl I +~&IPs"*=
a 2 &C a In,'(Itl, nT„n'.no)ns I O~& &oel ~l X('»a&Ps"' ~ (4.4)

We now make use of a relation me shall use severed, times in this section, viz.

(nTPT,orms) =(dT, sdT, a —&T,adT, s)+(n nT, &T,s nsltT, dT, n
—nanT 8t, s-+nsnT, &T,a)+nnl)snTPT,

~X„, IP(H-H, &P(X„o ~(+) (+)

FIG. 2. Diagrammatic representation of Eq. (3.34).
Various elements have been defined in Fig. 1, and use
has been made of Eqs. (3.39) and (3.40). The crosses in
the down-going (hole) lines are a reminder that the holes
are associated with their occupation factors, pa.

FIG, 3, A diagrammatic representation of a term ap-
pearing in the evaluation of Eq. (4.4). The intermediate
states

~ rl ) and
~ Qs ) are summed in this term The.(+)

wavy line represents a reaction matrix and the dashed
line a potential xnatrix element.
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to reorganize Eq. (4.4) as

&@', In,nkknk, [v, n„] I c„&p, "'

-Z&~~lnsnslc~&&x~k, xg, l~lxT, »~ps

2 Z (@A I nt|( nn nk 6kkg8 nsnk26kgn nnnk|6R28 n8 1kg6kmrx) 15 I +~& &~P I ~lxk 6&p,
as'

2 Z (4'A Insnnn Snka 1kl 1 5 I @A& &~P I ~ I x$ 6)ps (4.6)

The first term on the right-hand side of Eq. (4.6) is

Z&xj,'x'f'I ~I x'k" »~&6I pl e.&p. "'=Z&x'k x-'„"I ~lxI'e~&~&0~ I pl es&ps
"'

=&x~'x-"'I vlx'j"p & pkg kg

In obtaining the final equality in Eq. (4.7), we have assumed that the P, are chosen so as to diagonalize p
in the space of bound states.

The second term on the right-hand side of Eq. (4.6) gives rise to diagrams of the type shown in Fig. 3.
We neglect these two-hole terms for the present. The last term on the right-hand side of Eq. (4.6) gives
rise to even more complicated forms which we also neglect in this discussion.

At this point our main concern is to resum the perturbation series, so that the matrix elements of the
potential may be replaced by the matrix elements of a reaction matrix. To this end we concentrate on the
simplest kinds of diagrams with the fesvesi hole lines.

If we keep only the term given in Eq. (4.7), we then arrive at the approximate result for Eq. (4.1), viz.

&Y'-„-„„IIII&$'„&-=QJ&x$,'x'k", loss lx-'„", x'-„". &dkldkl&x'k". x'-„",I~le.'es& p "'dk'&x'k I7 lx-'„")+".
gi 20 t kI k2

gl

0 X~, x,g, dk'd'yg, x, , gx, ', p d'y&, yy" (4.8)

In Eq. (4.8) we have noted that o is expected to have larger diagonal than off-diagonal elements in the
bound-state labels. This "eliminates" the sum over B'. The above matrix element takes one from the P
space into the Q, space.

Let us now consider the matrix elements of Q,II@,. In the representation in which we are working, we
need to study the matrix elements (Y „T.. .IH I Y'-„"-„),which according to the definition of the states

I Y~&,'-„, ) of Eq. (3.9) may, in turn, be obtained from the matrix elements:
7('~k~p

&Yj'g, lff I Y'-, ;,& =&4~lnsnkpkiIfnk 1k nB I@A)PB PB

&@A I 1B'1kknki[+& 1k n$ nB] I@A&PB PB' +A&@A InB'nkank'ink nk 1B I@A)PB Ps'

In order to evaluate the right-hand side of Eq. (4.9) we must then study the matrix element

&4~ I n, .nk;n;. ,[If, n-„,n-, n, ] I
4'~ &

%le first observe that

&cgln,', n-„, n-„, [ff, n„'nk n, ]lc-~&=&c~ln,',nk, nk, [ff, nIk n-„' ]n, lc~&+&4~In,',n-„, nk, nk n-„' [ff, n, ]14~&.

