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' "Ar (d,p) angular distributions at 9- and 10-MeV incident energy, for 13 neutron-unbound states in"'Ar, are described in terms of conventional distorted-wave Born-approximation theory using

complex-energy eigenstates as form factors, and spectroscopic information is extracted which is
consistent with previous studies of the bound neutron states of ""Ar.

I. INTRODUCTION

In studies of the reaction "Ar(d, P)"Ar at 9.16
MeV, ' and "Ar(d, P)"Ar at 10.06 MeV' it has been
found that a number of neutron unbound states in
"Ar and "Ar are populated. Sen et al. ' ' were
able to obtain angular distributions for these
states in 5' steps over c.m. angles from 26 to
146'; specifically, data are available for states
at 8.89 and 9.01 MeV in "Ar, and at 6.79, 7.00,
7.06, 7.14, 7.22, 7.34, 7.40, 7.50, 7.56, 7.63,
and 7.73 MeV in "Ar.

Presented here are distorted-wave Born-ap-
proximation (DWBA) analyses of these 13 angular
distributions, making use of complex-energy
eigenstates to described the resonance states.
It is shown that use of complex-energy eigen-
states permits extraction of spectroscopic factors
consistent with the usual bound-state single-
particle spectroscopic factors.

II. COMPLEX-ENERGY EIGENSTATES

The complex-energy eigenstate, often called a
Gamow state, is either of two equivalent facto.

making up the residue of the Green's function of
the system, at the pole corresponding to a given
resonance. ' ' Thus it is closely analogous to the
bound-state function, which is again either factor
of the residue of the Green's function of the sys-
tem at the pole corresponding to a given bound
state. It is straightforward to show that complex-
energy eigenfunctions have normalization and
orthogonality properties analogous to bound
states, ' and can form part of a basis for eigen-
state expansion, in the sense that a quantum me-
chanical state 4 can, under weak restrictions,
be expanded as a sum over discrete bound and
Gamow states, plus a contour integral over con-
tinuum states. ' The choice of contour determines
the number of Gamow states included in the dis-
crete sum, and also the set of functions 0 which
may be so expanded. The situation is quite remi-
niscent of Hegge-type representations of the scat-
tering amplitude, in many ways.

Some confusion has resulted over the connec-
tion of Gamow states to the familiar Hilbert
spaces of scattering theory. Berggren' has shown
that norms can be introduced for Gamow states
such that many analogous mathematical properties,
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concepts, and methods are indeed shared by bound
states and complex-energy eigenstates. The appli-
cation of sum rules to Gamow states remains a
delicate question, since the contribution of the
contour integral over continuum states has not
been shown to be positive. However, if most of
the single-particle strength resides in a few low-

lying bound states and resonances, as is the case
in the present analysis, there would seem to be
no difficulty in practice.

Use of Gamow states presents a second diffi-
culty stemming from their asymptotic behavior.
A recent review by Huby' gives a succinct dis-
cussion of the available remedies for this and
other divergences in scattering theory. In the
work presented here, we use the so-called Abel
method of regularization of the integrals involving
Gamow states, ' ' as discussed later.

Complex-energy eigenstates were obtained, for
the analysis reported here, using a greatly modi-
fied version of the program NEP, "to solve the
differential equation

[(-k'/2 p, )(d2/dr' —l(l + 1)/r') —E + U»(x)] g„(r) = 0,

tected within solid angle element dQ~, is

Pv 2I P~ I ~~I f1~ B 2J~ + 1
d Q p dE„7t'6'k„'k~ k„A. 2J„+1

pmm pm'
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where pp&" & is defined as in Refs. 12-14, and
contains the radial overlap integrals

fI z ~ z„= Xz, ~ (Ak~r/B)[X„(k„r)/r]

x X~ ~, (k, ~)dr . (4)

10
8.89 MeV, BS

Here the form factor is X»(k„r), the radial state
function for the continuum neutron, which for
E„=E&has the form

X»(kr) = - . , & O&(k„x)+X» (k„r). (5)
n E 2 l

Here g', is the "background" phase shift and

O, (k„~) is a purely outgoing wave, while X"„"is

where U»(r) consists of a real Woods-Saxon po-
tential plus a Thomas-type spin-orbit potential,
and the c.m. energy E is complex. The boundary
conditions imposed on g» are that

I.O

0.1

and

g„(0)=0 (2a)
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g„.(r) = [2p ( El)/0'k]'"[-G, (k, r) +i E, (k, r)] .

