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Skyrme's interaction is used in deformed Hartree-Fock calculations of some light and rare-
earth nuclei. A method of solution is presented, which exploits as much as possible the sim-
ple features of the Skyrme force in order to allow calculations of heavy deformed nuclei. In

the rare-earth region pairing correlations are taken into account in a simplified but self-con-
sistent way by considering energy functionals depending also on occupation probabilities.
Calculations have been made for the two parameter sets which were used in a previous study
of double-closed-shell nuclei. The set providing the best fit to ground-state properties of
spherical nuclei is also found to give a satisfactory description of nuclear deformations.
Comparison is made with other available Hartree-Fock calculations in the case of light nu-

clei, and a discussion of the importance of various terms in the effective force upo»«&ear
deformations is given.

I. INTRODUCTION

Skyrme's interaction' has been shown in a pre-
vious paper' to give a very good description of
ground-state properties of spherical nuclei in the
Har tree-Pock approximation. In particular re-
markable fits to binding energies, radii, and elas-
tic electron scattering cross sections have been
obtained. Also, single-particle level densities
near the Fermi level were found to be reasonably
close to the observed ones. Such an agreement

has been shown to be related to the density depen-
dence of the Skyrme force. Similar results were
indeed obtained from other density-dependent ef-
fective forces' and from realistic Brueckner-
Hartree-Pock calculations in the local density ap-
proximation. '

The purpose of this paper is to extend our pre-
vious investigations to deformed nuclei. As com-
pared to earlier studies of nuclear deformations
in the framework of the Hartree-Pock theory, the

present calculations wi11 be shown to achieve at
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least one significant improvement. Indeed, while
available Hartree-Fock calculations of deformed
nuclei have been restricted to light nuclei, ' "we
will see that, thanks to its computational simplic-
ity, the Skyrme force allows studies of nuclear
deformations in the rare-earth region, where the
validity of the rotational model is best established.

From the Nilsson model, "equilibrium shapes
of nuclei are known to be extremely sensitive to
level spacings. Since single-particle spectra ob-
tained from the Skyrme force are among the clos-
est to the experimental ones in Hartree-Fock cal-
culations, one may hope that this interaction,
which was adjusted to properties of some doubly-
closed-shell nuclei, will also give a reasonable
description of nuclear deformations. In such case,
the use of the Skyrme force in Hartree-Fock cal-
culations would provide a powerful and rather re-
liable tool to extrapolate to properties of nuclei
far off the stability line and to superheavy nuclei.

Let us also recall that the parameters of
Skyrme's interaction may be related to realistic
reaction matrices by means of an expansion for
the density matrix. " Calculations of the present
type may therefore appear as a first step towards
a description of deformations in the region of
heavy nuclei based on a realistic nucleon-nuclecn
force.

In Sec. II a summary of the basic equations to be
solved is given, and an outline of the method of
solution is presented in the most general case of
nonaxial deformations. To take advantage of the
simplicity of the Hartree-Fock equations for
Skyrme's interaction this method uses two dif-
ferent representations during the iteration pro-
cedure. The average field is evaluated from the
wave functions in coordinate space while the solu-
tion of the deformed Schrodinger equation is car-
ried out in an oscillator basis. In the case of
even-even nuclei the Hartree-Fock equations have
solutions with axial symmetry, which results in
the elimination of the azimuthal variable. This
reduction is made in Sec. III where some invari-
ance properties of the Hartree-Fock equations
are also discussed. The particular type of non-
locality of the average field encountered for
Skyrme's interaction allows a solution of the de-
formed Schrodinger equation by a straightforward
extension of the method of Damgaard et a/. " An
outline of this method is given in Sec. IV where its
extension to the present case of a radius-depen-
dent effective mass is also described. In Sec. V
a reconstruction of densities in the coordinate
space from the oscillator expansion coefficients
is made since the evaluation of the Hartree-Fock
field is most easily carried out in this representa-
tion. In Sec. VI a formula suitable for a numeri-

cal calculation of the Coulomb potential in config-
uration space is derived, while the problem of
pairing effects is treated in Sec. VII. These ef-
fects are included by considering energy function-
als which depend on occupation probabilities. Gen-
eral properties of such functionals are investigated
and it is shown in particular that any given occupa-
tion-probability distribution may be derived. from
a variational principle. The solution of this prob-
lem is found to depend on an arbitrary function.
This degree of freedom is used to construct the
simplest possible set of equations, namely a set
of Hartree-Fock plus BCS equations" with a con-
,stant gap.

Results for some light and rare-earth nuclei,
obtained from the two different forces already
used in Ref. 2, are presented and discussed in
Sec. VIII. In the case of light nuclei, comparison
is made with results of other Hartree-Fock calcu-
lations. The convergence of the oscillator expan-
sion is also discussed and the influence of various
terms in the effective force upon nuclear deforma-
tions is investigated.

II. HARTREE-FOCK EQUATIONS

&„(R)= t.[(1+l ~.)p-(&.+ ')P.)+ 'I Pp(-p+P. }-
——,'(2t, —t,)v'p+ y(2t, + t,)v'p„

+ ,'(t, + t,)~+ 8 (t, —t,)v-„——,'W, (divJ+ divJ„). ,

(2.2a)

I'2 I'2
+ ,'(t, + t,)p+8 (t, ——t,)p„, (2.2b)

w„(&) = -'.w, (p+ p„) . (2.2c)

The system of Hartree-Fock equations for the
Skyrme interaction was derived in Ref. 2 assum-
ing time-reversal invariance only. Since no as-
sumption was made concerning the shape of the
system, this set of equations is also valid in the
case of a deformed nucleus. Neglecting the small
contribution of the central force to the one-body
spin-orbit potential, as was justified in Ref. 2,
the Hartree-Fock equations for the single-parti-
cle wave functions 4,(R, rr, q}, where R, cr, and q
denote the space, spin, and isospin coordinates of
one nucleon, respectively, may be written as

2

2rrt +(R)
-v - v+Ir(R)+vW(R} (-t)(vxo) 4 =e.e, .i

(2.1)

In Eq. (2.1) the effective mass and the central-
and spin-orbit potentials in the case of a neutron
state are given by
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The corresponding equations for a proton state
are obtained by interchanging the indices n and p
in Eqs. (2.2), and by adding to the central field
(2.2a) the Coulomb field

V,(R) =.'j d R
""
R —R' (2.3)

TABLE I. Numerical values of the parameters to
(MeVfm ), t1 (M Vfm ), t2 (MeVfm ), t3 (MeV fm ), W'0

(MeV fms), and xo corr esponding to interactions I and
II of Ref. 2. The value of the effective mass m*/m in
infinite nuclear matter is also given.

I -1057.3 235.9 -100 14463.5 0.56 120 0.911

II -1169.9 585.6 -27.1 9331.1 0.34 105 0.580

As in the ca.lculations we made in Ref. 2 for spheri-
cal nuclei, the Coulomb exchange term has been
neglected. The nucleon densities p„(R), p~(R); the
Idnetic energy densities ~„(R), r~(R); and the spin
densities S„(R), J~(R) appearing in Eqs. (2.2) were
defined in Ref. 2, and the constants to, t„ t„ t„
xo, W'0 are the parameters of the Skyrme force.
In Ref, 2 me constructed tmo different sets of pa-
rameters denoted by I and II, which are listed
for completeness in Table I. These were shown
to give similar results for binding energies and
radii of spherical nuclei, but rather different pre-
dictions concerning 1g-proton levels due to differ-
ent values of the effective mass m*/m in nuclear
matter, i.e., as may be seen from Eq. (2.1), dif-
ferent nonlocalities in the average nuclear field.

For spherical nuclei the previous set of equa-
tions mas solved through the usual iteration pro-
cedure which conta1ns tmo d18tlnct steps. A f1x'st

one is to solve the Schrodinger equation corre-
sponding to given values of the effective mass 5'/
2m*, of the potential U and of the one-body spin-
orbit potential W. The second step consists in
evaluating these quantities from the wave func-
tions 4, . This whole procedure was carried out
in coordinate space in Ref. 2, since it is the most
convenient representation to exploit the simplicity
of the algebraic relations (2.2) between the poten-
tial and the densities. Also, the Schrodinger equa-
tion (2, 1) reduces in this latter case to a radial
differential equation. In the case of deformed nu-
clei, however, the situation is more complicated
since solving a deformed Schrodinger equation in
coordinate space is a difficult problem. " On the
other hand, the evaluation of the average field
from Eqs. (2.2) is most efficiently carried out in
this representation, mhereas the use of an oscil-

III. CASE OF AXIALLY DEFORMED
NUCLEI

In the case of even-even nuclei considered here
the Hartree-Fock equations (2.1, 2.2) have solu-
tions with axial symmetry. Assuming the symme-
try axis to be the z axis, this means that the third

component 4, of the total angular momentum is a
good quantum number for the single-particle state
4, . In other words if we denote by 0,. the eigen-
value of 8, associated with the single-particle
state i, there are solutions of the form