(4 9)

(4.10)

With the help of Eq. (4.5) once more, the second term on the right-hand side of Eq. (4.10) is now seen to be

&c.ln.', (n-„, n-„, n-„' n-„' )[If, n, ]14.&

=&4'~In', [»n ]lc'~&(6(k —kl)6(k. -kl) —6(k -kl&6(k. -k )] 1&4'~+In', (n-' n-' n;n;+" )[ff, n ]I@'~&,

= -es ps 6~,(6(k~ —k() 6(k2 —k~) —6(k~ —k~~) 6(k2 —k,')]+ ~ ~ ~ . (4.11)
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The neglected terms on the right-hand side of Eq. (4.11) represent hole interaction terms, which we shall
not consider in the present treatment. The identity &4 „~qs [H, qs]~ 4& =—-&s» 5~, is straightforward and
has been established in nuclear structure studies.

We now write the first term on the right-hand side of Eq. (4.10) as

&4 In,',n-„;n-„;[ff,q „',n-;', ,)n, ,I@,&=&@ In,'.n-„;n-„.,{[st,n-„',n-„',)+[y', n„-',n-„',1}n,l@ ), (4, 12

and proceed to examine the kinetic energy term in this equation.
The kinetic energy operator is

X = 6k 'g~ 'g~ 8k+ b ~o X~ fib Ok Gk+ X~ Ao b 'g~k 'gb Gk+ b Ao bt 'gb'gb

b b bb'

The last three terms on the right-hand side of Eq. (4.13) do not contribute significantly to the matrix
element &4 „~7i,q-„, q-„, [X,7i-„qt ]q ~4 „&. Thus we evaluate this matrix element as

&4'~In. n«,n«;Ist, n«p«, )q. l+~&= &C„ln, n«;n«;[a~-„m, n«2]n, lc„&~«dk

(4.13)

(4.14)

(4.15)

(4.16)

The commutator in Eq. (4.14) is readily seen to be

[g«q«, g«q«]=q«g«5(k —k, ) —q«q«5(k-k2),
so that ere immediately obtain

&C ~l n, n«n«;[5t, n«, n«, ) n, l@~&= (~«,-+~«,}&4'~In, n«;n«;n«, n«, n, 14'~&

=—» 5sa (e„,+ e«,)[5(k, - k,') 5(k, -k,'}- 5(k, - k,') 5(k, -k,')] + ~ ~ ~ .
The last equality in Eq. (4.16}represents still another application of Eq. (4.5), and the terms indicated by
the three dots are here ignored for the usual reasons.

We must now evaluate the potential energy matrix element &4 „~qs,q«, q«,'[V, q„g1«)qs ~C „). To this end
ere write the potential energy operator V as

V=— &y'-' &&'-'
~ e~ y'-'X'-"&q- q- ri- g- dk dk dk dk, + ~ ~ ~ (4.1V}

The terms which have been indicated by three dots in Eq. (4.1V) have been dropped because they represent
hole interaction terms in the matrix element under consideration. The potential energy matrix thus
becomes

&4'xl'fig 'Ii« '0«[l '0« 'Ii«J'Qsl@w&

) )dk3dk4dk&eke&)(„)(„~ U~ g«X«) & 4'pl 7is 9«0«&['g«p«p«50«& 5«p«J Qsl@A& +
~J

(4.18)
The commutator on the right-hand side of Eq. (4.18) is easily seen to be

[q«q«q«q«, q«q«] =q-„q„(5(k,- k2)5(k —k, ) —5(ks —k~)5(k -k«)

and hence

+q-„q-„5(k,-k, )-q-„q«5(k, -k, )+q«q«5(k, —k, ) —q«q«5(k, -k, )), (4.19)

& +~ I n n«p«;[n«1, nf, n«, n-...n«, n-, ,) n, I
c ~&

=p 5,(5(%'-k)5(k -k)-5(k -k)5(k'-k)H5(k -k)5(k -k)-5(k -k)5(k -k, ))+ ~ ~

(4.20)

%;'l«,[~ %,'1«,]'5s~@ &=» 5 '&X«, X«;~ "~ X«,X«, &

where we remind the reader that

I
'-"x'-'& =-

I
x'-"6'& —

I
x'-'x'-" &.Xlk2 klA= k2 kl

—
kl k2 ~

(4.21)

(4.22)
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%'e now have all the ingred ents required to evaluate the Q~ matrix elements of the Hamiltonian H to with-
in the approximations indicated above. This result is simply

X (5(k, —k;)5(k, —k, ) —5(k, -k;)5(k, —k;)]+&~'-", ~'-",
~ ~~ ~'-'~'-"&„5,+ ~ ~ ~ . (4.23)

The two results given in Eqs. (4.8) and (4.23) enable us to evaluate PHQ, (E —Q,HQ, +is) 'Q,HP, within the
indicated approximations.

