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The two-body scattering formalism is developed in a manner that makes it clear where the
assumption of a "smooth" potential enters. Particular attention is paid to the modifications
necessary if the scattering states do not form a complete set, as is the case for the pure
hard-core (HC} potential and the pure (i.e., no external potential} boundary-condition model
(BCM}. As examples, the fully-off-shell t matrices for HC and BCM are developed without
treating them as the limits of finite-potential models. A general expression is derived for
the fully-off-shell t matrix, which can be applied to the general HC or BCM with external
potential, and which involves only the solution to the Schrodinger equation in the external
potential.

I. INTRODUCTION

In all microscopic calculations on finite nuclei,
nuclear matter, and other many-body problems
that use a potential model to represent the free
interaction betmeen particles, one of the main
difficulties is horn to put in short-range effects.
For example, the internucleon (NA) potential is
highly repulsive at distances, roughly speaking,
of less than about 0.5 fm. ' Meson-theoretic cal-
culations indicate that this is a region of enormous
complexity, where multimeson exchange processes
and a host of other manifestly nonloeal processes
all contribute. ' Phenomenological fits to NN scat-
tering data at low energies (up to a few hundred
MeV) also indicate that a 1ocal potential in this
region cannot be made to fit the experimental data. '
The attempts to simulate this highly nonlocal re-
gion have thus concentrated on inserting either a
very repulsive short-range local potential (so-
called "soft core") of some given shape, ' or such
simple nonlocal devices as the (infinite) hard core'
or its more general form, the boundary-condition
model. ' Adding in suitable attractive tails, each
of these forms can be made to yield a phenomeno-
logieal model of the NN interaction that fits all
the low-energy scattering data. The two-body data

are, however, not sensitive to the off-shell behavior
of the models, and only by going to systems of
three or more particles can they be distinguished.
In such systems involving more than two particles
we must therefore learn how to include such singu-
lar interactions as the hard core. Just as in the
Faddeev formulation' of the three-body pxoblem,
so in the Green's-function formulation of the nu-
clear matter problem' ' the (possibly singular)
two-body potential can be totally eliminated 1n

favor of the (well-behaved) fully-off-shell free
tmo-body scattering t matrix. It is worth pointing
out here that many of the results applicable to
"smooth" potentials are incorrect mhen applied to
singular potentials, and mistakes have been made
in the past. As an example, in investigating the
properties of the ground state of a collection of
hard-sphere fermions, Galitskii' showed how to
eliminate the hard-core potential, using the t
matxix instead. His expression for the fully-off-
shell t matrix in terms of the half-off-shell quanti-
ty, while correct for mell-behaved potentials,
breaks domn for the hard-core interaction. Galit-
skii mas interested in expansions of the ground-
state properties in pomers of the hard-core radi-
us a. He carried the expansions only to 0(a ), in
which case his results are certainly correct.
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However, straightforward use of his expression
for the t matrix to higher orders' would have led
to incorrect results. This point is elaborated in
Sec. II, where the correct expression for this
case is derived.

In the next section, we describe the free two-
body scattering formalism, considering general
potential scattering and the modifications neces-
sary for singular potentials. In Sec. III we deal
with the special problems involved with such sin-
gular potentials as the hard-core and the pure
boundary-condition model. We derive closed ex-
act expressions for the fully-off-shell t matrices
in both cases.

The general expression for the fully-off-shell
t matrix that is derived in Sec. II can equally
well be applied to the more general and more
realistic situation where there is an external po-
tential (attractive tail) outside the core region of
either the pure hard-core or the pure boundary-
condition model. In this case, our method in-
volves only the solution to the Schrodinger equa-
tion for two-particle scattering with an interac-
tion potential equal to the external potential, fitted
to the boundary condition at the core radius. It
is demonstrated explicitly that the solution ob-
tained by our method for the t matrix for the
boundary-condition model with external potential
(BCME) satisfies the integral equation employed
in the usual method, and hence provides the unique
solution.

