¹⁶S. A. Hjorth, H. Ryde, K. A. Hagemann, G. Løvhøiden,

and J. C. Waddington, Nucl. Phys. A144, 513 (1970). ¹⁷S. Wahlborn and R. K. Gupta, Phys. Letters 40B, 27

(1972).

- ¹⁸F. S. Stephens and R. S. Simon, Nucl. Phys. <u>A183</u>, 257 (1972).
- ¹⁹J. R. Erskine, Phys. Rev. 138, B66 (1964).
- ²⁰P. J. Daly, P. Kleinheinz, and R. F. Casten, to be published.
- ²¹R. T. Brockmeier, S. Wahlborn, E. J. Seppi, and
- F. Boehm, Nucl. Phys. 63, 102 (1964).
- ²²R. F. Casten, P. Kleinheinz, P. J. Daly, and B. Elbek, Phys. Rev. C 3, 1271 (1971).
- ²³C. Gunther, P. Kleinheinz, R. F. Casten, and B. Elbek, Nucl. Phys. A172, 273 (1971).
- ²⁴J. V. Maher, J. R. Erskine, A. M. Friedman, R. H. Siemssen, and J. P. Schiffer, Phys. Rev. C 5, 1380 (1972).
- ²⁵R. F. Casten and O. Hansen, to be published.
- ²⁶A. H. Kukoč, B. Singh, J. D. King, and H. W. Taylor, Nucl. Phys. A143, 545 (1972).
- ²⁷P. J. Daly and S. W. Yates, Bull. Am. Phys. Soc. 17,
- 29 (1972); and private communication.
- ²⁸P. J. Daly, private communication.
- ²⁹I. Hamamoto, private communication.
- ³⁰J. D. Immele and G. L. Struble, Nucl. Phys. <u>A187</u>,
- 459 (1972); J. D. Immele, private communication. ³¹I. Hamamoto, Nucl. Phys. A177, 484 (1971); and private communication.
- ³²F. A. Rickey, Jr., and R. K. Sheline, Phys. Rev. <u>170</u>, 1157 (1968); M. N. Vergnes and R. K. Sheline, *ibid*. 132,
- 1736 (1963).
- ³³P. Manfrass, A. Andreeff, R. Kästner, W. Bonda-

renko, N. Kramer, and P. Prokofjew, Nucl. Phys. A102, 563 (1967).

- ³⁴P. Alexander and R. S. Hager, Phys. Rev. <u>139</u>, B288 (1965); V. Hönig, K. E. G. Löbner, and M. Vetter, Nucl. Phys. 86, 657 (1966).
- ³⁵R. R. Spencer and K. T. Faler, Phys. Rev. 155, 1301 (1967).
- ³⁶C. Samour, J. Julien, R. N. Alves, S. de Barros, and J. Morgenstern, Nucl. Phys. A123, 581 (1969).

- ³⁷A. Namenson and H. H. Bolotin, Phys. Rev. 158, 1206 (1967).
- ³⁸G. Alenius, S. E. Arnell, C. Schale, and E. Wallander, Nucl. Phys. A186, 209 (1972).
- ³⁹M. Beer, O. A. Wasson, and R. Chrien, private communication.
- ⁴⁰R. F. Casten and W. R. Kane, Bull. Am. Phys. Soc. 17, 17 (1972). ⁴¹W. R. Kane, D. Gardner, T. Brown, A. Kevey,
- E. der Mateosian, G. T. Emery, W. Gelletly, M. A. J.
- Mariscotti, and I. Schröder, in Proceedings of the In-
- ternational Symposium on Neutron Capture Gamma Ray
- Spectroscopy, Studsvik, 11-15 August, 1969 (International Atomic Energy Agency, Vienna, 1969), p. 105.
- ⁴²M. A. J. Mariscotti, Nucl. Instr. Methods 50, 309 (1967).
- ⁴³R. F. Casten, P. W. Keaton, Jr., and G. P. Lawrence, Phys. Rev., to be published.
- ⁴⁴R. R. Spencer, K. T. Faler, and R. A. Harlan, Phys. Rev. 175, 1495 (1967).
- ⁴⁵G. Alaga, K. Alder, A. Bohr, and B. R. Mottelson, Kgl. Danske Videnskab. Selskab, Mat.-Fys. Medd. 29, No. 9 (1955).
- ⁴⁶K. Neergaard and P. Vogel, Nucl. Phys. A145, 33 (1970).
- ⁴⁷F. Stecher-Rasmussen, J. Kopecky, K. Abrahams, and W. Ratynski, Nucl. Phys. A181, 250 (1972).
- 48 It is important to note that, in both 179 Hf and 183 W, the observed and calculated (d, p) cross sections to all states below 1400 keV agree (see Ref. 6 and 32) to within experimental errors: This applies individually to the l = 1transitions as well. Thus the adequacy of the distortedwave Born-approximation calculations is demonstrated, or, at least, any questions of optical-model-parameter dependence are unimportant. The present results could be discussed equally in terms of double ratios of experimental to calculated cross sections at high and low excitation energies. The Q dependence of different distortedwave Born-approximation calculations is very similar even if the absolute cross sections are not.
- ⁴⁹C. J. Gallagher and S. A. Moszkowski, Phys. Rev. 111, 1282 (1958).