At this stage in our discussion it proves to be convenient to define propagators 9, and g, as

Q j
z -q,iW, ~ ie) (4.24)

Qg
8-Q K Q +if)~ ~

These propagators are connected through the familiar relation

9i = Zx+ gAx(H -3to)@i9i

(4.25)

(4.26)

which may be regarded as a special case of the abstract relation A '=B '+ B '(B -g) A '.
Heretofore we have only concerned ourselves with PX,P and have left open the complete definition of

&„except for the fact that we have insisted that P$C,Q =0. At this point we propose as a useful definition
for Q,X,Q,:

QgZogg=2 Q ~
Yq'

~ &(cg +eg -es+Z„)&Y„"'„~dk,dk, . (4.2V}

The energies ep and es in Eq. (4.2V) we take to be the kinetic energy of the particle state and the renormal-
ized energy of the Brueckner-Hartree-Pock hole state, respectively.

VFe note now that

=&X'-„,'„(H[g, +g,(H-3e,&g, + "]H(X'-„"„&. (4.28)
(+) (+)

The first term in the perturbation series may be obtained from the knowledge of &Y& p s~H~X-„„). To
obtain the higher term in this series we need the matrix elements, (Yt,, -„, s, ~(H-3e, )~ Y'-„"

& 3). The
development of this expression involves various terms, which may be classed as particle particle, parti-
cle hole, particle core, etc. Also contained are terms from the kinetic energy operator that give rise to
terms involving &I, and c], , and terms that depend on the fact that aw 1, Vfe have dropped the particle-
core terms arising from the potential energy (these must be renormalized in any case) and have kept the
kinetic energy of the particles and the particle-particle interaction terms. The hole-core terms have been
easily taken into account, as in Eq. (4.11); these need not be renormalized. The operator Q, 3eoQ, of Eq.
(4.2V) has been defined such that there are no "self-energy" terms in the evaluation of

For simplicity we have also set the operator o which orthonormalizes the
~

Y" ) states [as in Eq. (3.9)]
k~, k2, a

equal to unity.
Now, combining Eqs. (4.23} and (4.2V), we obtain

&Y'g,'; . I (H-x.&I Y'-„„-,&-=&X'„Xp I clX-„X-„&~5~ .
If we use the approximation in Eqs. (4.8) and (4.29), we then obtain

&X'-„". „IBID.+a(H-3'0) xi+xi(H-3C. &g.(H-&o&g, +" ]HI X'-„"„&

(4.29)

(4.30)
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In this equRtlon Q&2 ls R two-body PRQ11 opex'Rtor, K&2 ls R genex'Rllzed Bethe Goldstone reaction matrix
[K11='Vx» —1&11(@11/e)K1&&j, 8 =ko(I) +i10(2) —(Cs + EI,), Rlld P10 18 tile 0118-body kil18tlc 81181'gy Op81'Rt01'

In this appxoximation we have

1* =x f lx'-„",x'-„",)*xx xx (x'-„",x'„-",I, (4.3l)

91m
12( ) 18 12 q [P (I) +I (2)J q (~+ f~) tl(

(4.82)

(4.33)

At this point it is useful to rewrite the second term in Eq. (3.34), separating the density matrix into
bound and continuum parts. With &Pslpl4&s, & =5m, ps, we have for that term, designated as I»

x =Q f&x'„-", Ilxlxx!)»x (x!x.lxl"xtgx. )„x,xx"'(x'!Ixlx'„-"&

IX- X ) d~1&f~2&x Xkg 1 2 kg ka="11-"xs ' x . x Ku(&x&) ~

+ E'[, —LM+

EquRtioll (4.32) 1'epl'esen'ts tile gellel'Rllzatloll of tile Bethe-GGMS't0118 equation (wltll zero po'telltlR1 fol' pR1'-
ticle states) for positive parametric energy. The modification of these equations to include the effects of
the operator 0 on the intermediate state propagatox's is discussed in the Appendix, as the notation in that
case becomes somewhat more complicated.

In this approximation (0= I), we have

&»'x"„I»x»l»'-„"„)-=I, f (x'-„". I xl x'x.,')»x (x'xd, I
»"„-,x„lxxl x,).u. »x" &x''!