(2.4) for the scattering amplitude,

f(p, p') =u(p- p')

dq 1 -(,)23"P q 2 .2 qP

), u(p- q), . t(q, p'; s) .

(2.5)

Thus, we shall call t(p, p'; s) the fully-off-shell
t matrix; f(p, p') —= t(p, p', p") the half-off-shell
t matrix; and t(p) —= f(p, p'), p" =p', the on-shell
t matrix. Equation (2.5) is written in operator
notation as

t(s) = u- ug, (s) t(s) = u- tg(2u,

where

(2.5')

g.(p, p', s) -=(p lgo(s) IP')

= (2m)'6(p- p') (2.6)

By comparison with Eq. (2.3) an off-shell wave
function y(p, p'; s) can be defined by

(2.4)

where u(r) =2@V(r) .
Equation (2.4) can be extended to yield a "fully-

off-shell" scattering amplitude or t matrix,
t(p, p'; s), defined by the solution to the integral
equation (2.5) as

t(p, p', s) =u(p —p')

II. GENERAL TWO-PARTICLE

SCATTERING

The Schrodinger equation adequately describes
the low-energy potential scattering region as

t(s) = u)((s),

where from Eq. (2.5') y(s) satisfies

X(s) = 1 —go(s)t(s)

(2.7)

(2.8a)

(2.1)

where p, is the reduced mass of the two particles,
and k is their relative momentum. Equation (2.1)
is augmented by the outgoing-wave boundary con-
dition. As usual, Eq. (2.1) with this boundary
condition can be converted into the Lippmann-
Schwinger integral equation (2.2) for the wave
function:

= 1 —g, (s)uy(s) = 1 —y(s)g, (s)u. (2.8b)

It is worth noting at this point that t(s) and y(s)
are related by the two equations (2.7) and (2.8a).
Using the latter of these relations, we need never
explicitly use the potential u again. This will turn
out to be important in the case of singular poten-
tials, as we shall see below.

Time-reversal invariance, or Eq. (2.5') di-
rectly, implies the first equality of Eq. (2.9),

t(p, p', s) = t(-p', -p; s) = t(p', p; s), (2.9)

(2 2)

f(P, k(—:f 2
2k V(ti)Pi(P —kl. (2.3)

where the scattering amplitude f(p, k) is defined by

where the second equality follows from the fact
that t(p', p; s) is a function only of the variables

From Eq. (2.5'), assuming a real scattering
potential (u = u ), the unitarity condition expressed
by Eq. (2.10) is readily shown:

Equations (2.2) and (2.3) yield the integral equation t —t = t (go —gO) t = t(g() —g(2)t (2.10)
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Just Rs QnltRrlty imposes the restrlctlon ex-
pressed by Eq. (2.10) on the f matrix, so complete-
ness and orthonormality of the scattering wave
functions can be used to impose restrictions on

f(p, p'). In general, the scattering states can be
orthonormalized by

, y)-, (r)g)-, (r') = &(r - r') - &(r, r') (2.12a)
2&)8 ))

or, in operator notation,

I)j'), )(tk I
=1-p,

dr)I))-, (r))j*,«(r) =(2«)'S(k-q). (2.11)

Substituting for both wave functions in Eq. {2.11)
from Eq. (2.2) yields

,., [f(p, p') -f*(p', p)]

dk f(k, p')f*(k, p)
{2v)' (0' —p'+ i~)(n' p" —-i«) '~ ~

(2.12)

The general completeness relation can be

where the integration over k is understood, where
I)j)), ) is a scattering eigenstate, and where P is a
projection operator (P' =P) if the eigenstates
I)j))-, ) are orthonormal. If the scattering states
by themselves form a complete set, then P is
identically zero. For a normal "smooth" poten-
tial, P =

I i)(iI where the index i labels the nor-
malized bound- stRte eigenfunctions. For R

"pathological" potential as the hard core, P can
be nonzero even in the absence of bound states,
as we shall see in the next section. Substituting

twice from Eq. (2.2) into Eq. (2.13a) yields

dk f(p, k)f*(p', k)
p2 pi2 ie [f{9)P } f {P )P)] Jl (2&)3 (p p? + &)(h2 p 2 ~ &)++(P) P ) '