~;(R, c, e) =x,,(e)l:C;(~, ~)c" 'x.„.(o)

+4, (x, z)e'A "lt „,(o)], (3.1)

(3.2)

In Eq. (3.1) the quantities x, z, and y are the cy-
11ndx'1cal coox'dlnates of R:

B„=xcosy, R =x siny, R = z. (3.3)

Vfe have also assumed the Hartree-Fock states i
to be eigenstates of the third component z, of.the
isospin operator with a corresponding eigenvalue

q,. =+-,' for protons, --,' for neutrons. For such nu-

clei the system of Hartree-Pock equations can be
reduced to a system involving the variables r and

s only by substituting the ansatz (3.1) into Eqs.
(2.1) and (2.2). From the definitions given ln Ref.
2 for the nucleon and kinetic energy densities one
first obtains that these functions depend on the
coordinates r and z only. Explicitly:

p(~ ~) =Z (I @«(~ ~)l' +
I
c'g(~ ~)l'1 (3.4a)

lator basis mould introduce severe limitations as-
sociated with storage of matrix e1.ements and com-
putation time. For these reasons, the method we
have constructed uses tmo different representa-
tions fol the tmo previous steps of the lte1 at1on

procedure. The solution of the deformed Schro-
dinger equation has been carx'ied out in a deformed
oscillator basis, while the evaluation of the poten-
tial has been made in coordinate space. As an
additional step our method therefore includes a re-
construction of the densities in coordinate space
from the wave functions obtained in the oscillator
basis. Such a method is applicable to nonaxial de-
formations. However, in this present work it will
be applied to axially symmetric shapes only. Fur-
thex'more, we mill consider only reflection syrn-
metric shapes.
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r(r, z) = Q (I v e](r, *)I'+
I v.el(», z)l'

+—2IA 4~(r z)l'+ Iv„c,(r, z)l'

+
I
v e(r, z)I'+ —,Iz'e, (r, z)I') .

(3.4b)

In Eqs. (3.4) the sums run over neutron (proton)
states to obtain neutron (proton) densities. We
have used the components of the gradient opera-
tor in cylindrical coordinates

ther simplifications of Eqs. (3.4). From the defi-
nition given in Ref. 2 for the spin density J, one
has the following expression for divJ:

divJ = (-i) g V@,*(R, o, q) ~ (Vx o)4, (R, o, q) .

(3.6)

Writing the components of the operator Vxo as

eez

(-i)(Vxo)„=o,—'+-,'((Y, e '~ —o e"")V, z

ee,

(-(}(vxe),=--,'e, e '"(v, + —' ~ -', e e'r v„——'
8

V =—,ar
1 8 ilg

ray
(3.5) (vxo)~ = ';(o, e '~+ o e'~) v, o, v—„, (3.'I)

to derive the expression for r(r, z). As will be
seen later, time-reversal invariance allows fur-

and using the components (3.5) for the gradient
operator in cylindrical coordinates, expression

(3.6) reduces to

divJ(r, z) =2+ V„C;(r, z)V, C', (r, z) —V„C,(r, z) VC', ( rz)

e((r z)[v ej(r z) v e (r *}] . ej(1 z)[v e]($ ) v e (r z)]) (3.8)

Since densities depend on the coordinates r and z only, the same will hold for the effective mass and for
the central and spin-orbit potentials due to Eq. (2.2). Then inserting expressions (3.1) into Eq. (2.1) one
obtains, by means of Eq. (3.V), the following set of coupled equations for the components 4",(r, z) and
C-,.(r, z):

h h 1

+vw(r, z)(ve&+ —e; -vw(r, z} ve, +—e,. =e&e;. ,
h A+

(3.9)

—v w (, *}(ve;+—e, )+v w (,*)(ve;——e;) =,e, ,

where q stands for the charge of the single-parti-
cle state i. This step achieves the reduction of the
Hartree-Fock equations in cylindrical coordinates.

From Eqs. (3.9) one may easily observe that, if
a state C, [defined from expression (3.1) by a set
(C', 4, Qj j satisfies the Schrodinger equation (2.1),
then the state

(3.10)

also satisfies Eq. (2.1) with the same eigenvalue
e, . This property is just a consequence of time-
reversal invariance. Indeed applying to 4, the

time-reversal operator

K= -io, K, = —,'(o —o, )K„
where K, denotes the complex conjugation opera-
tor in configuration space, one concludes immedi-
ately that i is the time-reversed state associated
with i.

Contributions of time-reversed states i and i to
the densities (3.4) and (3.8) may be seen to be iden-
tical. Since we assume the set of occupied states
to be invariant under time reversal, we can use
the previous symmetry property to restrict the
sums in Eqs. (3.4) and (3.8) to positive values of
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Q„provided the total results are multiplied by a
factor 2.

A similar discussion can be made concerning
parity. If the single-particle states (3.1) are as-
sumed to be eigenstates of the parity operator one
can see that the densities (3.4) and (3.8) are reflec-
tion symmetric so that the same property holds
for the effective mass and for central and spin-
orbit potentials. In such a case only positive val-
ues of z need to be considered in the previous
equations.

set of quantum numbers

n={n„,n„/l, Z).

The eigenvalue associated with such a state is

(4.V)

F„=(2n„+~ A~+ 1)K~, + (n, + —,')K~. . (4.8)

For notational convenience we also define poly-
nomials H„and L~, which will be needed in the"z r'
evaluation of matrix elemerits, by the following
r elations:

IV. SOLUTION OF THE DEFORMED
SCHRODINGER EQUATION

v,g„(e)=N„p "'e ~ "H ($) (4.9a)

A. Definitions and Notations

The solution of the deformed Schrodinger equa-
tion with an effective mass (2.1) may be obtained
by a straightforward extension of the method
worked out by Damgaard gt al." in the case of a
local potential. In this method the unknown wave
functions 4,. are expended into eigenfunctions of
an axially deformed harmonic-oscillator potential

(4.9b)

H„($) = $H„($) —H„~,($), (4.10a)

L„h()/}) = 2(n„+ 1)Lh,~())) —(2n„+A+ 2 —q)Lh ())) .
(4.10b)

yh (r) Nh P
2 ~2'(h -I)/2L h (q)

Using the expressions for the derivatives of the
Hermite and associated Laguerre polynomials and
their recursion formulas, "one finds that

U(r, e) = ', me r + —-'m&o, e .
Introducing the oscillator constants

X2P, =h =(~~,/&)"', P, =—=(m(u, /h)"',

(4.1) Since we assume our Hartree-Fock states to be
eigenstates of the charge operator, the expan-
sion of the single-particle Hartree-Fock orbitals
is of the form

(4 2)
4, (R, o, q) =)4 (q)Q C' y„(R, o), (4.11)

and the auxiliary variables

~ = ep„))=r'p, ', (4.3)

these eigenfunctions may be written explicitly as
elhi

y„„hr(R, o) = g(r)g„(e) 2
)tr(&), (4.4)

where

f„( )=eN„P ' 'e t 'H ($) (4.5a)

~h(r) Nh p ~2 ~h/me-q/2Lh (~) (4.5b)

In Eqs. (4.5), H„($) and Lh ())) denote Hermite and
associated Laguerre polynomials, "and the corre-
sponding normalization factors are

(4.6)

From these expressions, the quantum numbers ap-
pearing in Eq. (4.4) may be interpreted as follows:
n„and n, are the number of nodes in the x and z
directions, respectively, and A and Z are the
projections on the z axis of orbital angular mo-
mentum and spin, respectively. For simplicity
a single index e will be used to denote the previous

where q; denotes the charge of the state i. Insert-
ing expression (4.11) into the Schrodinger equation
(2.1) and using the orthogonality of the basis states
we find that the expansion coefficients have to be
eigenvectors of the Hamiltonian matrix

PH'~)C's ——e, C ~,
8

where

(4.12)

5 1

e/ —v v+U +vw ~ (-i)(v&&e) p2m*

(4.13)

Now, in the case of axially deformed nuclei we
are interested in, the third component of the total
angular momentum 0 =A+Z is a good quantum
number and therefore, H ~ is block diagonal, each
block being characterized by Q. Furthermore,
since we consider only reflection symmetric
shapes, the parity w = (-1)"*'h is also a good quan-
tum number and each of the previous blocks then
falls into two submatrices characterized by val-
ues of 0 and z. Finally, due to the time-reversal
symmetry property (3.10) the Hamiltonian matrix
needs to be constructed for positive values of 0
only.
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The standard way of solving the infinite dimen-
sional problem (4.12) is to use a truncated basis,
i.e., to restrict the sum over c( in (4.11) to a sum
of N terms, this number N being in principle ulti-
mately increased until convergence for the expan-
sion coefficients is reached. In our calculations
this procedure has been carried out by including
in (4.11) all states for which the total number of
quanta in the xy plane and the z direction is less
than or equal to a certain fixed number N„ i.e.,

2n„+n, +A (No. (4.14)

As shown in Appendix A the number of such states
corresponding to a positive value of 0 is given by

N = v (No + 1}(No + 2) (No + 3) . (4.15)

In this basis the Hamiltonian matrix (4.13) splits
up into 2N, +1 submatrices associated with posi-
tive values of 0 and 2N, +1 submatrices associated
with negative values of A. The largest blocks cor-
respond to 0 =+, p =+1 and have a dimension of
(N, + 2)'/4 (N, even). For storage purposes and

evaluation of computation times in numerical ap-
plications, it is also convenient to know the num-
ber F(N0) of nonvanishing matrix elements in H„8
corresponding to Q &0. This number is shown in
Appendix A to be

F(N()) = z()(NO+ 2) (NO + 2ND + 2)(N02+ 6NO+ 10) .