I yl x'-„"& .
B

+Jt (x'-"'I ~l x'-") dk'&x'-"x'-"
I ~l x'-" x'-"& &x'-"I pl x'-") dk"'dk dk &x'-"

I ~l x"') (4.34)

Now we may add Eq. (4.33) to Eq. (4.34). This has the effect of replacing the potential term in the first
part of I, by the matrix elements of the reaction matrix K». To accomplish the same replacement of e by
K in the second term of Eq. (4.34) we have to consider a selected class of terms arising in the develop-
men«f(X'-„", „Iffe&IX'»„"„), where

(4.85)

To keep this discussion from becoming unreasonably long, we have indicated some of these renormaliza-
tions in the diagrammatic representation of Fig. 4.

Once both terms of I, have been renormalized, such that K appears instead of 1&, we may write Eq. (8.22)
RS

&XP,'„II'.six'-„'„&=- (~k - ~k) &x'-„". Ib'p- I) I
x'-„')

+ Q Jf
&X'-„"I wl X'j'& d&"

[&XI",.RIKI X'„-'„',P&~&PI pl

&1&leak"'&X'„-"I

Wl X'j')
fx8

(4.36)& dk" dk"'&x'-„'„'x'-„",
I Kltsgs, &~ pep', &x'-„'-'lrl x'-„'&+" .

Some of these terms of V,~z are shown diagrammatically in Fig. 5. %'e note that the quantity appearing in
square brackets in Eq. (4.36) should be considered as a single entity despite the factorized notation. " A
correlation dlRg1am which we hRve not discussed but which has x'ece1ved R good deRl of attention ls 1n
dicated in Fig. 6. The inclusion of diagrams of this type in our work would involve a detailed study of the
role of the Q, space.

It is not difficult to see that at high energies Eq. (4.36) wiQ go over to the impulse-approximation result.
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(b)

FIG. 4. {a) A diagrammatic representation of the series of interactions which are summed to yield a reaction matrix
{wavy line). Only direct terms are shown. The cross on the hole line indicates the inclusion of the occupation probabil-
ity of this orbit. Except for the leading diagrams, this series arises from the inclusion of the many-body states of the

Q& space in the theory. {b) A series of diagrams which may be summed to renormalize the potential interaction involv-
ing continuum portions of the ground-state density matrix. The wavy line represents a reaction matrix and the dashed
line represents the potential matrix elements. Note that the intermediate states in all but the leading diagram of this
series arise from the inclusion of the states of the Q2 space in the theory.

For sufficiently high momenta we can replace y by .nity and
I )i'„"& by I k), a plane wave. Also we may

write

free free Q zsK„-Z„-Z„--K„,e e
(4.37)

where

free ~ free
Kg2 = Vg2 —Vg2 +12e

(4.38)

is the free nucleon-nucleon scattering matrix. At high energies Ky2 Ky2 and if we further neglect the
binding energies of the struck particles we may evaluate E~"at the energy of the incident particle, ~&.
These approximations yield the familiar result for the high-energy optical potential:

&x'-„",„Iv.„lx'-„"„&-& k, 4 „Iv.„lk, e„&= g&k', ~Iffy"-(s-„)
I k, p) „&p I pl ~&,

as

where
I k, e„&—= ak IC'„&. If one further neglects the momentum of the struck particle, one has

&k, e„lv.«lk, 4„&-A.""(~-„,q) p(q),

(4.39)

(4.4G)

FIG. 5. A diagrammatic representation of some of the
{direct) terms of Eg. {4.36). The diagrammatic elements
have been defined in Fig. 1. Terms having two black
dots are not shown. Again the wavy line represents the
reaction matrix, up-going lines refer to orbits lgi&+i),

and down-going lines to orbits lgq). Crosses on the
down-going lines indicate that the occupation factors

p should be associated with these lines.

FIG. 6. This diagram has received much attention as
a multiple-scattering term which depends on the corre-
lation structure of the target nucleus {Ref. 12). This
diagram has not been discussed in this paper because
it represents a higher-order term in a systematic hole
line expansion. In the language of this paper, this dia-
gram represents a matrix element which involves inter-
mediate states which are in the Q2 space.
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where q is the momentum transfer and p(q) is the Fourier transform of the density p(r), normalized such
that

(4.41)

with A being the number of target particles.
In Eqs. (4.40) and (4.41) we have neglected the last term in Eq. (4.36) since at very high incident energy

the correlated particles of the target are not of sufficiently high momentum so as to undergo exchange with
the incident particle. "

Recalling Eq. (2.11), we have in the approximation y~= 1 and with the neglect of the last term in Eq. (4.36),