If we define the partial-wave decomposition of the general operator B(p, p'; s) by

B{P P' )=sZ(21+1» {p p' )J'(p J'),

(2.14}

Eqs. (2.9), (2.10), (2.12), and (2.14) can be rewritten as follows:

&)(p, p', s) =&){p',p's}, (2.9 )

Imt) (p, p', s) = f, (p', «—)f—)~(p, «) = —"
f) (p, «)f,*(p—',«), (2.io )

f 4, P ) f;4', 0)= f') ~ f-, )t')f; + )')(q* p ...-q* p, . ..), (2.i2 )

"kdk- 1 If {P P')-f*{P' P) =
2„ f {P',~)f*(P, &) &. p „,—p p.. ., +(P'-P")& {P,P')

0
(2.14')

Putting p =p'= « in Eq. (2.10') gives

« ~~(.)f,(«) -=f, («, «) =-—e")'"' sinS, («)
K

(2.i5)

as a means of parametrizing t, («). The function 5, («) is then identified as the phase shift of the 1th partial
wave, since examination of the large y limit of the 1th partial wave in the decomposition of the Fourier
transform of Eq. (2.2) yields

$))(f') ~ 2 8 [cos)s g (kr)))- sins) s)(kt')]. (2.i6)

In general, the easiest way to find f(p, k) for a given potential V(r) is to solve the Schrodinger (differen-
tial) equation (2.1) for the wave function P&Qr) and then use Eq. (2.2), rather than solve the integral equa-
tion (2.4) directly. By comparison, the fully-off-shell t matrix can be obtained from the off-shell wave
function y(s), which can in turn be obtained from the solution to Eq. (2.8b}. This equation is then easily
cast in the form of a differential equation' if one so wishes. This approach to finding the t matrix has been
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used by several authors to treat the boundary-condition model. " However, instead of solving Eq. (2.8b)
directly, we shall now derive several equations relating t(p, p', s) to f(p, p').

The resolvent go(s) of the equation (2.1) with no potential can be defined as go(s) —= [2pH, —s- ie] ', where
Ho is the kinetic energy operator. Similarly g(s), the resolvent of the full equation, is defined as g(s)

[2 JJ—H, + u - s - ie] '. These definitions immediately yield

8'0 8'=I~SO =80+8' ~

Comparison of Eqs. (2.8) and (2.IV) then shows

g(s)go(s) =g(s) .
Premultiplication of Eq. (2.18) with the potential leads to the more familiar relation

t(s)g, (s) = ug(s),

(2.17)

(2.18)

which is sometimes used as the defining equation for the t matrix. Using the definitions of g(s) and g,(s)
above, and the completeness relation of Eq. (2.13b), Eq. (2.18) can be written as

X(p, p's)=V"-s-i~)
2 . @," „+(plPg(s)Plp') (2.18 )

(2.19)

By operationaQy premultiplying this equation by the potential u, and making use of Eqs. (2.3) and (2.V) to
relate )t(s) to t(s), we get"

In deriving this equation, we have made use of the fact that P~ g)-, ) =0, which follows directly from Eq.
(2.13b) by operationally multiplying the equation by the scattering state

~ (I))-, ) and using orthogonality. The
derivation of Eq. (2.18 ) was perfectly general, and it is valid for all potentials once the operator P is
given.

We now wish to specialize Eq. (2.18 ) by dropping the second term in brackets on the right-hand side.
This is certainly valid for ordinary potentials that have no bound eigenstates (P = 0 in this case). In the
next section we shall show that for a hard-core potential, while P x 0, the combination Pg(s) =0. Thus
in this case also, the last term of Eq. (2.18 ) can be dropped. This is the real motivation for ignoring
this term from now on. Under this assumption, there are now several relations that can be derived, with

Eq. (2.18') as the starting point, that relate t(p, p', s) to f(p, p').
In the first place, substituting (1))-, (p') from Eq. (2.2) into Eq. (2.18'), we get

dk -, I 1
y(p, P';s)= (p())+

J (2 ), 8g(p)f"(p', &) &.

