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We have performed partial-wave calculations using the Klein-Gordon and the Dirac equa-
tions for the 1-GeV proton scattering experiments of Palevsky etuI, . Without the explicit
introduction of spin in the optical potential, the two equations give closely similar results,
Compared with the eikonal approximation the differential cross sections of the partial-wave
analysis show considerable filling in of the diffraction minima. We compare the simple Wat-
son theoretical optical-potential predictions with phenomenological Gts to the data, and reach
substantially the same conclusions as Palevsky etul. The optical potentials Used in this work
are either the fourth component of a four-vector or a scalar potential,

INTRODUCTION

Differential cross sections for the elastic scat-
tering of 1-QeV protons from hydrogen, helium,
carbon, and oxygen were measured some time ago
by Palevsky et a/. ' These authors also reported
optical-model fits to the data, using E. H. Auer-
bach's ABACUS-2 optical-model code, a partial-
wave analysis adapted for this purpose to the Klein-
Qordon equation. A %oods-Saxon shape mas chosen
for the optical potential. The general conclusions
reported in Ref. 1 mere that the "C and "0data
could be fitted well with an optical potential whose
shape parameters resembled those found from
electron scattering experiments, "while for the
~He data, complete agreement could not be ob-
tained in this manner. ~'

%e have been working on a complete partial-
wave analysis for particle-nucleus scattering for
some time, and in connection with this project we
decided to reexamine the analysis of Ref. 1. %e
will first diseuse the results obtained when the nu-

clear potential is taken to be the fourth part of a
four-vector rather than the. scalar potential used
in the analysis of Ref. 1. Then me shall present
our results when a scalar nuclear potential is as-
sumed. Our general conclusions regarding the
agreement with electron scattering experiments
axe substantially the same as Ref. 1. Since accu-
rate analysis of scattering data in this energy
range does require a complete partial-wave anal-
ysis rather than the frequently used eikonal ap-
proximation, our presentation of these results at

this time may also provide a check point for other
similar calculations.

CALCULATION

In our optical-model analysis, we use Klein-
Qordon or Dirac equations mith a Coulomb poten-
tial obtained from the charge distributions deter-
mined by electron scattering. The basis for the
theoretical nuclear optical-model potential used
here is described by Watson. ' In its simplest
form, it relates the optical potential to the nucle-
on-nucleon forward scattering amplitude and the
matter density of the nucleus. The potential has
the form

where A is the number of nucleons in the target,
e is the ratio of real to imaginary parts of the
nucleon-nucleon scattering amplitude, o~ is the
average nucleon-nucleon total cross section, k
and E are the projectile momentum and total ener-
gy taken in the nucleon-nucleus center-of-mass
system, and for p(r) we take the nuclear charge-
density function' normalized to unity. ' The optical
potential of Eq. (i) is inserted as the fourth com-
ponent of a four-vector in either the Dirac or the
Klein-Qordon equation. The parameters obtained
are given. in the first row of Tables I-III. In cal-
culating the corresponding scalar optical potential,
we multiply the above expression for V,&, by Z/m,
where ns is the rest mass of the proton. This pro-
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TABLE I. Parameter s used in the optical-model potential for p- He elastic scattering at 1.696 QeV/c incident lab
momentum. The experimental reaction cross section is given by Q. J. Igo, J. L. FreMes, H. Palevsky, g. Sutter,
Q. Sennett, W. D. Simpson, D. M. Corley, and R. L. Stearns, Nucl. Phys. 83, 181 (1967) as 111+10mb. The optical
potential is taken to be the fourth component of a four-vector for the first three rows, and a scalar potential for the
last two rows.