(4.16)

In order to allow investigations of truncation ef-
fects, the code we have constructed can include a
total number of 15 major shells, i.e., N0 ~ 14.
However, since computation times increase quite
rapidly with N„calculations have been restricted
to V, 8.

B. Choice of the Oscillator Parameters

P, = (m(o, /g)'i', (d, = (u) 2(o,)'i'. (4.1'I)

Indeed, for given values of the expansion coeffi-
cients in Eq. (4.11), it may be readily seen from
Eqs. (10) and (12) of Ref. 2 that the total energy
is a polynomial of sixth degree in P„whose coef-
ficients may be readily evaluated. Therefore, at
the end of each iteration in the numerical solution,
the value of P, may be readjusted so as to simul-
taneously minimize with respect to the volume os-
cillator parameter.

In the case of the deformation parameter

/(g)i(=g)g8i )/Pg z (4.18)

the previous minimization procedure has been car-
ried out numerically, using a 0.1-step and a three-
point interpolation formula in the neighborhood of
the minimum.

Truncation effects in the case of an expansion
into the basis vectors (4.4} depend on the shape of
the nucleus: As was noted by Damgaard et aL,"
the mixing of the basis states is largest for spheri-
cal nuclei, while for deformed nuclei, expansion
(4.11) may involve only a few relevant components.
The previous effects also depend critically upon
the choice of the oscillator parameters and it was
shown by Tuerpe, Bassichis, and Kerman' that it
is rather crucial to minimize the total energy
with respect to both oscillator parameters P, and

pi. In particular these authors find that their re-
sults in iron-52 with a No = 6 spherical basis may
be reproduced in a N, =4 deformed basis alone'

with parameters chosen by minimizing total en-
ergy with respect to P, and P~. For this reason,
in all calculations presented here, this minimiza-
tion procedure has been carried out.

Such a procedure may be performed in a very
simple way for the volume parameter

C. Calculation of Matrix Elements

The solution of the Schrodinger equation involves as an intermediate step a calculation of the matrix ele-
ments (4.13) from the effective mass 8'/2m*(r, z) and from the central and spin-orbit potentials U(r, z) and
W(r, z), respectively Integratin. g by parts, the matrix element for the kinetic energy term becomes

~ ~

2 I
o. —V ~ „( }

V p =g d'R
2 „( }

Vy*(R, (7) ~ Vys(5, o).
0

(4.19)

Using the components (3.5) of the gradient operator in cylindrical coordinates, the right-hand side of Eq.
(4.19) may be written as

+ oo I'
5~A, 5zz, rdr dz „V,g„(z}V,J„,(z)g„(r)JA, (r)

0 pl rz 'z

AA'
r(„(z)(„(z)&,(„"(r)Z,(„",(r) ~, 1) .(z)( ;(z)t)'(r)1).„„",(r))„. „(4.20)
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In Eq. (4.20} the quantum numbers c(=n„n,AZ and p—= n„'n,'A'Z' have been written explicitly. Finally using
the definitions (4.5) and (4.9) one obtains the following expression:

+ oo p+ ()o

A-s
5)(~ 6zzrN„N„N„N„dqq e " e ~ d$

0 4

x }p',&„,(6)&„,(4)L„'„(q)fA (q) xq+p, '&„,(0)&.;(0) [&'„„(q)L.''„(q)+&A'L.'„(q)L.'„(q)B 2 „(b . b )

(4.21)

where b, and bi are defined by Eq. (4.2).
Since the matrix elements for a central and for a spin-orbit potential have been evaluated by Damgaard

et gl." this calculation wiQ not be repeated here and we will just give the final expressions using our no-
tations for completeness. For a central potential it is found that the matrix elements are given by

{ni VIP& =5„,5„,N„,N„, N„'N„", dqq'e ~ e ~'d~a„(~)H„, (~)1'„(q).L, '„,'(q)V(b, q'", b.g).
0 ~ OO

(4.22)

For a spin-orbit potential the corresponding expression is a little more complicated since such a potential
mixes states with different values of Z. The result, which can be obtained from Eqs. (3.9) is

(a( Frw-(vz) (,iver)l()) =v„,N„,WANA~ f e ' d( J e "qM '-""dq'

+(1 —5„,)P,P,q"'(8 „(()a„;(])I.„"(q)[(A' W)LA'(q-)'+~'I „",(q)]

+ j7„,,(()e„(()r.„",'(g)[(w a')I.„'(n) ~ aI.„",(n-))})w(bq"'5(). , , ,

(4.23}

In practice the integrations in Eqs. (4.21)-(4.23) have been carried out as in Ref. 18 by means of 20 points
Gauss-Hermite and 10 points Gauss-Laguerre quadrature formulas. Denoting by $~ and q, the correspond-
ing integration points, respectively, the solution of the Schrodinger equation therefore just requires the
knowledge of the quantities 5'/2m", fJ and W at the mesh points

z~=b, )~, r, =b~q, 1/2 (4.24)

Since we consider only reflection symmetric shapes, only positive values of z~ need in fact to be stored
and one is left in this case with a total of 100 mesh points only.

V. RECONSTRUCTION OF DENSITIES
IN COORDINATE SPACE

To calculate the average field from the wave functions by means of Eqs. (2.2) it is necessary to evaluate
first the nucleon and kinetic energy densities p(r, z) and r(r, z) and also the functions divJ(r, z) and v p(r, z)
at the mesh points (4.24). For the first three quantities this can be readily achieved by means of Eqs. (3.4)
and (3.8) from the following expressions for C';, V„C';, V, C)', in terms of the expansion coefficients (4.11):

Z 5z) v(. 5((((~~a Nngn„q Hn, ($)f n„(q} i

(5.1b)

VgCi(ri z) Pg Pi e Q 5z&u251(A~C„N~ N„" q H„($)L„(q) .
fX

(5.1c)
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The evaluation of the function V'p(r, z} can be carried out in a similar way by means of the relation

v'p{r, z) = 2r{r, z) + 2g e,*. v'e,

=2r(r, z)+4 g (4;(r, z)[V'- (A )'/r ]4', (r, z) +4, (r, z)[V'-(A')'/r']4, (r, z)].
f&0

(5.2)

In Eq. (5.2) the notation i &0 means that the summation has to run over positive values of 0, only. Here
also this simplification occurs because of time-reversal invariance. Finally the quantities v' 4, can be ob-
tained immediately from the Schrodinger equation satisfied by the basis states. The result is

Z 5 z ~ag24 a~Ca

(5.3)xN„N„[p,'('+ p, 'q —2p, '(n, + —,') —2pi'(2n„+~ A ~+1)]q""H„(])L„"(q) .
In numerical applications it is most convenient to use as an intermediate step the density matrix in the os-
cillator basis

p„s =2+ n;C~z*C',
j&0

(5.4)

where the occupation number n,. is one for occupied states, and zero otherwise. In terms of the p z's, the
various quantities involved in the definition of the one-body potential are

p(r, z) =-P,Pi' exp(-g' —ti) Q p„8 5zz, N„N„,N~ N$ ri~H„($)H„,($)L~ (ri)Lfi(7l),
n8

(5.5a)

1
7 (r, z) =—p, p~ exp(-$ - q) Q p„z 5qq N„N„N~ N~ q~ ~

xfriP, H(]) H($) L(q)L„(q)+P~ H„($)H„.($)[L~ (q)L~, (ri)+AA'I. ~(ri)L$(q)]), (5.5b)

V'p(r, z} = 2r(r, z)+-p, p„' exp(-(' —q) g p„85zz, N„N„,N„N„",'q

x[p,'t'+ p, 'q —2p, '(n, +-', ) —2p, '(2n„+
) A~ + 1)]H„(~)H„,(~)L„' (ri)L'„', (q), (5.5c)

divJ(r, z) =-P,'P~' exp(-(' —q) Q p„8q~ ~' " '~~'N„N„N~ N„
ag

x((Z -Z)H„(~)H„,(~)L„'(q)L$(q) —
~
Z -Z'~AH„(()H„, (t)L„'(q)L„',(q)

+»..(P, /P, )A~H„,(t)H.;(()L.'„(n)L.'„:(n}n "'). (5.5d)