&(Li';*) f(i, i&')'J (~, , f(Pc)f'(i', k)(„, &„,„-+, ,)
=i'(0' 0)' Jl ), 3(l )i'I(i', )(k~. q „,., p. ..) (((' (")I-'(ii)-, '

(2.20a)

(2.20b)

where Eq. (2.20b) follows from Eq. (2.20a) using the completeness relation of Eq. (2.14). We emphasize
again that both Eqs. (2.20a) and (2.20b) were derived from the quite general relation of Eq. (2.19) by opera-
tional multiplication with the potential u. For nonsingular potentials this is a valid operation. However,
for singular potentials like the hard core this is tantamount to multiplication of the wave function, which
is zero inside the hard core, by the potential, which is infinite in the same region. The multip1ication is
not well defined, and Eqs. (2.20a) and (2.20b) thus fall under suspicion in the case of such singular poten-
tials. In the ne.",t section we shall show explicitly that they lead to nonsensical results for the hard-core
potential.
However, we can avoid using the potential again by using Eq. (2.8a) to relate Jt(s) to t(s). Using this re-

lation, and substituting for both wave functions in Eq. (2.18 ), leads to a third relation,

t(p p' s)=, , [(s-p') j'(p, p')- (s- p")f*(p' p)l

d k j(p, k)f *(p', k)
(2)i)' (A —s- ie)(k'- P"- i~)(Jt'- P'+is) ' (2.20c)
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To recapitulate, we have derived three relations that express the fully-off-shell t matrix in terms of the
half-off-shell quantity, which in turn can be found by solving the Schrodinger equation. Each of the rela-
tions was derived from Eq. (2.18 ), which is absolutely general, by dropping the last term for convenience.
In the cases of interest to us in the next section, we show that this term is zero. For the general class
of nonsingular potentials sustaining no bound states, all three relations are valid and must lead to the
same result for the t matrix. For singular potentials (with no bound states) only the third relation, Eq.
(2.20c}, is valid. If in either case the potential is capable of supporting bound states, these can be in-
cluded in a straightforward manner by keeping the last term in Eq. (2.18').

The relation expressed in Eq. (2.20c) is the main result of this section. Decomposing the equation into
partial waves, and using the unitarity relation (2.10') with a =p, gives

4(P, P'; s)= „,(p"- s)f, (p', p)-(p'- s)f, (p, p') —(p'- s)(p"- s)

„~"k'dk f, (p, k)f,*(p, k)
Qn lP-s —'E k -0"-'f k -g-la) (2.21)

in which form the right-hand side of the equation
is manifestly symmetric under interchange of p
and p'.

In the next section, the results derived here are
applied to two specific examples of singular poten-
tials, viz. , the hard-core potential and the pure
boundary-condition model.

I

alternative method of assuming g infinite from
the outset. In this case we have to consider the
incompleteness problem of case (ii) above. The
hard-core scattering wave functions in the coordi-
nate-space representation are obviously zero in-
side the radius g. The completeness relation be-
comes

III. SCATTERING FROM A

SINGULAR POTENTIAL

In the last section we set up the formalism for
free two-body potential scattering, and derived
several relations for the fuQy-off-shell t matrix
in terms of the half-off-shell quantities. %e now

wish to specialize these results to the hard-core
potential,

(3.1)V(r) = Iim ge(a r), -
where e(x) is the unit-step function.