&Mev)

g
(fm}

rms radius Volume integral
(fm) (fme)

~z
(mb) g2/deg freedom

16.09
36.53
27.80
25.71
40.41

—80.45
-111,25
-156.19
-128.56
-243.07

1.008
1.008
1.008
1.008
1.008

0.327
0.327
0.286
0.327
0.288

0.445
0.445
0.445
0.445
0,445

1.717
1.717
1.527
1.717
1.538

16.81
16.81
13.57
16.81
13.73

98.6
116,4
109.7
99.3

110.9

19.1
9.3
1,8

17.5
1,6

1.43
1.23
0.98
1.43
0.98

cedure insures that the eikonal-approximation
phase shifts are the same to first order in the po-
tential for the two cases. The parameters for the
sealax potential ax'e given in the fourth rom of Ta-
bles I-III.

Vfe also compaxe the results of the simple poten-
tial of EIi. (1) with a purely phenomenological po-
tential defined by

V(I ) =(~+IW)f(r),

where V and S' are the real and imaginary strength
parameters of the potential and f(r) is the shape
function which gives the variation of the potential
with radius. We have in ail cases taken f(I ) to
have the same analytic form as the charge distri-
bution determined from electron scattering experi-
ments.

%ith regard to the dependence of the optical po-
tential on the spin of the nucleon, there are tmo
sepaxate questions. The simpler question is one
of the effect of nucleon spin on the partial-wave
analysis itself. We examine this effect, and pro-
vide an independent verification of our calcula-
tions by making a partial-wave computation using
the four-component Dirac equation. As mith the
Klein-Gordon equation, the potential is inserted
either as the fourth component of a four-vector or
as a scalar. %e find that there is no appreciable
difference in the results of the tmo calculations
and that the same phenomenological optical poten-
tial may be determined by fitting the data with ei-
ther equation. In addition, we note that the shape

function f (I ) is essentially independent of the as-
sumed ehax'aeter of the potential although, as
would be expected, the strength parameters V and
W differ. The second question x'egarding spin re-
lates to the possible addition of an actual spin-
orbit interaction. Because me do not consider
polarization, me make no statement about this
second question; it is, however, a very appre-
ciable effect. It has been shomn by Franco' and
by Kujamski, Sachs, and Trefil' that the inclusion
of spin and isospin improves the Glauber cross-
section agreement with experiment. Kujawski"
and Lambert and Feshbach" have also examined
the use of spin-dependent optical potentials, and
find the effect of spin to be important.

RESULTS FOR VECTOR POTENTIAL

For the p-'He experiments, the simple optical-
model potential of EIi. (i) does not fit the data well.
%e have used the charge density of 'He determined
from electron scattering by Frosch et al. ,' namely,
the parabolic Fermi shape

with @=1.008 fm, z =0.326 fm, sv =0.445 in deter-
mining V,&I(r) from Eq. (i). In addition, we take
e =43 91 mb' and a = -0 2 ' That the fit to the
P-4He data is poor perhaps may be expected. For
example, calculations by Feshbach, Qal, and Huff-

TAQLF Q. Parametex s used in the optical-model potential for p-~2C elastic scattering at 1.696 QeV/c incident lab
momentum, The experimental reaction cross section is given by Igo af 4. as 258+17 mb. The optical potential is
taken to be the fourth component of a four-vector for the first three rows, and a scalar for the last row.

(MeV)
rms radius Volume integral

(fm) {fme)

11.71
17.50
16,73
21,65

-58.58
-49.17
-58.48

-108.23

1.71 1.12
1.71 1.12
1.662 1.12
1.71 1.12

2.494
2.494
2 424
2.494

74.62
74.62
68.51
74.62

255.2
233.1
237.3
256.6

9.5
4.7
3.5
9.4

1.17
1.23
1.07
1.15
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ner, "and Kujawski" indicate an improved agree-
ment with experiment if correlations are included.
The calculations of Lambert and Feshbach" where
spin and isospin effects were included in the opti-
cal potential, as well as the spin-dependent cal-
culation of Kujawski, "indicate these effects to be
important. In addition, we have neglected nuclear
recoil, and have approximated crudely the momen-
tum-transfer dependence of the nucleon-nucleon
scattering amplitude. ' All of these effects are ex-
pected to become more important as the scatter-
ing angle increases. Figure 1 shows the results
of the simple optical potential of Eq. (1), indicated
as Method (a), and one can see that the discrepan-
cy becomes greater as the scattering angle in-
creases.