VI. COULOMB POTENTIAL the first kind

Constructing the average field at the mesh points
(4.24) from the densities via Eqs. (2.2) is a trivial
step. One difficulty, however, arises in the calcula-
tion of the Coulomb field (2.3). The reason is that
integrating over the azimuthal angle q, Eq. (2.3)
reduces to

Vc(r', z') = rdr dz[(, )2 (
',)2),)z

x K{{4rr'/[(z —z')'+ (r+ r')'])" ),
(6.1)

where K denotes the complete elliptic integral of

(6.2)

The integrand in Eq. (6.1} thus has a logarithmic
singularity at the point r =r', z = z'. Therefore
such a formula is not suitable for numerical inte-
gration. A way to bypass this difficulty is to use
the relation

(6.3)

(6.4)

to carry out two integrations by parts in Eq. (2.3),
with the result

v, C&) = l~'J I
& -&'I ~'p, CR') 8's'
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Since this expression contains ~5 —R'~ in the nu-
merator it does not lead to singularities. Indeed
after integration over the azimuthal angle y one
finds

x v'p, ((, z), (6.5)

where E denotes the complete elliptic integral of
the second kind

V (n', 5') = 25' J dnn dn[(n — 5)' (&+n&)']"'
0 ~ c)o

xz((4~~ /[(z- z )'+(r+r )']P ')

T(R) =2 p n, I ve, (R) I',
j &0

(7.1)

should give a correct description of pairing cor-
relations. Also, due to the presence of a three-
body force such calculations would be rather com-
plicated. Therefore in the present work we have
preferred to introduce a new parameter to de-
scribe pairing. For this purpose let us introduce
occupation probabilities nj for the single-particle
states i, such that the definitions for the nucleon,
kinetic energy, and spin densities become

p(R) = 2 Q n, ( C ((R) (',
j&0

7I'/ 2

E(x) = (1 —x sin'8)"' d8 .
0

(6.6) J(R) = -2i Q n(C&R((R)(VX(T)C&((R) .
j&0

This function is continuous over the interval [0, 1].
In practice the integrations in Eq. (6.5) have been
carried out by means of Gauss-Hermite and Gauss-
Laguerre quadrature formulas using the values of
v'p~ already constructed at the mesh points (4.24).
The evaluation of the elliptic function (6.6) has
been made by means of a standard polynomial-ap-
proximation formula. ' E,= -G( g [n, (1-n,.)]"')',

j&0
(7.2)

Only positive values of 0 appear in Eq. (7.1) be-
cause time-reversal invariance requires time-
reversed orbits to have equal occupation proba-
bilities. Now in usual pairing theory" the pairing
energy is given by

VII. PAIRING CORRELATIONS

Pairing correlations are known to affect nuclear
deformations inthe rare-earth region in sucha way
that they have to be included before making any
comparison with experimental data. Also, for
heavy nuclei, the density of single-particle states
becomes so high that changes in the set of occu-
pied states occur frequently between two succes-
sive iterations, therefore slowing down consider-
ably the convergence of the iteration procedure.
For these reasons it is necessary to introduce
pairing effects at this point. This should be in
principle achieved by carrying out complete Har-
tree-Fock-Bogoliubov calculations. However
from the very way Skyrme's interaction is con-
structed' "there is no a priori reason why it

R(4& n, ) = JR(p, &;2)d 'R —5[+ [n,.(1 —n, )]"'}*

j&0

(7.3)

where H denotes the Hamiltonian density associ-
ated with Skyrme's interaction [see Eq. (12) of
Ref. 2], should be stationary with respect to in-
dividual variations of both the single-particle
wave functions 4,. and the occupation probabilities
n j ~

Evaluating the binding energy difference

5Z = E(4(+ 54&(&n(+ 5n() -E(C&(&n() (7.4)

where Q is the pairing strength. To include pair-
ing effects it is therefore natural to extend the
variational principle by requiring that the function-
al

as in Appendix t of Ref. 2, one first obtains

2

Q 5Rd[2 Rn]&(5R4) + 2'n, d,. (R)] —V „V4&) & [&)„&V W, . (-()(V xd)] 4,
2Nl *q

—G(Q [n((1-n()] 2(R)p 6n, (1 —2n, )[n, (1-n()] ' ', (7.5)
j&0 j &0

where the functions h2/2m*, U, and W are given
by Eqs. (2.2) provided that the definitions (7.1) for
the densities are used. Since particle number con-

servation requires the additional constraint

+5, ,, Nn(R, (7.6)
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where N, denotes the number of particles of
charge q, the stationarity condition will be written
as

Therefore if y(g) denotes an indefinite integral of

f '(x), Eq. (V.13}is a solution of our problem. As
an example it may. be seen that the occupation-
probability distribution defined by a Fermi func-
tion

~n g 62 I/2 I ~2 g 62 ~ + I/2ni
j

(V.7)

Setting the coefficient of 54 *j in the left-hand side
of Eq. (7.7) to be equal to zero one first obtains

1
1+exp(e, —X//A)

(V.16)

E~= -G( Q [n, Inn&+ (1 -n&)ln(1 -n, )])'.(7.17)
j&p

is the BCS equation corresponding to the pairing
functional

-V~, V4j + U, , +VV, ~ -i Vxa C, =e C, , The gap ~ is defined in this case by

(V.8) r = -G Q (n, Inn, +(1 -n, )ln(1 -n, )J . (7.18)
which is identical to (2.1). Next, writing the sta-
tionarity condition with respect to variations of
the occupation probabilities one finds, by means
of (7.8), the following set of equations

j&0

Similarly one can work out from the previous pro-
cedure a pairing functional corresponding to the
Strutj, nsky smoothj, ng function

2(e, —X,, ) [n, (1 -n, )]"' —A(1 —2n,.) =0, (V.9)

where the quantity ~ in this equation is
n, =-,' 1+erf " ' (7.19)

s= G Q [n, (1 —n, )]'" .
j&0

(7.10) The solution to the previous problem is not at all
unique. For instance all the functionals

As in usual pairing theory the only solution of the
quadratic equation (7.9) capable of fulfilling the
constraint (7.6} is given by the BCS equation"

1 1— ej —A,~j
2 [(e / )2 PA2] 1/2 (7.11)

The chemical potentials X„and A. are to be deter-
mined from Eq. (7.6).

The functional (7.3) therefore provides a varia-
tional principle leading to the occupation-proba-
bility distribution of usual pairing theory. From
this example the natural question arises whether
a variational principle can be constructed for any
given probability distribution

(V.12)

e, -Z= ay'(n, ),
where g is now given by

a = G Q y(n/) .
j&p

(7.14)

(V.15)

To answer this question let us consider as a gen-
eralization of Eq. (7.3) the functional defined by

(7.13)
j&0

where G is a constant which has the dimension of
an energy. One can see very easily in this case
that Eq. (7.8) remains unchanged whereas the BCS
equation (7.11) has to be replaced by

Ep=F[g y(n, )],
j&0

(7.20)

Ep= -2sQ [n, (1 n, )]"'.-
j&0

(V.22)

By construction, the use of either functionals (7.2)
or (7.22) is guaranteed to give identical ground-
state wave functions, j;.e. identical 4 j 's and nj 's,
provided the gap a in Eq. (7.22) is taken to be the
diffuseness (7.10) of the occupation-probability
distribution obtained from Eq. (V.2). In particular,
both functionals give identical values for the quad-
rupole moments, radii and density distributions.

In the present work the choice of the constant L
in Eq. (7.22) has been made according to the em-
pirical formula"

g=12 Mevxg "' (7.23)

where F is an arbitrary (differentiable) function,
give the same BCS equation (V.14). The only dif-
ference is that the gap equation (7.15) has to be
replaced by

(7.21)
j&0

Since the only feature of pairing theory we are
really interested in for the present calculation is
the possibility of having a diffuse Fermi surface,
we have used this degree of freedom in order to
construct the simplest gap equation, namely a
constant gap. The corresponding pairing func-
tional is
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e] —A.
8( )=g 1

[( )2
f&o

and its solution has been carried out by the New-
ton-Raphson iteration method:

(V.24)

2

( [( y)2+ g2 ]
3/2'(z) =

One definite advantage of the present treatment of
pairing correlations is that it is free of diver-
gences in the case of a continuum of positive en-
ergy states with a level density proportional to
vT." Indeed it may be checked that, since occu-
pation probabilities s, behave like b,'/e, ' as e,
goes to infinity, the integral occurring in this
case in the left-hand side of Eq. (V.24) is a con-
vergent one.

A constant value ~ =1 MeV has been used in all
calculations in the rare-earth region. In the case
of light-nuclei pairing effects have been neglected.

One shortcoming of the present simplified treat-
ment of pairing correlations is that even though it
gives correct wave functions, and therefore at
least a correct description of the dominant effects
of pairing on deformations, it does not give a cor-
rect pairing energy. Indeed, although both func-
tionals (V.2} and (7.22) reach their minima simul-
taneously, it may be seen from Eq. (V.10) that the
functional (7.22) gives twice as much pairing en-
ergy as (7.2) at equilibrium. However, for the
purpose of comparing calculated binding energies
to experimental ones, this difference is not too
important since in the rare-earth region, pairing
energies are typically of the order of 0.1 MeV per
particle, i.e. , of the order of truncation effects in
this case as will be seen in Sec. VIII.