Many of the results of the last section used
completeness, and our formalism was set up to
indicate explicitly where this entered. %'e indi-
cated that two conditions may arise to prevent
the scattering states from forming a complete
set: (i) The potential may be attractive enough
to have bound eigenstates, and (ii) the potential
may be "pathological. " For the (repulsive) hard-
core potential we need only concern ourselves
with case (11}. With the potential of Eq. (3.1) we

have the option of either performing all calcula-
tions with g finite until the end, when the limit is
taken, or taking the limit from the outset. Keep-
ing g finite throughout the calculations enables
us to use any of Eqs. (2.20), for example. How-

ever, much of the simplicity inherent in the hard-
core potential is lost in doing this, as the potential
depends explicitly on another parameter. Several
authors' ' have used this method to find the fully-
off-shel1 hard-core t matrix. We shall adopt the

,yp(r)yf(r')=5(r-r')[1- e(a r)],-2w)'

(3.2)

or in the operator notation of Eq. (2.13b), P= e
for this case, where the coordinate-space repre-
sentation of the operator 6I is

&r
~
e [ r '& -=e(r, r '}= 5(r —r ') e(a —r) . (3.3)

i'e" &[cos5,j,(k~) sin5, ng(k~)—], r &a
0 r&u,

(3 6)

These equations merely express the result that
the hard-core wave functions form a complete set
only over the partial range of y for g & y & ~.

From Eqs. (2.'I) and (3.1), since t(s) is finite
(nonsingular), it is apparent that

eg(s) =0,

and hence by premultiplying Eq. (2.18) with e, that

eg(s) =0.
Equation (3.4) just expresses synibolically the
fact that the wave function g(s) vanishes inside
the core. This last result of Eq. (3.5) is just the
relation needed to drop the last term in Eq. (2.18'}
in order to derive Eqs. (2.20).

The hard-core wave functions evidently take
their asymptotic form exactLy for all r &g, and
hence from Eq. (2.16)
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where, from continuity of the wave function at r =a,

tan5, (k) =j,(k a)/n (( ka) .
From Eq. (2.2), we can calculate f, (p, k) immediately as

(3.V)

f, (P, k) =4m(k' —P') r'dr i 'j, (pr)(t((,(r),
0

or, using Eq. (3.6},

f,(P, k) =4&re' '(k' —P') (t r'drj, (Pr)[cos5,j,(kr) —sin5, n, (kr)].
~a

Using the well-known relation

(P' —a'(«'«((«), ((~i=—" «'(v, "'-, ')
where u, (x) and v, (x) are arbitrary linear combinations ofj,(x) and n, (x), and the Wronskian relation

j,(x)n,'(x) j,'(x)—n, (x) = x ',
the integration of Eq. (3.8) is easily performed to give

f ( k) j,(pa) f- (k k)
4', (pa)

j,(ka) ' ' ikh,'(ka) '

(s.8)

(3.9)

(s.io)

(s.ii)

where we have used Eqs. (2.15) and (3.7). Thus, f, (p, k) is separable in p and k. Using this explicit form
for f, (p, p'), the orthogonality and completeness relations of Eqs. (2.12') and (2.14') are easily checked,
using Eqs. (A5) and (A6) from the Appendix and the explicit form for 8((p, p ), which is readily evalu ted
using Eq. (3.9), to be

4 2

8((p, P') =
2 2 [Pj((p'a}A '(Pa) —Pi'((Pa)jt(P'a}]~p' -p (s.i2)

Using the explicit form for f, (p, k) derived above, we can use the results of Sec. II to find t, (p, p'; s).
We pointed out in the last section that while the three relations (2.20a)-(2.20c} are all valid for nonsingu-
lar potentials, the first two are not valid for singular potentials. It is easy to check at this point that these
two relations, if used for the hard-core potential, both lead to expressions for t, (p, p'; s) which are not

even symmetric between p and p, and are thus obviously incorrect. These were, in fact, the relations
used by Galitskii, ' which we referred to in Sec. I. On the other hand, Eq. (2.20c) remains valid for singu-
lar potentials, and substituting from Eq. (3.11) leads to the following correct expressions for t, (p, p', s)
after a little algebra:

t, (p, p'; s) = „,[(p"—s)f, (p', «)B,(p, «) —(p' —s)f, (p, «)B,(p', «))

= (p" —s) ~( (p, p') +f (p, «)B (p', «),

where

B,(p, «) =i«a'[pj, '(pa)h, '(«a) —«j, (pa)h", ( a)]«.