In the phenomenological optical potential given
by Eq. (2), we have adopted two successively more
flexible fitting methods. In the first, Method (b),
V and W are treated as free parameters and f{r)
is fixed as the electron scattering shape of Eq. (3).
The resulting parameters are in the second row
of Table L In the second [labeled Method (c) in
the figures] V, W, and the z parameter of Eq. (3)
are allowed to vary. The third row of Table I
gives the parameters in this case. The least-
squares fitting procedure used in obtaining the pa-
rameters is designed to allow for the over-all 20%
uncertainty in the absolute value of the cross sec-
tion, ' as well as the statistical uncertainty in the
cross section measured at each angle. "Method (b)
improves significantly the agreement with experi-
ment as can be seen in Table I, and Method (c)
results in further improvement. As is shown in
Fig. 1, the agreement of Method (c) with experi-
ment is very acceptable. In Table I, we give the
value of the rms radius of f(r) and the volume in-
tegral of f(r) as these quantities are commonly
determined by optical-model analysis of low-ener-

gy experiments.
In Fig. 2, we show the cross section calculated

from the optical-model potential of Method (c) us-
ing both Dirac and IQein-Gordon equations for the
partial-wave analysis. These independent calcula-
tions agree very well as mentioned previously. "
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For comparison, the eikonal-approximation cross
section for this optical-model potential has been
calculated. In the forward direction, at angles
beyond the Coulomb interference region, "the ei-
konal approximation agrees well with the exact
result; however, the distortion of the wave im-
plicit in the partial-wave analysis clearly results
in a filling in of the diffraction minima. We note
that essentially the same behavior is exhibited
when the calculations are repeated using a scalar
optical potential found using Method (c) to fit the
data. In this case, the Dirac cross sections lie

FIG. 1. The differential cross section in the center-of-
mass system for elastic p-4He scattering at incident lab
momentum 1,696 GeV/c. The dashed curve is the result
of Method (a), and the solid curve is the result of Meth-
od (c). The potential is taken to be the fourth component
of a four-vector. The experiemental cross sections are
from Ref. 1;.

TABLE IQ. Parameters used in the optical-model potential for P —89 elastic scattering at 1.696 GeV/c incident lab
momentum. The experimental reaction cross section is given by Igo et al. as 296+50 mb. The optical potential is taken
to be the fourth component of a four-vector for the first three rows, and a scalar for the 1ast row.

V
(MeV) (Mev) (fm)

rms radius Volume integral
(fm) (fm3) Oz (mb) y /deg freedom

10.31
13.69
12,90
19.52

-51.56
-51.66
-61.88
-97.63

1.82 1.60
1.82 1.60
1.763 1.60
1.82 1.60

2.703
2.703
2.618
2.703

114.14
114.14
103.75
114.14

316.3
316.1
317.1
318.0

4.1
4.0
3.3
4.0

1.38
1.34
1.24
1.37
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slightly above the Klein-Gordon cross sections
for large angles.

In the case of C and 0, the simple model pro-
duces quite good agreement with experiment. In
these calculations, we use the charge density de-
termined from electron scattering' given by

p(r) = sofa, (r)
(4)

f„„(r)= (1+nr'/ft')e """',
with cy =1.12, g =1.71 fm for "C and e =1.6, A
=1.82 fm for ~ O. The results of these calcula-
tions are shown in Figs. 3 and 4. Applying Meth-
od (b), and allowing V and W to be determined by
fitting the data, we improve the fit to experiment;
the results are given in Tables II and III. In Figs.
3 and 4, we also show the phenomenological fit to
the data obtained when the shape parameter R is
allowed to vary as well as V and W, Method (c).
For C and 0, the shape functions needed to fjt
the data are not very different from the charge
distributions from electron scattering. This is
reasonable, as one would not expect correlation
or recoil effects to be as important for these nu-
clei as for the 'He nucleus. The calculations of
Feshbach, Gal, and Huffner" for 'He and "Q, and

Kujawski" for 'He, "C, and "O indicate that this
is the case. %'e have used these potentials in the
eikonal approximation and find the same behavior
as for the P-'He case, and we find the same kind
of agreement between the Dirac and Klein-Gordon
calculations.