&6„ I ~.„lx'k'& = g &g'-„",'~l ffI x'-„"p&,& pl pl ~& . (4.42)
es

The equation for the optical wave function, as discussed in Sec. II is,

(;-Pl.p-~ .„P)l~'„-"& =0, (4.43)

k &pp + 26

This equation may be compared to the one which obtains if we put p = 1 in Eq. (4.43),

(~p —h. —~.,~)1 tt'-„"& =0,

or

(4.44)

(4.45)

(4.46)

The matrix elements of v,~, in the plane-wave representation are given by the analog of Eq. (4.42),

&k'I ~.,~l» = P&k'~11'flkP&~&PI pl ~&. (4.41)

Now one can ask under what circumstances will
~
P-"& be a good approximation to

~
g'„-"&. Clearly, at high

energies, where the distinction between
~

g'-„"& and fk & becomes unimportant, Eq. (4.44) may be replaced
by Eq. (4.46). At low energies the validity of this approximation is related to the degree to which v,~, is en-
ergy dependent through the energy dependence of the reaction matrix E. We recall that the solutions of
Eqs. (4.44) and (4.46) are identical if K is energy independent (as in the case of Hartree-Fock theory where
we can replace K» by u»). Some numerical investigation is clearly called for to understand the importance
of using the more correct Eq. (4.44), rather than the approximate form, Eq. (4.46).

In this section we have seen how the potential terms involving e may be renormalized; however, we have
not discussed the role of compound-nucleus formation or virtual excitation of low-lying modes of the tar-
get. These (dispersive) effects (which are most important at low energy) will not be discussed at this time.

APPENDIX

In Eq. (4.31) we defined the Pauli operator,

0,.-=-
„i I

X~'X'-"& dk dk* &X'-'X'-'I =
I
X'-" X'-"& dk dk. &X'-"'X'-"I, (A 1)

which is appropriate for the Bethe-Goldstone equation for finite systems, if one neglects the potential in
the unoccupied states, but maintains the requirement that the particle (unoccupied) states be orthogonal to
the hole (occupied) states The ope.rator given above is the result of approximating the orthogonalization
operator e by unity. We recall that the matrix elements of o were of the form (X'„-' y-„~ a~ ~

y'„-" y~k &, where
the subscripts 8, 8 indicate that g is a matrix in the space of bound-state orbitals. It is expected that, in
lowest order, 0 does not depend on the bound-state labels.

In that approximation, we may generalize Q» to

qua= X(k,
)

X'-„", dkldk2 X'-„".X'-„", g X(k,'X'-,", dkldk2 X'-„') X'k' g X'k„'X'-„'„' dkl' dka' X'k„'X'k (A2)
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To simplify the notation, Q» may be written as

@12 +912+ '

We can introduce an operator K» = v» —v»(Q»/e)EC», which satisfies

K12 = K,2
—K12 — K12

@12 Q12

(A3)

Qi2 Q»
K12 K12 12e e

(A4)

(A5)

While the effects of the operator 0 are quite small, it is probably of some interest to indicate the struc-
ture of this operator. We may define

, & =5~ [5(kf-ki)5(k2-kl)-5(k -kl&5(k2-kl)]-&x'-„", x'-„", I~a six'-„"x'-„"&.
1' 2'

Using the definition of the states
I

Y„' -„&and keeping the leading contractions, we find
10 2

&x-„, x-„, I s'B I
x'-„" x'~" &, = ~'

(5(ki - kl& &x'-„'!
I p I

x'-„") —5(kl —k2) &
x'-'!

I p I
x'-"

&

+ 5(k —kl& &x'-",
I p I

x'-"'
&

—5(kl —ki& &
x'-"

I p I
x'-" &]+" ~

Equation (A6) may be written as

&= [p(1)+p(2)].

(A6)

(A7)

where we have put pe = 1. Equation (A6) may be obtained from Eq. (A7) if one takes the indicated matrix
elements.

We recall that the states
I

Y'-" -
& have been defined such that

k1, k2, &

& Y'-„", -„, , I
Y'-„" -„& = 5s s[5(k,' —k, ) 5(k,' —k, ) —5(k,' —k~)5(k2 —k,)]

+&X'-„!X'-„, lo'ss-lX-„„X-,, &t& d I d 2&Yea p&e grel yes jess
1 2 1 k2 1 ~ 2 ~

' 1 ~ 2~

(A8)

In the approximation given by Eqs. (A5) and (A6) we may then write, in schematic form,

v(1 —n)o =1,
so that

o = (1+a/2) = 1+ -', [p(1) +p(2)],

(A9)

(A10)

or
c= 1+ [r~(I) -P(I)1+[r&(2) -p(2&]

where the operator y~= p+ —,
'

p~ was introduced previously as a modification of the propagator in the P space.