(s.isa)

(3.13b)

(3.14)

From the definition above, it is apparent that

B((«««) = 1
« (s.15)

as needed. It is easy to see that t, (p, p', s) satis-
fies the symmetry and unitarity conditions of Eqs.
(2.9') and (2.10'). The result of Eqs. (3.13) is
exactly the same (after a little manipulation to
put it in the same form) as that derived by Bray-
shaw" by the entirely different method of starting
with a finite repulsive square well and taking the
hard-core limit at the end of the calculation. The

expressions (3.13) can now be used as the starting
point for calculations on three or more particle
systems interacting via hard-core potentials. It
is interesting to note that in the limit s -~, the
fully-off-shell t matrix contains a term linear in
s, whereas in this limit for ordinary potentials the
t matrix approaches the potential u(p- p') and be-
comes independent of s.

For simplicity we have carried out the calcula-
tions above only for a pure hard-core potential.
It is not difficult however to extend the calcula-
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tions to the more general case of the so-called
pure boundary-condition model (BCM). The most
general boundary-condition model comprises a
core interaction which gives rise to an energy-
independent logarithmic derivative of the wave
function at the core radius a, with a given local
potential beyond this radius. We shall consider
only the pure boundary-condition model (BCM),
in which case the external potential is zero. The
boundary condition is taken to be

&- o PI(a+~)
(3.16)

u(r) =go(a —r) —h6(r —a), (3.17)

where g& 0, k &0 in the limit as g- ~, h- ~ such
that the quantity

remains finite. The limit can obviously be taken
separately in each partial wave. The HC potential
is obviously just the special case of the BCM
where A., -~. It is then apparent that the BCM
wave functions still obey Eq. (3.6), where to satis-
fy the boundary condition of Eq. (3.16) the phase
shifts 6,(k) are given by

(
X, j,(ka}—kj,'(ka)

,n, (ka) .—kn,'(ka)
' (3.18)

The scattering amplitude f, (p, k) is calculated
exactly as before to give

It has been shown" that the BCM can be equivalent-
ly cast in the form of the limit of a potential mod-
el containing a repulsive square well and an at-
tractive surface 5-function potential,

T= U- UgoT. (3.20a)

Similarly t(s) is defined to be the t matrix with
only the potential u acting,

I,= u- ugot. (3.20b)

By subtracting these two equations, it is apparent
that

agrees with that found by other authors. " "
We have derived an exact analytic expression

above for the pure BCM t matrix (and have seen
how the pure hard-core result can be obtained
from it as a special case) by making use of our
general expression (2.20c}. This expression is
also valid in the more general boundary-condition
model (BCME) which contains an arbitrary (non-
singular) external potential V,(r) outside the core
radius a. The procedure in th. a case is to first
solve the two-particle Schrodinger equation for
the interaction potential V,(r) for the wave func-
tion 4 ~Mr) in the range a &r & ~, fitted to the bound-
ary condition (3.16) at r =a. From the wave func-
tion, the scattering amplitude is derived from Eq.
(2.2), and hence the T matrix from Eq. (2.20c).

The procedure described above differs from the
method generally employed, described briefly
below (and in, e.g. , Ref. 12), and it is instructive
to compare the two methods and thereby verify
our solution.

For general two-particle scattering with an in-
teraction potential given by the sum of two terms

U=u+u, ,

we define a T matrix by the solution to the inte-
gral equation

f, (p, k) = ' ' .' f, (k, k)
~, j,(ka) —kf, (ka)

4» j (pa) - pj,'(pa)
ik A. ,h,'(ka) —kh,

' (ka) ' (3.19)

(1+ug, )(T—t) = u, (1 —g, T) .
Premultiplication of this last equation with the
factor (1 —tg, ) gives the result