(2b)

I.O

Here EI is the imaginary part of E, k is the wave
number corresponding to E, and F, (G, ) is the
regular (irregular) Coulomb function for complex
E." Note that in our specific case the Coulomb
parameter q =0. Boundary condition (2b) is satis-
fied by an automatic search on E for a given
U„." The complex-energy eigenstate so con-
structed uniquely corresponds to the single-parti-
cle resonance whose pole occurs in the single-
particle Green's function at energy E.

To see more clearly how the complex-energy
eigenstate is used in DWBA, consider the process
A(d, P)B*-A+n, in which a low-lying neutron
resonance is populated by a deuteron stripping
reaction. The cross section for the process which

puts a neutron into the continuum at an energy
between E„and E„+dE„, when the proton is de-

O.I

I I I I I I I I I I

20 60 IOO 20 60 IOO'

~c.m.

FIG. 1. The 36Ar(d, P)37Ar cross sections at 9.16-MeV
center-of-target energy, from Ref. 1, for the neutron-
unbound states at 8.89 and 9.01 MeV in excitation. On

the left are results of DWBA calculations using the op-
tical potentials of Ref. 1 and conventional form factors,
for neutrons bound by 0.1 MeV. The solid curve is for
P~/2 transfer, the dashed curve for f5/2. Spectroscopic
factors are given in parentheses. On the right are re-
sults of DWBA calculations for the same states, using
Eq. (8) and the Gamow functions for p f/2 and f5/2 reso-
nances (see Table).
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where PP",.~ P contains the integrals

X«(Akpr/B)[O&p(k„p)/r]X~ ~, (k„r)dr. (7)

the nonresonant part of X».
The discrete proton groups corresponding to

neutron-resonance population, observed in
A(d, p)B*-A+n, sit on a background which con-
sists in part of a proton continuum from three-
body breakup, A(d, nP)A. This process would be
described using g»" as the form factor and eval-
uating Eq. (3) directly (see, e.g. , Ref. 12), but
it is not of concern at present unless it interferes
strongly with A. (d, P)B*-A+n. Near resonance
then, one simply omits X» .

Since the energy dependence of O, (k„r),
Xgp J'p (kp 0 ) and Xg~ Jg(kg r) is negligible within the
small interval +l,' around E„, for an observable
single-particle resonance, one can factor the
strong energy dependence of the first term of
Eq. (5) out of Eq. (3) and do the E„ integration
analytically. One obtains

plex k„. Then

d D,p ~g' u, 'up g 2Z~+ 1

x Z IZ c„,P-."I'
jmmdmp l s

where P„, contains the overlap integrals

(8)

f XI. ~ (Akpr/B)[ g»(k„, r)/p'] X~ ~, (k, p)dr (9)

and is thus identical to the P defined by Satchler"
with g,",/r as form factor. In performing the inte-
gral (9) with Gamow functions, a Gaussian weight-
ing factor exp( np"') -is inserted and the limiting
value, as n goes to zero, used in Eq. (8).' ' "

The limit is obtained by a quadratic interpola-
tion. ff n„=nn, (n =1, 2, 3), the limiting value of
the overlap integral, I(0), is simply taken as
3[I(n, ) —I(o.,)]+I(n,). The advantage of this pro-
cedure is its simplicity and speed. Thus by re-
peating the calculation for smaller and smaller
starting values of n, the reliability of the con-
vergence is readily studied. The starting value
for n, in the calculations reported here is 0.005
fm ', or more generally, n, =10/R, ', where R
is the outer radial cutoff of the integral (9). For
such small n one might expect the convergence
to be very slow, ' but in practice it is found that

Taking the factor (iL„„I',~/k'k„) inside the integral
now gives a cross section identical in form to that
given in the usual two-body DWBA, "and also per-
mits one to continue the expression for P to com-

io'
Pf/2 neutron + Ar E (0.22,-0.IO) MeV

TABLE I. Complex-energy eigenstates and results
of analysis.