*Work supported in part by the National Science Foun-
dation.

~R. R. Scheerbaum, C. M. Shakin, and R. M. Thaler,
"Scattering from Correlated Systems" to be published
in Ann. Phys.

2Equation (2.24) is more correctly given as
&x&'& lx&+' &=5(r-r')- P &r'14'&&4glr&.

Y gA VyA
( ()

where the sum is over those bound states which are com-

p/etely occupied (that is, the eigenvalue of the density
matric, q, is equal to unity for these states).

~Our results may also be used at low energies as well;
however, in that case our theory does not contain the
effects on the optical model of compound-nucleus forma-
tion and inelastic scattering. In the present approxima-
tion the imaginary part of the optical model arises from
particle knockout, for which the threshold would be -8
MeV.
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4Note that these states are defined so as to satisfy an
~ orthornormality condition of the form

(y(+) Iy(+) )

=&(k& -k', )~(k2 —k', ) —6{k,—k'2}6{k2—k', ) .

This normalization accounts for the factor of & in Eq.
(3.10).

~It may serve to clarify the nature of the truncation if
ere examine

(2) 5) + 0) (1)
Hfef Heff +Hegq Q2H g,

E-Q2H ~fQ2+ie

~~ff=H+HQg
q

. QgH.zAi)

The propagator (H -Q tH»if+)t) i may be expanded as

1 1
@2Heff@2 E @2H@2 E @2H@2

(x)
— + Q2HQ &

E-9 HQ S q Hq

The lou(est-order terms of H~g2~ are then

H&» =H+H~—&H+H~~H. H~~H~&H+H~~H~'H
8g 82 82 |P'g 8g 82.H~~H~~H~~H. H~~H~~H~~H '",8) 82 8g 82 8g 8)

Q] 1
eg 'E -Q]HQg+ se

The main virtue of this scheme is thus apparent. The
propagators never link the orthogonal subspaces.

8With the assumption (x»+~lplg~) =0, discussed ah~~~,
ere have

p= &les&(~)slplts &(en I

+ I x"&dh (x"I» Ix"&dk'(x'-' I .F F'

This relation may be used to reexpress the matrix ele-
ment given in Eq. (3.33) in terms of the bound state and
continuum parts of the density matrix.

~See for example, J. da Providencia and C. M. Shakin,
Phys. Bev. C 4, 1560 (1971); 5, 53 (1972).

The IQ&) may be chosen to accomplish this diagonali-
zation so that

As, IPlda, &=~a,a, pa, .

9Here e& is the Brueckner-Hartree-Pock (renormal-
ized) single-particle energy,

&a =(Aslhol 0'a) + Q (0's 4s'I &it I 4s 0'a')gPa'.

See for example, C. M. Shakin and J.da Providncia,
Phys. Bev. Letters 27, 1069 (1972}. Note that there is
an error in sign in the theorem as stated in this refer-
ence. A consistent set of definitions leads to

(c'glRa'lH, ual I c'w) = caps-dsa' ~

~OThe second term of Eq. (4.36), vrhich appears ex-
panded in the third line of Fig. 5, is usually neglected,
follow|. ng G. Takeda and K. M. Watson, Phys. Bev. 97,
1336 (1955). Estimates of this term have been made by
B.B. Scheerbaum and @rill be reported elsewhere.

The full deve]opment of the second term in Eq. (4.36)
involves a careful study of the energy dependence of
the K matrix elements, If the n and P in this term re-
fer to a bound state, I/a), the energy variable in the
ff matrix is e —Ical. However, in the case that a and
P refer to conFinuum orbits, the off-shell property is
more complicated. See, for example, Fig. 4(b). The
bracketed expression must be considered as a short-
hand notation. The off-shell character of the K matrix
appearing in this equation mll be discussed more fuOy
in a future publication.

2A. K. Kerman, H. McManus, B.M. Thaler, Ann.
Phys. {¹Y.) 8, 551 {1959);E. Kujavrski, Phys. Bev.
C 1, 1651 (1970); H. Feshbach and J. Hufner, Ann. Phys.{¹Y.) 56, 268 (1970}; H. Feshbach, A. Gal, and
J. Hufner, Ann. Phys. {N.Y.}66, 20 (1971); E. Lambert
and H. Feshbach, Phys. Letters 388, 487 {1972),and
E.Lambert and H. Feshbach, Ann. Phys. (to be published).