PHYSICAL REVIEW C

VOLUME 7, NUMBER 1

JANUARY 1973

Study of ⁹⁵Nb by Means of the 94 Zr(3 He, d) Reaction*

L. R. Medsker and J. L. Yntema Argonne National Laboratory, Argonne, Illinois 60439 (Received 27 July 1972)

The 94 Zr(3 He, d) 95 Nb reaction was studied with 35.6-MeV 3 He particles from the Argonne cyclotron. Experimental angular distributions are compared with distorted-wave Born-approximation calculations to determine l values and spectroscopic factors. The results are compared with the previous data on (³He, d) and (d, ³He) reactions and β decay. The proton configurations of ⁹⁵Nb are discussed in terms of this data and recent theoretical results.

I. INTRODUCTION

The proton structure of $N \approx 50$ nuclei has been studied extensively. In the case of ⁹⁵Nb, only four states have been observed¹ from ⁹⁵Zr decay. The reported results²⁻⁴ of pickup and stripping reactions reveal the existence of several unresolved doublets, and the spin assignments are consequent-

FIG. 1. Typical deuteron spectrum from the 94 Zr(³He, d)⁹⁵Nb reaction at $\theta_{lab} = 19^{\circ}$.

FIG. 2. Angular distribution of the deuterons leading to the ground state in the ${}^{94}Zr({}^{3}He, d){}^{95}Nb$ reaction. The solid line is the DWBA calculation for an l = 4 transfer.

ly uncertain. It seems of value, then, to reexamine ⁹⁵Nb by means of the (³He, *d*) reaction with improved energy resolution. More definite spin assignments and a more accurate determination of spectroscopic factors should facilitate the study of shell-model systematics in the regions away from the N=50 closed shell.

II. EXPERIMENTAL PROCEDURE

The 35.6-MeV ³He beam from the Argonne cyclotron was used to obtain deuteron spectra at 12 angles between 8 and 37°. The outgoing deuterons were momentum-analyzed with a split-pole magnetic spectrograph, and spectra were recorded on Kodak NTB emulsion plates. The exposed plates were scanned by a computer-controlled plate scanner.⁵ The target, which was made by evaporation onto a carbon backing, had a thickness of 100 μ g/cm² and was enriched to 96.28% in ⁹⁴Zr. The over-all resolution of the system was 35 keV full width at half maximum (FWHM). A typical spectrum is shown in Fig. 1.

The data were analyzed with the program $AUTOFIT^6$ in order to obtain excitation energies $(\pm 0.008 \text{ keV})$ and relative cross sections. The measured angular distributions were compared with distorted-wave calculations in which the optical-model parameters listed in Table I were used

TABLE I. Optical-model parameters used in DWBA calculations of ${}^{94}\text{Zr}({}^{3}\text{He}, d){}^{95}\text{Nb}$.

	³ He	d	Bound-state particle
V (MeV)	172	97.2	
r_0 (fm)	1.14	1.12	1.2
a (fm)	0.72	0.8	0.65
W (MeV)	17	• 0	
W_D (MeV)	0	12.8	
r'_0 (fm)	1.55	1.31	
<i>a'</i> (fm)	0.8	0.79	
r_c (fm)	1.4	1.3	1.4
V _{so} (MeV)	0	7	$\lambda = 25$

FIG. 3. Angular distributions for five levels excited by l = 1 transfer in the ${}^{94}\text{Zr}({}^{3}\text{He}, d){}^{95}\text{Nb}$ reaction. The solid curves are results of the DWBA calculations.

in the program DWUCK.⁷ The spectroscopic strengths $G_{ij} = [(2J_j + 1)/(2J_i + 1)]C^2S_{ij}$ were de-rived from the differential cross sections by use of the expression

$$d\sigma/d\Omega = 4.42 G_{ij} \sigma_{\text{DWUCK}} / (2j+1),$$

where J_i , J_j , and j are the total angular momenta of the target nucleus, the residual nucleus, and the transferred proton, respectively. The measured angular distributions were normalized to the calculations by requiring that $G_{1j} = 7.8$ for the groundstate transition, as previously measured.⁴

III. RESULTS AND DISCUSSION

With the improved energy resolution obtained in the present experiment, l values were assigned to the angular distributions of previously unresolved levels and of several newly reported levels. The results for all of the well resolved levels are shown in Figs. 2-4 and Table II.