At

System /, . E„H,eal (E) Imaginary (E) Vo S&p IO

8 + Ar ~1/2
36

f5/2

~ 1/2

8.89 0.10
0.10

9.01 0.22
0.22

-0.029
-2.3x 10
—0.10
—3.1x 10-'

49.96 0.11
57.80 0.08
49.06 0.08
57.57 0.05

+38A

f5/2

~ 1/2

f5/2

P 1/2

f5/2

~ i/2

f 5/2

fS/2

f5/2

f S/2

f@2
f5/2

f S/2f5/2

7.22
7,34
7.40
7,50
7.56
7.63
7.73

6.79 0.20
0,20

7.00 0.41
0.41

7.06 0.47
0.48

7.14 0.54
0.55
0.63
0.75
0.81
0,91
0.97
1.038
1.15

—9.0x 10-2
--2.3x10 '
-0.31
—2.7x 10
-0.42
-4.7x 10 4

-0.59
—7.6x 10 4

—1.2x10 '
—2.1x10 '
—2.8x10 3

-4,0x 10 3

—5.0x10 '
—6.23x10 3

-8.77x 10 3

47.55 0.18
55.48 0.12
45.70 0.028
55.07 0.023
44.96 0.017
54.93 0.021
43.96 0.004
54.78 0.016
54.62 0.023
54.38 0.025
54.25 0.019
54.06 0.017
53.93 0.011
53.79 0.025
53.55 0.029

l0 t5
(fm}

20 Z5

FIG. 2. A comparison of complex energy eigenstate
and bound-state functions for the p&/2 neutron plus 36Ar

system. The dot-dash curve is the modulus of the radial
state function of a 2p&/2 neutron bound by 0.1 MeU, while
the solid and dashed curves show the moduli of the real
and imaginary parts, respectively, of the Gamow func-
tion corresponding to the p f/2 neutron resonance at
(0.22, —0.10) MeU. See also the lower half of Fig. 1.
Note the close similarity of the bound-state function and
Gamow state function within the nucleus, in shape and
magnitude. Potential parameters are as given in the
text and Table I.
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quite stable results are obtained for practical
values of 8, (say, 40-100 fm) and practical num-
bers of partial waves (say, 30-50). See also
Ref. 16.

The cross section resulting from such a limiting
process is indeed found to be stable to within a
few percent against wide variations in numerical
methods, parameters, and procedures. Note that
C„& has exactly the same significance as for
bound states, " as should be clear from Eq. (8).
Thus, spectroscopic factors are extracted, as
usual, by S~, =do', „p/doD~~„.

The genuine divergence of Eq. (9) requires
some effective regularization method. For ex-
ample, in the case of the "Ar(d, P)"Ar (P„„9.01-
MeV) transition, if a fixed value of ft, =40 fm is
used and no convergence factor is inserted, the
cross section at forward angles is in error by
50% and unrealistic oscillations are observed in
the angular distribution. The pathology is of
course not cured by increasing R, or the number
of partial waves, although large enough R, and
enough partial waves would guarantee convergence
of Eq. (7).

At this point a legitimate question may be raised.
The radial integral, Eq. (7), as it stands, is con-
vergent. ' Basically the convergence of the radial
integral over three distorted waves is a conse-
quence of the partial wave expansions, and inter-
change of summation and integration, which are
crucial to the conventional derivations of the two-
or three-body DWBA cross section. "'" Con-
tinuation of Eq. (7) to complex k„renders it a
divergent integral, evaluation of which necessi-
tates the use of some forceful regularization tech-
nique. Hence, why use Qamow states at all'?

Restricting the discussion to single-particle
potential resonances, as we do here, clarifies
the question somewhat. Since the scattering prob-
lem can be solved "exactly, " the apparatus of,
say, shell-model reaction theory is unnecessary. 4

Hence the choice is between use of the full, reso-
nating distorted wave [Eq. (5)] and the Gamow state
g»(x) But g„.(k„r), evaluated at the resonance
energy, is not the state function of the resonance
in a quantum-mechanical sense. A remedy, which
is time-consuming, is to compute X,~(k„r) at a
number of energies in the vicinity of the resonance
and perform the E„ integration leading to Eq. (6)
numerically. Even further, the slow convergence
of Eq. (7) requires a time-consuming, careful
numerical radial integration. Finally, one will
not directly obtain the single-particle width of the
resonance.