To solve the system of Eqs. (7.1}, (V.6), (7.8),
and (V.11) a calculation of the occupation proba-
bilities n, (7.11) has been included at the end of
each iteration of the Hartree-Pock procedure.
The equation for the chemical potential (V.6) has
been first rewritten, by means of Eq. (V.11) as

tion has been truncated at five major shells
(N, = 4) for light nuclei, and seven major shells
(NO=6) for rare-earth nuclei. In all calculations
the two oscillator parameters have been chosen
so as to minimize the total binding energy. For
consistency with the calculations already pre-
sented in Ref. 2, the Coulomb exchange terms
have been neglected and only the direct term in
the center-of-mass correction has been included.
A discussion of the uncertainties arising from
these approximations may be found in Ref. 17.
Since center-of-mass corrections decrease with
mass number our approximate treatment of these
corrections is believed to be adequate in the rare-
earth region. As was mentioned in Sec. II, the
small contributions from the central force to the
one-body spin-orbit potential have also been ne-
glected. Since larger contributions of the same
form would also be obtained from the tensor
force, '4 it would be meaningless to include these
terms without including at the same time a proper
description of the tensor force in the Skyrme ef-
fective interaction.

Typical computation times on an IBM 360/65,
including minimization with respect to both os-
cillator parameters, are of the order of 20 min
for a light nucleus (N, = 4), 50 min in the rare-
earth region (N, = 6), and 120 min if the basis is
truncated at nine major shells only (N, =8). Cal-
culations in the actinide region would require a
basis including eleven major shells, i.e. , a total
computation time of the order of four hours for
one nucleus on an IBM 860/65. A definite advan-
tage of the present method of solving the deformed
Hartree-Fock equations is that no matrix ele-
ments of the interaction need to be stored, so
that our code may be used without tapes or disks
even in the actinide region with No = 10. We would
also like to point out that the present method of
solution is not restricted to a linear density de-
pendence in the effective interaction, so that it
could be used as well for the modified delta inter-
action of Moszkowski' which contains a density
dependence proportional to p' '.

VIII. RESULTS A. Binding Energies

Results presented in this section have been ob-
tained by solving the Hartree-Fock equations
(2.1) and (2.2) for the two sets of parameters de-
fined in Table I. We recall that in the case of
rare-earth nuclei pairing effects have been in-
cluded by adding to the Hartree-Fock equations a
set of BCS equations with a constant gap ~ =1
MeV (V.1), (7.11), and (7.24). Unless otherwise
specified the oscillator expansion (4.11) occurring
in the solution of the deformed Schrodinger equa-

Calculated charge radii, binding energies, and

charge quadrupole moments for some light and
rare-earth nuclei are given in Table II. In the
case of light nuclei these results are also com-
pared in Fig. 1 with experimental data and with
the results obtained by Zofka and Ripka' using a
slight modification of Negele's interaction. ' It
may be seen from this figure that calculated bind-
ing energies agree remarkably well with the ex-
perimental ones. The fit is somewhat better than
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that of Zofka and Ripka for both interactions, and
better for force I than force II. However, one
should keep in mind that projecting out a 0' ground
state out of the deformed Slater determinant
would lower the energy of the system. The gain
in energy in the case of neon-20 was estimated by
Zofka and Ripka to be of the order of 0.2 MeV per
particle. Even though this number should pre-
sumably be reduced in the case of interaction I,
since it gives smaller deformations than Negele's
force, neon-20 would be overbound after angular
momentum projection in the case of interaction I,
while for interaction II a value very close to the
observed one should be obtained. In the rare-
earth region calculated binding energies per par-
ticle also agree quite well with experimental data,
predicted values being generally too small by 0.3
MeV (0.6 MeV) for interaction I (II). Here again
however, these values would be increased by an-
gular momentum projection, and also, as will be

seen in subsection F, by increasing the size of the
oscillator basis.

The variation of binding energies per particle as
a function of mass number in light nuclei may be
seen from Fig. 1 to be very similar for interaction
II and for the Negele interaction used by Zofka and
Ripka. The reason for this similarity is that, by
means of the density matrix expansion presented
in Ref. 17, a set of parameters for, the Skyrme
force may be derived from Negele's interaction.
This set turns out to be very close to our param-
eter set II. In particular it gives rise to almost
identical nonlocality effects in the average nuclear
field. This is related to the great similarity in
the effective masses m*/m =0.6 obtained for both
forces in nuclear matter.

Projected n-cluster configurations for light nu-
clei have been calculated by Friedrich, Husken,
and Weiguny" for interactions I and II. These
turn out to be significantly less bound than Hartree-

TABLE II. Binding energies per particle, root-mean-square charge radii, and charge quadrupole moments calculated
with interactions I and II. Equilibrium values for the volume oscillator parameter p0 and for the deformation parameter
q have also been indicated. Experimental values for light nuclei have been extracted from Zofka and gipka (ref. 8).
For such nuclei experimental quadrupole moments are those obtained from Coulomb excitation measurements, which do
not determine the sign of this quantity.

~0
(fm ~) q

Z/A
(Me V) (fm)

f2C

(barns)
P0 E/A

(fm ) q (Me V) (fm)

"Ar
(barns)

I 0.700 1.00 8.11
II 0.659 0.718 6.84
Exp , , o ~ ~ e 7 68

20Ne

2.44 0.00
2.64 -0.14
2.40 + 0.03 0.205 + 0.015

I 0.618 0.821 8.50 3.30
II 0.588 0.831 8.10 3.42

Exp o ~ ~ 8 5

"2Sm

-0.36
-0.48

0.54 + 0.06

I 0.661 1.28 8.00 2.88
II 0.821 1.39 7.48 3.02
Exp ~ e ~ 8 03 ~ ~ o

24Mg

0.34
0.46
0.54 + 0.03

I 0.474 1.35 8.04 5.06
II 0449 120 7 67 515
Exp 8.24 5.09

i60Gd

5.30
3.20
5.78 ~ 0.10 '
5.90 b

I 0.651
II 0.610

~ ~ ~

1.30 8.40 3.01
1.30 7.68 3.15

~ 8.26 3.01

0.50
0.60
0.67 + 0.04

I 0.465 1.40 7.94 5.16
II 0.439 1.38 7.55 5.28
Exp 8 18

6.76
7,02
7.56b

0.652
II 0.607
Exp

I 0.636
II 0.599
Exp

0.860 8.67 3.05 -0.26
0.710 7.86 3.26 -0.60

8.45 3.09 + 0.03 0.55 + 0.02

32S

1,20 8.60 3.17 0.28
1.28 7.90 3.32 0.52

8.49 3.24+ 0.02 0.47 + 0.03

170Er

I 0.458 1.36 7.82 5.25
II 0 431 1 34 7 44 5 38
Exp ~ ~ ~ . 8.11 5 26 ~

7.00
7.44
7.75+ 0.10 ~

7.40'

' geference 28.
b Heference 35.
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Fock solutions, the difference being of the order
of 1 MeV per particle. For instance the binding

energy of carbon-i. 2 calculated by the previous
authors using force I is 6.38 MeV per particle be-
fore projection and 6.64 MeV per particle after
projection. In neon-20 the corresponding value
using the same interaction is 7.26 MeV per par-
ticle before angular momentum projection. On

the other hand, in the case of the interaction B1
of Brink and Boeker,"very similar binding ener-
gies are found for u-cluster configurations and

Hartree-Fock solutions, o. configurations being
energetically favored for nuclei lighter than mag-
nesium-24. " This difference arises because the
Brink and Boeker force has no two-body spin-or-
bit term, a much stronger P-wave repulsion, and
also because the Skyrme force is a simple param-
etrization of the effective interaction which is
valid for low relative momenta only. In particular

it becomes infinitely repulsive for high momenta,
whereas the finite-range B1 interaction goes to
zero in this case. Therefore n-cluster configura-
tions are much less favored in the case of the

Skyrme force since they contain relatively high

excitations when expended in terms of shell-mod-
el wave functions.

In light nuclei, deformed Hartree-Fock calcula-
tions using similar density-dependent forces have

been made by Lassey and Volkov, ' and by Krieger
and Moszkowski. " Binding energies calculated by
these authors also agree rather well with the ob-
served ones, and are in fact very close to those
obtained from interaction II. In contrast, calcula-
tions made with density independent forces' "
always give a lack of binding of the order of 2 MeV

per particle.