The ground state and the first excited state at 0.236 MeV are reached by strong l=4 and l=1 transfers, respectively. This is consistent with shell-model systematics if the $1g_{9/2}$ and $2p_{1/2}$

TABLE II. Levels observed in 95 Nb with the 94 Zr- $(^{3}$ He, d) reaction. The uncertainty in the excitation energies is ± 0.008 MeV.

E _{exc}			
(MeV)	l	J^{π}	G _{lj}
0	4	9 + 2	7.8
0.236	1	$\frac{1}{2}$	0.6
0.728	2	$(\frac{1}{2}, \frac{5}{2})^+$	0.84
0.799	1	$(\frac{1}{2}, \frac{3}{2})^{-}$	0.24
1.223	1	$(\frac{1}{2}, \frac{3}{2})^{-}$	0.08
1.274	1	$(\frac{1}{2}, \frac{3}{2})^{-}$	0.10
1,590	2	$(\frac{3}{2}, \frac{5}{2})^+$	0,18
1.645	(1)	$(\frac{1}{2}, \frac{3}{2})$	(0.14)
1.810	2	$(\frac{3}{2}, \frac{5}{2})^+$	0.36
1.913	2	$(\frac{3}{2}, \frac{5}{2})^+$	0.24
2,070	2	$(\frac{3}{2}, \frac{5}{2})^+$	0.36
2.121	2	$(\frac{3}{2}, \frac{5}{2})^+$	0.42
2.165	2	$(\frac{3}{2}, \frac{5}{2})^+$	0.72
2.373	(0)	$(\frac{1^{+}}{2})$	(0.06)
2.406	(0,2)	$(\frac{1^+}{2}, \frac{5^+}{2})$	(0.06, 0.12)
2.431	(2)	$(\frac{3^+}{2}, \frac{5^+}{2})$	(0.18)
2.967	2	$(\frac{3}{2}, \frac{5}{2})^+$	0.30

orbitals are being filled. This result was also found from earlier (³He, d), (d, ³He), and ⁹⁵Zrdecay experiments. No evidence for another l=4transition was found in the present measurement. The remaining l=1 strength is found to be distributed among four states at 0.799, 1.223, 1.274, and 1.645 MeV. These l=1 angular distributions are shown in Fig. 3. From previous (d, ³He) studies,² the 0.77- and 1.22-MeV levels were assigned $\frac{3}{2}$ on the basis of l=1 pickups of $2p_{3/2}$ protons.

Nine levels below 3 MeV were excited by means of l=2 transitions. The angular distributions of all except the weak state at 2.431 MeV are shown

in Fig. 4. Most of the l=2 strength is divided between the 0.728- and 2.165-MeV levels.

Evidence for l=0 transfers was found for weak states at 2.373 and 2.406 MeV. Because only a few data points were obtained, the angular distributions are not shown.

The results of the present work modify several conclusions from previous experiments. No evidence was found for the possible $\frac{7+}{2}$ states at 0.726 and 0.757 MeV reported from 95 Zr decay. These states may have a more complex configuration not expected to be observed with the (³He, d) reaction. However, a $\frac{5+}{2}$ assignment for the 0.726-MeV level is consistent with both the β decay and

FIG. 4. Angular distributions for eight levels excited in the 94 Zr(3 He,d) 95 Nb reaction. The solid curves are results of the DWBA calculations for l = 2 transfers.

the present results. No evidence was found for the 0.98-MeV $\frac{5}{2}$ level reported from previous (³He, d) and (d, ³He) experiments. The (d, ³He) results indicate that this state arises from the filled $1f_{5/2}$ orbital in ⁹⁴Zr and therefore should not be strongly excited in the (³He, d) reaction.

The levels observed in β decay, $(d, {}^{3}\text{He})$, and the present (${}^{3}\text{He}$, d) experiments are compared in Fig. 5 along with the shell-model level scheme calculated recently⁸ on the assumption that ${}^{95}\text{Nb}$ consists of an ${}^{88}\text{Sr}$ core plus two protons and five neutrons. The matrix elements for the residual interactions were derived by use of fits to data for neighboring nuclei. Some of these levels were also predicted in earlier calculations.^{9,10} Although this method has proved reasonably effective for nuclei near the N = 50 closed shell, the accuracy of the model might be expected to deteriorate for ⁹⁵Nb. The calculations show that this nucleus is indeed quite complex because of the interactions of the five neutrons outside the closed shell. In particular, the prediction of thirteen states with $J^{\pi} = \frac{1}{2}^{-}$ or $\frac{3}{2}^{-}$ is consistent with the present experimental observation that the l=1strength is divided among at least five states. Likewise, 18 states with $J^{\pi} = \frac{3}{2}^{+}$ or $\frac{5}{2}^{+}$ are predicted, while ten states are reached by l=2 transfers in the present work.