T- t=(l —tg, )u,(l- g, T) . (3.21)
which is still separable in p and k. It is readily
checked that the BCM wave functions obtained
from this expression for f,(p, k} by Eq. (2.2)
satisfy the defining condition Eq. (3.16), and are
zero inside the radius a. Using the explicit form
for f, (p, k), the BCM t matrix is obtained from
Eq. (2.21}as before. The necessary integral is
evaluated in the Appendix as Eq. (Av}, where we
have assumed no bound states, to be compatible
with the use of the formalism of Sec. II. After
a lot of algebra, the remarkable result obtains
that the BCM I;matrix is given in terms of the
half-off-shell amplitude by exactly the same Eqs.
(3.13) as for the HC potential. The actual expres-
sions, of course, differ, since the functions
f, (p, k) have different forms. The final expression

Using Eq. (2.8a), and a similar expression for
the fully-off-shell wave function X(s) correspond-
ing to T(s}, gives immediately the equivalent
equation

X= X Xfou~ X ~ (3.22)

Since the potential u has now been eliminated
from Eqs. (3.21) and (3.22), we can specialize to
the case where u represents the pure BCM and
u, the external potential of the BCME. Equation
(3.21) can now be considered as an integral equa-
tion for T(s}, the BCME T matrix, since the pure
BCM t matrix, t(s), is known; this is the method
generally used to solve for T(s). Since we have
been somewhat cavalier about taking the limit to
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the BCM in the integral equations (3.21) and (3.22),
it is worthwhile to check that Eq. (3.22) does in
fact lead to a BCME wave function 4~fr)
—= (r IX(k') Ik) that satisfies the required boundary
condition,

assuming no bound states in either case. The
general projection operator P of Sec. II can thus
be identified with 8 in both cases. Thus Eq. (3.5)
holds for both the BCM and BCME, and hence the
last term can be dropped from Eq. (2.18') in both
models to give

Using our explicit expression for t(s), the pure
BCM t matrix, this is easily verified from Eq.
(3.22); it can also be shown" that Eqs. (3.21) and

(3.22) have unique solutions if u, satisfies the usu-
al asymptotic condition,

(3.24a)

~(,) u2 S ge go (3.24b)

Substituting from Eqs. (3.24), the right-hand side
of Eq. (3.22) becomes

lim ru, (r) =0.

Thus, if we can now show that our general ex-
pression (2.18'), or equivalently (2.20c), satisfies
Eq. (3.22), or equivalently Eq. (3.21), we are
guaranteed that we have found the unique solution
T(s) of the BCME T matrix with arbitrary exter-
nal potential u, (r). The proof is given below.

The scattering wave functions
I g«-& and I4«& of

the pure BCM and BCME, respectively, both satis-
fy the same completeness relation of Eq. (2.13b},

I e«&&0« I u. I +;&(+-.Iso
'

(O' —s —iE)(q' —s —iE)

Using the Schrodinger equations

(2 glfo + u+ u, ) I
C

o ) = q'
I 0;&,

(2urf. +u) lt«& =&'ly«&,

it is trivial to prove that

(3.25)

I ~«&&~« I
=

I e«&&0« I
=1- 8, (3.23) &t« lu. I+;&=(q'- &')&0«1~;&.

Using this result in Eq. (3.25) gives

1x- xgou. x=x- lc«&&0« I+-&&+-I
@ g'0
k —s i~ q' —s-—ie

The completeness relations of Eq. (3.23) can now be employed to give

ly«&&pal(1- 8) (I- 8) I +-, &&@o I

X Xgoue =
X p g s qg'.

=x-
I.X-~1=&,

which is exactly Eq. (3.22). We have thus verified that the expression of Eq. (2.18 ), or equivalently Eq.
(2.20c), works equally well for the BCME as for the pure BCM, as originally asserted.

IV. SUMMARY

We have obtained a general formula for the fully-off-shell two-body t matrix in terms of the half-off-
shell scattering amplitude, which can in turn be found from solving the Schrodinger equation. The der-
ivation is valid for singular, as well as nonsingular potentials, and we discussed the care necessary in
applying the completeness relation for the case of singular potentials. Since the real world probably con-
tains no potentials which are strictly singular, such potentials are probably best treated as the limit of
nonsingular potentials, since all relevant functions then depend on one parameter less. Our general for-
mula for the t matrix avoids the need for a separate final limiting process in each case.