B. Radii

l2C

I

Cl

8—
LLJ

I

3.5—

2.5

0.5—

l60 20Ne 24Mg 28SI 32$36Ay C
I I I I I I I

———Zofka - Ripka
~ Exp

The charge radii of light nuclei, which have been
corrected for the finite size of the proton, may
be seen from Fig. 1 and Table II to be in close
agreement with the experimental ones for both in-
teraction I and H. In fact for interaction I the fit
is excellent up to sulfur-32, while a somewhat
too small value is obtained in calcium-40. For
both forces the agreement is somewhat better than

those obtained by Zofka and Ripka, ' Lassey and

Volkov, ' and Krieger and Moszkowski. " Radii
calculated by Lassey and Volkov are systematical-
ly too small, while Zofka and Ripka find too large
values for deformed nuclei, and Krieger and Mosz-
kowski too small radii for the spherical ones.
Here again a great similarity may be observed in

the variation of radii as a function of mass num-

ber for interaction II and for the Negele interac-
tion used by Zofka and Ripka. '

Accurate measurements from muonic x-ray data
are available in the rare-earth region. " Calcu-
lated values may be seen from Table II to be in
excellent agreement with these measurements for
interaction I, and in good agreement for interac-
tion II. As will be seen in subsection F this agree-
ment is unaffected if a larger oscillator basis is
used.

N

0.0

I

l2c
I I I

l60 20ge 24Mg 28$l 32S 56Ay 40Cq

FIG. 1. Comparison of binding energies, charge radii,
and absolute values of the charge quadrupole moments
obtained in light nuclei from interactions I and II, with

the results of Zofka and Ripka (Ref. 8) and with experi-
mental data. Experimental data points are taken from
Ref. 8.

C. Charge Quadrupole Moments

Quadrupole moments of the proton distributions
do not need to be corrected for the finite extent
of the proton in order to obtain the quadrupole mo-
ments of charge. Indeed, since the charge distri-
bution p, is constructed by folding the proton den-

sity p~ and the proton form factor f~ one has

q, =
)t

d'Rd'R'(2z' —x' —y')p~(R') f,(I R —R'
I ) .
(8 l)
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Rewriting the first term in the previous integral
as

2z' —x' —y' = 2(z —z')'+ 4(z —z')z'+ 2z"
—(x —x')' —2(x —x')x' —x"

-(y -y')'-2(y -y')y'-y",
Eq. (8.1) becomes

d'R (2z' —x' —y') f~(R) + Qp,

E/A=ao+W, A ' +' (8.2)

For this purpose, spherical Hartree-Fock calcu-
lations of N= Z nuclei, without Coulomb and spin-

TABLE III. Binding energies per particle E/A {MeV),
obtained from spherical Hartree-Fock calculations
without spin-orbit and Coulomb interaction for A =125
and A =1000. Values of the surface energy coefficient
W~ (MeV) are extracted from Eq. (8.2).

Force I Force 0

A
E/A
ws

125
-11.85

20.76

1000
-13.93

20.68

125
-11.60

21.99

1000
-13.72

22.05

where g is the charge of the nucleus. Since the
form factor of the proton is spherically symmet-
ric, this last equation implies that Q, =@~.

Whereas very similar results were obtained
from interactions I and II for binding energies and
radii, Fig. 1 shows that the situation is rather dif-
ferent for deformations in light nuclei. Indeed,
while charge quadrupole moments obtained from
force II agree very mell with those extracted from
Coulomb excitation measurements, much smaller
values are obtained from interaction I. In particu-
lar, carbon-12 turns out to be spherical in this
last case.

As will be shown in subsection E, the two-body
spin-orbit interaction reduces nuclear deforma-
tions significantly in light nuclei. However, even
though force I has a stronger spin-orbit compo-
nent than force II (see Table I), this difference
does not explain satisfactorily the difference in
quadrupole moments. Indeed, if the two-body spin-
orbit strength of interaction I is reduced to 80
MeVfm', the quadrupole moment of neon-20 in-
creases to 0.41 b, which is still smaller than the
value obtained from force II with a spin-orbit
strength of 105 MeV fm'.

Surface effects also reduce nuclear deformations
and for this reason, we calculated for both forces
the surface energy coefficient W; defined as the
second coefficient in the expansion

orbit interactions, were carried out for A =125
and A = 1000 using the filling parameter approxi-
mation. " The value of a, being known to be -16
MeV for both forces, ' a value of W, may be extract-
ed from Eq. (8.2) as a function of A. The result
given in Table III shows that the values of W, are
already converged for A =125. Actually these val-
ues are slightly larger than those calculated by
Lassey, ' and by Ravenhall, Bennett, and Pethick"
using a semi-infinite slab model. We attribute
this difference to the persistence of shell fluctua-
tions in our densities, even for A =1000. Table
III also shows that the value of the surface energy
coefficient W, is larger for interaction II than for
interaction I. Thus, the difference in nuclear de-
formations cannot be attributed to a difference in
surface properties.

The previous difference seems to be rather con-
nected with the difference in the effective masses
in nuclear matter, which was already mentioned
in Sec. II as being the most significant difference
between forces I and H. Indeed for a small change
in the single-particle wave functions, the change
5E in the total energy of the system is given by '

5E= d'R ~
-57. R +UR 5p R (8 8)

In this equation 57 and 5p denote the changes in
the kinetic energy and nucleon densities, respec-
tively, and 8'/2m* and U(R) are defined by Eq.
(2.2). Approximating the effective mass m* by its
nuclear-matter value, the previous equation be-
comes

5E= —5T+ de R 5p R, (8 4)

where 5T denotes the change in the kinetic energy
of the system. Now, as will be shown in subsec-
tion E, the kinetic energy of a nucleus decreases
significantly as it becomes deformed. Therefore
a smaller value of the effective mass will provide
a bigger gain in energy when deforming the nucle-
us, i.e., larger equilibrium deformations.

The previous remark also explains the similar-
ity between the deformations obtained from interac-
tion II and from the Negele force used by Zofka
and Ripka, ' since both forces have almost identi-
cal effective masses in nuclear matter. In fact,
this similarity would be even greater if a two-
body spin-orbit term had been included in the cal-
culations of Zofka and Ripka. Including this term
allows a better fit to quadrupole moments of nu-
clei heavier than magnesium-24. It also favors
the oblate solution of silicon-28 and the prolate so-
lution of sulfur-32, which agrees with the results
of Tuerpe, Bassichis, and Kerman. ' The absence
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of a two-body spin-orbit force in the calculations
of Lassey and Volkov, ' and of Krieger and Mosz-
kowski" also explains why our results for inter-
action II are somewhat better than theirs.

It is interesting to note that interaction II was
also found in Ref. 2 to give the best fit to the ob-
served energies of 1s-proton levels. As was al-
ready mentioned in Sec. II, the position of these
levels is related also to the value of the effective
mass m*/m from Eg. (2.1).

As was discussed by Zofka and Ripka, all ex-
perimental methods to determine quadrupole mo-
ments of the intrinsic states assume the validity
of the rotational model, "which is not well estab-
lished for light nuclei. For this reason it would
be much more satisfactory for such nuclei to com-
pare the measured B(E2) values to those calculat-
ed from angular momentum states projected out
of the Hartree-Fock ground state. On the other
hand, in the rare-earth region, it may be shown'"'~
that, due to the large expectation values (J') ob-
tained for the square of the angular momentum,
quadrupole moments for the first excited 2' states
may be accurately approximated by rotational-mod-
el values. There is indeed very little doubt about
the validity of this model in the rare-earth region
and it is certainly legitimate to use it in this case
to extract quadrupole moments for the intrinsic
states.

From Table II the charge quadrupole moments
calculated for gadolinium-160 and erbium-170
may be seen to agree quite well for both interac-
tions I and II with the experimental values obtained
from Coulomb excitation measurements" and mu-
onie x-ray data." In contrast in samarium-152
there exists a discrepancy in the case of interac-
tion II, the calculated value being too small by
about 40%. The origin of this discrepancy may be
understood from spherical Hartree-Fock calcula-
tions in the neighborhood of samarium. Indeed
such calculations show that interaction I gives a
neutron closed shell at N= 90 with a 0.24-MeV
gap and a proton closed shell at Z=64 with a 2-
MeV gap. For interaction II, the neutron shell
closure occurs at N= 92 with a 1.5-MeV gap,
while the proton shell closes at Z= 64 with a 1.6-
MeV gap. Therefore, in the case of interaction
II, samarium-152 is near double closure with two
rather important gaps. From the results obtained
in lead-208 in Ref. 2, it seems that the tendency
of interaction II to overemphasize shell effects is
systematic. A possible way of correcting this de-
fect would be to allow the strength t, of the veloc-
ity-dependent term in the Skyme force to depend
linearly on the density. In this case Eq. (2.2b)
would contain an additional quadratic term in den-
sity. This term should make it possible to have

simultaneously an effective mass of the order of
0.6 inside the nucleus (which seems necessary to
fit Is-proton levels' ), and 1.2 in the surface re-
gion (which seems appropriate to reproduce the
observed level density of lead-208").