FIG. 5. Energy-level schemes of 95 Nb as deduced from β decay, $(d, {}^{3}$ He), and $({}^{3}$ He, d) experiments. These results are compared to the predictions from shell-model calculations.

ACKNOWLEDGMENTS

The technical assistance of J. Bicek and the cooperation of the cyclotron group are gratefully acknowledged. The helpful discussions with D. Gloeckner and his communication of calculations prior to publication are appreciated.

*Work performed under the auspices of the U.S. Atomic Energy Commission.

 1 L. R. Medsker and D. J. Horen, Nucl. Data <u>B8</u> No. 1 (1972).

²H. Ohnuma and J. L. Yntema, Phys. Rev. <u>176</u>, 1416 (1968).

³M. R. Cates, J. B. Ball, and E. Newman, Phys. Rev. <u>187</u>, 1682 (1969).

⁴H. Ohnuma and J. L. Yntema, Phys. Rev. <u>179</u>, 1211 (1969). ⁶J. R. Comfort, Argonne National Laboratory Physics Division Informal Report No. PHY-1970B (unpublished).

⁷We are grateful to Dr. P. D. Kunz for making this program available to us.

⁸D. Gloeckner, private communication.

- ⁹K. H. Bhatt and J. B. Ball, Nucl. Phys. 63, 286 (1965).
- ¹⁰J. Vervier, Nucl. Phys. <u>75</u>, 17 (1965).

PHYSICAL REVIEW C

VOLUME 7, NUMBER 1

JANUARY 1973

Study of ⁹³Nb Levels with the ⁹⁶Mo(p, α)⁹³Nb Reaction

Yong Sook Park, H. D. Jones, and D. E. Bainum

U.S. Army Ballistic Research Laboratories, Aberdeen Proving Ground, Maryland 21005 (Received 7 September 1972)

Levels of ⁹³Nb have been studied with the ⁹⁶Mo(p, α) reaction at 15-MeV incident energy. Angular distributions for transitions to a dozen prominent levels below 2 MeV have been measured with 30- to 40-keV experimental resolution over $15^{\circ} \le \theta_L \le 150^{\circ}$, and they have been compared with distorted-wave Born-approximation (DWBA) calculations. Angular distributions for $p - {}^{96}Mo$ and $\alpha - {}^{93}Nb$ elastic scattering have also been measured, and proton and α -optical-model potential parameter sets have been determined by a search procedure. Of the three sets of α -potential parameters, the one which best reproduced the measured (p, α) angular distributions of known low-lying levels in ⁹³Nb was chosen as the standard set for the rest of the (p, α) calculations. The conventional triton-cluster form factor was used exclusively for the (p, α) DWBA calculations which lead to J^{π} assignments. A semimicroscopic form factor was used in a few test cases in order to check the sensitivity of calculations to the choice of form factor. Reliable J^{π} assignments have been made for levels below 1.5 MeV based on the j dependence for $l = 1(p, \alpha)$ transfers, as well as for higher angular momentum transfers observed in the present work; and they are in excellent agreement with those determined from recent Coulomb-excitation and 90 Zr $(\alpha, p\gamma)$ works. Dominant three-nucleon shell-model configurations to which the levels of interest belong have been proposed.

I. INTRODUCTION

Low-lying levels in ⁹³Nb have been studied extensively in recent years by a number of authors with ⁹³Nb($n, n'\gamma$) inelastic scattering.^{1, 2} Owing to the complex scheme inherent to γ -decay modes, however, only a few consistent J^{π} assignments are found among these works. Recently a major discrepancy in spin assignments for low-lying positive-parity states has been resolved by Stelson *et al.*³ via Coulomb excitation, the results of which are well described within the framework of a weak-coupling model in which 92 Zr is treated as a core. The more recent Coulomb-excitation work by Kreger and Seaman,⁴ however, proposed tentative spin assignments for levels at 809, 950, and 979 keV which differ from those made by Stelson *et al.*³

The level scheme of ⁹³Nb has been studied extensively in the past by several theoretical groups⁵ on the basis of a shell model in which ⁸⁶Sr is treated as the core. On the other hand, experimental spectroscopic studies of the levels via direct reactions have been limited to a few proton

⁵J. R. Erskine and R. H. Vonderohe, Nucl. Instr. Methods 81, 221 (1970).