The formalism was applied to the pure HC and pure BCM, and exact analytic expressions for the t
matrices were easily found in both cases. The formalism is also suitable for the more general BCME
which includes an external potential outside the core region. Our expression for the t matrix of this model
was explicitly shown to be the unique solution to the integral equation of an alternative formalism in gen-
eral use.

An expression for the two-body t matrix in any model forms the starting point for calculations on sys-
tems involving more than two particles. This author has employed the expression for the pure hard-core
t matrix in calculations of the ground-state properties of an infinite system of fermions interacting via
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hard-core potentials. '
It is hoped that the examples of the pure HC potential and the pure BCM, as well as our discussion of

the general BCME, demonstrate both the practicality of the formalism of Sec. II for other models involving
singular potentials and how to apply the formalism in such cases.
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APPENDIX

In this Appendix, the singular integrals occurring in Sec. III are evaluated. The integrals of interest
can all be put in the form

(A 1)

where v(x) is a real function. Furthermore, in the cases of interest to us, we can define a function f(z),
analytic in the upper half complex plane, which goes to zero as z approaches infinity along any direction
in the upper half-plane, and has the property

f(x) =u(x)+ iv(x),

on the real axis. For such functions,

(A2)

(A3)

where an integral with no ~i~ in the denominator is to be taken as a principal-value integral. Taking the
real part of both sides of Eq. (A3), we get

, v(x')
u(x) =— dx'

7T g oo X X

and upon adding the quantity iv(x) to both sides,

If v(x) is also an even function of x, as in the three cases below, the last equation can be written as

f(x) = (dx'—2x ]'", v(x')
7T 0 X' -X

Equation (A4) is now specialized to the three cases of interest.
Case (i).

f(z) = fj,(z)hg'(z); v(x) = j,'(x) .
The conditions necessary for Eq. (A4) are all readily seen to be satisfied, and hence

ij, (x)h,'(x) =—t dx'
F 0 X —X -ZE

which easily yields the. desired integral,
oo

J
1

k'dkj, 'lk ], , —„, , )= 'wgf j,(( )h+, (( ]] —'p'[—j, (p'a)h;(P )]. '— 'o'

Case (ii).

f(z) =&&"(z)lh((z); v(x) =(xl&](x) I) '~

(A4)

(A5)

where we have used the Wronskian relation Eq. (3.10) to evaluate the imaginary part. Both h, (z) and A,"(z)
take all their zeros in the lower half-plane, and hence f(z) is analytic in the upper half-plane as required.
The function f(z) actually approaches an imaginary constant as z- ~, which leads to an additional imagin-
ary constant term in Eq. (A3) from the contribution to the contour integral from the infinite semicircle.



B. F. BISHOP

Since Eq. (A4) is obtained from Eq. (A3) by taking the real part, we may still use the equation to obtain

h,"(x) s, x"- x'-i~ x"~h,'(x')~"

from mhich the desired relation folloms:

~h,'(ha))' h'-P'+i~ h'-p"-ie 2
' P h', (Pa) P h,'(p'a)

Case (igi).

(Ao)

where we have again used the Wronskian relation (3.10) to evaluate v(x). In general this function f(x) need

not be analytic in the upper half-plane. Homever, in the case of interest to us, there mill be no poles in

this region, since if there were, some would correspond to bound-state poles, as seen from Eq. (3.19),
since bound states correspond to poles h = ix in t, (z) =f,(z, ~). Since we exclude this possibility, the neces-
sary conditions for Eq. (A4) are fulfilled, as it is readily verified that o{x) is an even function. Thus we

obtain

X,h,'(x) —(x/a)h, ' (x) w 0 x"—x' —ie x" ~A. ,h;(x') —(x'/a)h, "(x') j''

from mhich folloms immediately that

J dh 1 1 va' h( '(Pa), h', '(p'a)

o l&(h) I' h'-P'- ~~ h' P" f-~ 2-&, &(P) &{p'a)

a(h) = ~ h,'(ha) —hh,"(ha) .
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