As in light nuclei, deformations in the rare-
earth region are smaller for interaction I than for
interaction II (if one excludes the case of samar-
ium-152 which was discussed above). The differ-
ence, however, is much less than in light nuclei.
Indeed, we will see in subsection E that the mech-
anism for nuclear deformations is somewhat dif-
ferent between the two regions. Whereas the two-
body spin-orbit force inhibits deformations in
light nuclei, it mill be shown to favor deforma-
tions in the rare-earth region. Also the Coulomb
interaction is more effective in heavier nuclei and
tends to level off differences in the effective mass-
es between the two interactions. Another possibil-
ity is the symmetry effect. All the light nuclei we
discussed above are N= Z systems and are there-
fore insensitive to the parameter xo in the Skyrme
interaction. On the other hand rare-earth nuclei
have a significant neutron excess, so that deforma-
tions for such nuclei may, a Pro~i, exhibit a de-
pendence on x,. To investigate the importance of
this effect we decreased the value of xo in interac-
tion II from 0.34 to 0.23, since this brings the val-
ue of the symmetry energy coefficient a, in nucle-
ar matter from 34.1 MeV to the interaction I val-
ue of 29.3 MeV. ' In this case the quadrupole mo-
ment of gadolinium-160 decreases from 7.02 b to
a value of 6.82 b, which is closer to the result ob-
tained from force I (6.76 b).

D. Density Distributions

A convenient representation of deformed density
distributions is through the Legendre expansion
coefficients defined by

p(r, 8) = p, (r) +p, (r)P, (cos8)+p, (r)P,(cos6)+ ~ ~

(8.5)

These may be evaluated in a simple way from the
values of the densities at the mesh points (4.24)
as is described in Appendix B.

The first few coefficients in this expansion are
shown in Fig. 2 for the charge distributions of
neon-20 and samarium-152 calculated with inter-
action I. For both nuclei similar qualitative fea-
tures are obtained: p, (r) and p, (r) are nonnegligi-
ble only in the surface region, so that the density
is nearly constant in the nuclear interior, as
should be expected from the saturation properties
of the Skyrme force. This may also be seen on

Fig. 3 where we have plotted the variation of the
charge density of samarium-152 in the case of
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FIG. 2. Legendre expansion coefficients for the charge
distributions of neon-20 and samarium-152 calculated
with interaction I.

interaction I along the symmetry axis (r =0) per-
pendicular to the symmetry axis (z =0) and along
the direction z =r, i.e., 0=45' in Eq. (8.5}. A
slight depression may be observed at the center
of the nucleus, which is due to the fact that in a
spherical shell model the 3s„,proton orbit would
be empty in samarium. While in phenomenological
distributions'"" the surface thickness of p(r, 8}
for a given 0 is assumed to be independent of 6I,

a small change in this quantity is obtained when

I9 changes: Whereas the maximum slope is 0.0571
fm ' for z =0, it is 0.0537 fm ' for z =~ and 0.0588
fm 4 for r =0. This change tends to produce par-
allel equidensity lines in the surface region, which
agrees with the conclusions of Damgaard et al."

The first two coefficients of the Legendre ex-
pansions for the charge distributions calculated
in erbium-170 from interactions I and II are com-
pared in Fig. 4 with those obtained from muonic
x-ray measurements. " For both forces a rather
good agreement is obtained except for the surface
thicknesses which tend to be somewhat larger for
the Hartree-Pock densities. This quantity, how-
ever, does not seem to be very accurately deter-
mined experimentally, and slightly different values
are in fact obtained from electron scattering data.
For instance in the case of samarium-152, the
value of the parameter t in the phenomenological
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FIG. 3. Sections of the charge distribution p(B, 0), calcu1ated in samarium-152 with interaction I for 8 =0 (r =0),
8 =45' (z =x), and 9 = 90' (z =0).
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distribution
r -z(e)

p(r, e) =p I+exp

ft(e)=c(l+ p I' (e)+ ~ ~ )

0.04—

is found to be 0,538+ 0.012 fm fxom muonic x
rays, while it is 0.581+0.040 fm from recent elec-
tron scattering experiments. '9 This last value is
i.n better agreement with our results.

E. Comparison of Spherical

and Deformed Solutions

Since our calculations include a two-body spin-
orbit interaction, the Hartree-Fock equations have
solutions with spherical symmetry in the case of
carbon-12, silicon-28, and sulfur-32. Such solu-
tions also exist for rare-earth nuclei because pair-
ing effects have been taken into account in this re-
gion. A detailed comparison of the deformed solu-
tions with the spherical ones is very useful as far
as it indicates what terms in the two-body interac-
tion contribute most to the binding energy differ-
ence. It may therefore provide a basis for under-
standing the mechanism of nuclear deformations.
For consistency, spherical solutions have been
calculated in as oscillator basis even though cal-
culations in configuration space would be possible
in this case.

Such a comparison is made in Table IV in the
case of sulfur-82 (force I), samarium-152 (force
I) and silicon-28 (force II). A systematic decrease
may be observed in Coulomb and kinetic energies
as the nucleus becomes deformed. It is rathex
small for Coulomb energies but turns out to be
quite significant for kinetic energies, so that the
change in this quantity appears to play a dominant
xole in nuclear deformations. An important effect
ls also obtained from the two-body spin-orbit in-
teraction, whose contributions to the total binding

0.00
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Ci

0.06
C3

0.04—

0.02—
----- Force I
——Force lI

Experime

I0

FIG. 4. Legendre expansion coefficients for the charge
distributions of erbium-170 obtained from interaction I,
II, and muonic x-ray measurement in Ref. 28.

energy exhibits large fluctuations as a function
deformation. This force may be seen from Table
IV to favor strongly spherical solutions in light
nuclei, but to favor deformed solutions in the rare-
earth xegion. It is interesting to note that a simi-
lar conclusion would also be obtained in the frame-
work of the ¹ilsson model. " Indeed, in this mod-
el, the effect of a stronger spin-orbit coupling in
the rare-earth region is to bring down levels from
higher shells into the neighborhood of the Fermi
level, which produces larger deformations. Qn
the other hand this effect does not occur in light
nuclei because of the absence of low-lying unoc-
cupied orbits with high degeneracy.

TABLE IV. Comparison of kinetic, Coulomb, spin-orbit, pairing, and binding energies (in MeV) of spherical and

deformed solutions for sulfur-32 (force I), samarium-152 (force I), and silicon-28 {force II). Values of charge radii

g, (fm), volume oscillator parameters Po {fm ~), and deformation parameters q are also indicated.

sph.
SS {I)

def. sph. def. sph.
28Si (II)

def.

8kIn

Eeou)

Ep~

'c

582.27
57.05

-43.81
0

-274.68
3.153
0.638
1.00

577.89
56.88

-38.53
0

-275.15
3.166
0.636
1.20

2903.87
524.16
-67.26
-35.95

-1215.65
5.003
0.478
1.00

2893.20
522.64
-77.39
-28.93

-1221.98
5.059
0.474
1.35

468.19
43.54

-33.14
0

-215.04
3.165
0.605
1.00

451.22
42.90

-20.57
0

-220.08
3.259
0.607
0.71
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TABLE V. Variation of the volume oscillator param-
eter Pp (fm ), deformation parameter q, binding energy
per particle E/A (MeV), charge radius r, (fm), and
charge quadrupole moment Q (b), as a function of the
size No of the oscillator basis defined by Eq. (4.14).

20Ne '"sm

No

Pp

z/x
'c

Q

4
0.661
1.28
8.004
9.878
0.344

6
0.663
1.34
8.038
2.876
0.347

6
0.474
1.35
8.039
5.059
5.30

8
0.523
1.37
8.312
5.048
5.81

Pairing correlations may be seen from Table IV
to inhibit nuclear deformation, as was already
noted in the early stage of pairing theory. An
explanation for this effect is that the pairing in-
teraction tends to smear out orbits near the Fer-
mi level, therefore producing a state with higher
spatial symmetry. Table IV also gives the value
of the volume oscillator parameter Po at equilib-
rium. This parameter may be seen to change only
very slightly as the nucleus becomes deformed,
which may be related to the underlying assumption
of constant volume in the Nilsson model. "

F. Truncation Effects

In this section, some of the previous results are
compared to the results obtained in a larger oscil-
1ator basis includi. .ag two more major shells, i.e.,
No = 6 for light nuclei and No= 8 for rare-earth nu-
clei. This compa~". ison will be made here in the
case of interaction I only, but very similar re-
sults would be obtained for interaction II. It may

be seen from Table V that a very satisfactory con-
vergence is obtained in neon-20 with an oscillator
basis containing five major shells only. Indeed,
including two more shells in the oscillator expan-
sion increases the binding energy per particle by
less than 50 keV, while a negligible change is ob-
tained for the root-mean-square charge radius.
A larger variation is found to occur for the charge
quadrupole moment, in agreement with the results
of Tuerpe, Bassichis, and Kerman. ' The change,
however, is still less than i% in this case.