In carbon and oxygen where the simple theory
of Eg. (1) appears to work reasonably well, the
fitting procedure adopted in Method (b) can be re-
garded as an experimental determination of n„
the real to imaginary part of the nucleon-nucleon
forward-scattering amplitude, and of an effective
average a~ in the nucleus. For oxygen, we find

0=-0 265 and err. .ff
RESULTS FOR SCALAR POTENTIAL

As in the case discussed above for p-4He, the
simple optical model of Eg. (1), modified by E/m
as discussed previously, does not fit the data well.
It would be surprising if changing the character of
the optical potential improved the agreement with
experiment, as the same reasons for the lack of
fit presumably apply to both cases. As in Method

(c), we allow V, W, and z to vary in our phenom-
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FIG. 2. The differential cross section in the center-of-
mass system for elastic p-4He scattering at incident lab
momentum 1.696 GeV/c for the potential of Eq. (1) used
in the Klein-Gordon equation (solid curve), the Dirac
equation (dashed curve), and the eikonal approximation
(dotted curve).

FIG. 3. The differential cross section in the center-of-
mass system for elastic p-~20 scattering at incident lab
momentum 1.696 GeV/c. The dashed curve is the result
of Method (a), and the solid curve is the result of Meth-
od (c). The potential is taken to be the fourth component
of a four-vector. The experimental cross sections are
from Ref. 1.
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FIG. 4. The differential cross section in the center-of-
mass system for elastic p-~80 scattering at incident lab
momentum 1.696 GeV/c. The dashed curve is the result
of Method (a), and the solid curve is the result of Meth-
od (c). The potential is taken to be the fourth component
of a four-vector, The experimental cross sections are
from Ref. 1.

FIG. 5. The differential cross section in the center-of-
mass system for elastic p- He scattering at incident lab
momentum 1.696 GeV/c. The dashed curve is the result
using Method (a), and the solid curve is the result of
Method {c). The potential is taken to be a scalar. The
experimental cross sections are from Ref. 1.

enological optical potential and obtain the good fit
to the data shown in Fig, 5. The resulting param-
eters and fitting results are given in Table I.

If we calculate the differential scattering erose
section using the Vloods-Saxon scalar optical po-
tenti. al" given by Ref. t, we do not obtain a rea-
sonable fit to the data. Vfe find that the X' per
degree of freedom is 39, a. very poor fit. Figure 1
of Ref. 1 shows this optical potential to fit the data
well. %e feel that this discrepancy xQay be due to
different treatment of recoil effects in the two cal-
culations. The Klein-Gordon equation is intrinsi-
cally a one-body equation, and thus there is no x'e-

coil taken into account, and we use the proton
mass ln oux' calculations. If the x'educed mass Qf

the p-'He system is used in an attempt to include
recoil effects, then a repeat of the calculation with
this modification results in reducing the X' per de-
gree of freedom from 39 to 22. Although this is an
improvement, we still do not obtain the quality of
fit with this shape which was obtained in Ref. 1.

In the case of "C and "0, the simple optical

model of Eq. (1), modified by E/m, does fit the
data weQ. Just as in the case of the vector poten-
tial, the shape function needed to fit the data is not
very different from xesults given by electron scat-
tering. When the %oods-Saxon potential, with the
parameters given in Ref. 1 is used, we obtain good
agreement with experiment; for ~C the g' per de-
gree of freedom is S.4, and for MQ, the X' per de-
gree of freedom is 5.2. At this level. of analysis,
either the Woods-Saxon or harmonic-oscillator
shape function is acceptable.

%e come to substantially the same conclusion as
that of Ref. 1 regarding the use of the simple opti-
cal model in analyzing proton scattering experi-
ments at intermediate energies. Vfe emphasize
that at these energies accurate information about
the nucleon distribution requires partial-wave
analy 818.
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