For samarium-152, truncation effects may be
seen from Table 7 to be more important, but still
small enough, however, to make a comparison
with experimental data meaningful. When increas-
ing the size of the oscillator basis from N, =6 to
No= 8, a gain of approximately 300 keV is obtained
for the binding energy per particle, while the root-
mean-square charge radius decreases by 0.2%%ua.

At the same time, the charge quadrupole moment
increases by 10%, which brings the calculated val-
ue in closer agreement with the observed one.

Equilibrium values for the volume oscillator pa-
rameter P, always increase with the size of the
basis No. This is because our choice of basis vec-
tors implies nearly pure oscillator configurations
for orbits close to the Fermi level in the case of
a small basis. Qn the other hand, a larger basis
allows high- and low-lying orbits to have similar
admixtures. The optimum value of the volume os-
cillator parameter is therefore essentially deter-
mined by the radius of the nucleus in the case of
a large basis, while only the radius of the last
orbit seems to matter in the case of a small basis.

The convergence of the charge distribution of
samarium-152 is investigated in Fig. 5, where
we have p1otted the first two coefficients p,(r} and
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FIG. 5. Variation of the Le.gendre expansion coeffi-
cients for the charge distribixtion of samarium-152,
calculated with interaction I, as a function of the size
parameter No of the oscillator basis.

FIG. 6. Variation of the Legendre expansion coeffi-
cients for the neutron potential of samarium. -152, cal-
culated with interaction I, as a function of. the size
parameter No of the oscillator basis.
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p, (r) in the Legendre expansion (8.5), for two dif-
ferent sizes of the oscillator basis, No=6 and Np
=8. While only slight differences occur for the
coefficient pp, larger deviations are obtained for
the coefficient p„which is related to the fact that
truncation effects are more important for quadru-
pole moments than for radii. Even larger varia-
tions would be obtained for the coefficient p, (r).
In the case of light nuclei a much better conver-
gence of the oscillator expansion is obtained and
graphs of po(r) or p, (r) corresponding to No=4
and Np = 6 would hardly be distinguishable on the
scale of Fig. 5.

The variation of the neutron potential (2.2a) as
a function of Np is shown in Fig. 6 in the case of
samarium-152. From this figure, truncation ef-
fects may be seen to be similar for the average
potential and for the density.

IX, CONCLUSION

A method for solving the deformed Hartree-Fock
equations in the case of the Skyrme interaction has
been presented, which is applicable to the region
of heavy deformed nuclei. Calculations have been
made using two different sets of parameters for .

some light and rare-earth nuclei, and it has been
demonstrated that the Skyrme force can provide a
very good description of binding energies, radii,
and quadrupole moments of these nuclei.

Several applications of the techniques described in
the present paper are possible. In particular, the
previous method for solving the deformed Hartree-
Fock equations may be easily extended to the case
of realistic reaction matrices, provided use is
made of the density matrix expansion presented in
Ref. 1'7. It would therefore be possible to calcu-
late deformations of heavy nuclei in terms of a
realistic nucleon-nucleon force. Also by adding an
external field to the Hartree-Fock Hamiltonian, as
described in Ref. 41, it would be possible to evalu-
ate the energy of a heavy nucleus as a function of
its shape, which represents a first step towards a
microscopic description of fission isomers and
fission barriers, and also provides a very conven-
ient basis for understanding the validity of Strutin-
sky's prescription. "
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APPENDIX A. NUMBER OF MATRIX
ELEMENTS

Due to time-reversal invariance only basis vec-
tors In„,n„A, Z} such that A+Z =Q) 0 need to be
considered. Assuming the number Ão character-
izing the size of the oscillator basis in Eq. (4.14)
to be even, the number of such states is

N p/2 N p-2nr Np-2nr-nz
1+2

nr=0 nz=p A=a

=-,'(N, +1)(N, +2)(N, +S) . (Al)

Since Q=A+Z and the parity w=(-1)"&'A are good
quantum numbers, the Hamiltonian matrix (4.1S)
is block diagonal. Denoting by D(Q, w) the dimen-
sion of the block (Q, w) one has

A+a/2 Np-A (Np-nz- A)/2

D(Q, w) = g g —.'[1+(-1)"""']
A = A-a/2 nz=O nr=o

p ( 1)o I/2 (A2}

The total number of nonvanishing matrix elements
is given by

A'p- a/2

E(N, )=D'(N, +2, w=+1)+ g gD'(Q, w).
pi, =a/2 7r

(AS)

Inserting Eq. (A2) into Eq. (AS), the previous ex-
pression may be transformed irlto the following
form

4 Np/2

F(N, ) = +2 Q [n '+n'(n+1. )'].
n=a

The sums of powers in the previous equation may
be performed by means of standard formulas, 2'

with the result

F(No) =
40 (No+ 2)(N22+ 2ND+ 2)(N02+ 6NO+ 10) .

(A4)

From this relation one fin&is F(6}=820, E(8) =2501,
F(10)= 6222, F(12) = 1S447.. . . .

The summations in the previous equations may be
carried out in a straightforward way. The result
is

D(Q, w) = ,'(N, —Q+2+ -'2-P)(N, —Q+ 2+ w —-'2p),

where
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APPENDIX B. CALCULATION
OF DENSITY DISIIBUTIONS

The present method of solving the Hartree-Pock
equations uses only values of the densities at the
mesh points (4.24). These are sufficient, however,
to reconstruct values of the densities at an arbi-
trary point (r, g) without returning to the expan-
sion coefficients (4.11), which would be numerical-
ly (luite a lengthy procedure. Indeed the nucleon
densities in the truncated basis may be written as

p(r &}= exp( P'-~' P'r-')P(r' ~') (Bl)

where P is a polynomial of degree N, in both r'
and z'. Expressing this polynomial in terms of
Hermite and Laguerre polynomials

k=o l =O

the expansion coefficients A» are found to be

A„=w)).)), '

deaf

4' p(b(b, tl), ,
0 oo

where ));, &o& and $„n& denote the weights and ab-
scissas of the Hermite- and Laguerre-Gauss
quadrature formulas, respectively.

The calculation of the Legendre expansion co-
efficients in E(I. (8.5} may be easily carried out by
using the orthogonality properties of the I.egendre
polynomials, "with the result

p, (r) = (2k+ 1) p(r cos8, r sin8)P, (cos8)sin8d8.
0

In the case of the charge density

p.()()=f f (I)(-R'l)p, (R')d'))', (Bs)

one obtains

the evaluation of the Legendre expansion coeffi-
cients is also straightforward. Denoting these co-
efficients by p))(r) and inserting into E(I. (BS}the
multipole expansion for the form factor of the pro-
ton

Since P in E(I. (Bl) is a polynomial, Hermite- and
Laguerre-Gauss integration formulas are exact
when applied to the previous integral provided the
number of integration points is greater than No.
The result is

p„(r) =
2~ 1 p, (r')u, (r, r')r "dr'.
2k+1

In terms of the Legendre expansion coefficients
the quadrupole and the octupole moments are giv-
en, respectively, by

A„=2Q w;(u, p(b, ];,b,q,"').
"&m&ma (4}&'(I'((n;)

Sm
q, =

5 p, (r)r'dr,
0

Sp
Q, =

9 p,(r)r'dr.
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A new technique for determining inelastic angular distributions, which greatly alleviates
the background problem, is described. Application of the technique to (p, p') reactions with
targets Sn, ~9Sn, and ~ Sn is discussed and the results are compared with results using
a more conventional technique. The results are that the differential cross section is for-
ward peaked at all energies for (p, p') reactions with targets 9Sn and Sn, while it is ap-
proximately isotropic with the target Sn at higher excitation energies of the residual nu-
cleus. The ~ ~Sn result is expected from the previously established predominance of ordin-
ary compound-nucleus processes in that reaction. For ~~~Sn and Sn in which it was pre-
viously presumed that isospin-conserving reactions via T& states dominate the low-energy
portion of the proton spectrum, the results indicate a sizable contribution of direct reac-
tions or of pre-equilibrium reactions with very few collisions.

I. INTRODUCTION

Knowledge of the inelastic scattering angular dis-
tribution gives information on the reaction mechan-
ism. An isotropic distribution or one symmetric
about 90' is characteristic of a compound-nucleus
(CN) reaction mechansim, while a distribution
which is forward peaked or highly correlated with

the incident beam direction is characteristic of a
direct reaction (DR) mechanism. '

Measurement of the inelastic scattering angular
distribution is complicated by background prob-
lems. This background is presumably due to: (1)
slit scattering of the incident beam (which intro-

duces low-energy components to the beam, which
are strongly elastically scattered by the target);
(2) slit scattering of elastically scattered particles
(and higher-energy inelastically scattered parti-
cles) by the detector slit; and (2) reactions in the
detector (in which the detected particle does not
cause a pulse with the full pulse height for its en-
ergy). These problems can be minimized (but
not eliminated) by excellent beam tuning, by plac-
ing the detector slit between a large area &E de-
tector and a smaller area E detector, and using
a tight particle selection window. Since the back-
ground is roughly proportional to the elastic scat-
tering cross section, ' it increases rapIdly as the