By going to the resonance pole itself one ren-
ders the radial integral strictly divergent but,
assuming a speedy remedy for the divergence,

IO
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60 100
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FIG. 3. The Ar(d, P) ~Ar cross sections at 10.06-
MeV center-of-target energy, from Ref. 2, for the four
neutron-unbound states from 6.79 to 7.14 MeV in exci-
tation. The solid curves are results of DWBA calcula-
tions using Gamovr functions, as explained in the text,
assuming P f/2 resonances. The dashed curves are for
f&&2 resonances. Optical potentials are those of Ref. 2.
Spectroscopic factors and resonance parameters are
given in the Table.
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the saving in time and labor is remarkable. The
Gamow state is as fast and easy to compute as
the conventional bound-state form factor, and
so is the resulting DWHA cross section. Thus,
conventional DWBA programs may be used, with
straightforward modification. We would claim
no more than this for the approach suggested
here. It is of course also intuitively satisfying

to describe the decaying resonant state by a
nonstationary, decaying form factor, which the
complex-energy eigenstate provides.

III. ANALYSIS AND SUMMARY

In Fig. 1 are shown DWBA fits to the 36Ar(d, P)
cross sections, at 9.16-MeV deuteron energy,

I.G .— (o)

I.O =

G. l

O. l

I.O;

I.O:
u&

JQ
E

C)
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O.I,
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F G. l

I.O:

I.G—

O.I:
G. I

I I 1
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cm ~dsg)
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FIG. 4. {a) The 38Ar(d, p)3~Ar cross sections at 10.06 MeV, from Ref. 2, for the four neutron unbound states from
7.22 to 7.50 MeV in excitation. Solid curves are results of DVfBA calculations using complex-energy eigenstates, as
explained in the text, for f&2 resonances. Optical potentials are those of Ref. 2. Spectroscopic factors and resonance
parameters are given in the Table. (b) The 3 Ar(d, p)39Ar cross sections at 10.06 MeV, from Ref. 2, for the three neu-
tron unbound states from 7.56 to 7.73 MeV in excitation. Other information is as given for Fig. 3.
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for population of the 8.89- and 9.01-MeV states
in "Ar. On the left are conventional DWBA calcula-
tions assuming the states are bound by 0.1 MeV,
while on the right are DWBA calculations using
complex-energy eigenstates. In the Table Vp

is the depth of the real Woods-Saxon potential
used to compute the complex-energy eigenstate.
Other parameters are r, = 1.19 fm, a, = 0.65 fm,
V„=5.8 MeV, x„=1.19 fm, a„=0.65 fm. Opti-
cal parameters are those used in Ref. 1, and a
D,' value of 1.58 &&10 MeV' fm' is used in all cal-
culations. "'" The pole positions found and the
resulting spectroscopic factors are summarized
in the Table. Single-particle widths may be de-
duced from column 4, ImE. For these low-lying
resonances, close agreement in magnitude between
Gamow function (GF) and weakly bound-state (BS)
cross sections is anticipated, and is found. As-
suming the 8.89-MeV state is P», one has 8'
=0.12, S =0.11, while assumption of f», gives
S =0.07, S =0.08. Similarly if the 9.01-MeV
state is p„„S's=0.11, S "=0.08, or if it is f„„
$ =8 = 0.05. Without reliable data for c.m.
angles less than 30' it is difficult to distinguish

f», from P„, at these excitation energies. '
A comparison of the complex-energy p„, neu-

tron eigenstate, used in the 9.01-MeV state cal-
culations, with the corresponding bound state, is
shown in Fig. 2. Thus these are the form factors
relevant to the lower half of Fig. 1. Only the

region from the origin to 30 fm is shown, al-
though the state functions were originally com-
puted to much larger distances. The striking
similarity of bound and Gamow states in shape
and magnitude is clearly seen. For a further
comparison, including other types of unbound
state functions, see Befs. 16 and 17.

Turning to "Ar(d, p) cross sections' for popu-
lation of 11 resonances between 6.79 and 7.73
MeV in excitation, as shown in Figs. 3 and 4, it
is again assumed the resonances are either P„,
or f„,. Other l~ values were tried, e.g. d„„
but only P„, and f„,give reasonable agreement
or coincide with expectations from the analysis
of lower-lying states. ' Spectroscopic factors
are given in the Table, and the optical parame-
ters used are those of Sen et al. '

In the study of bound states in "Ar from 0.0
to 6.49 Mev in excitation, it was found that Q; S,
is 0.81 for p„, and -0.24 for f„,.' If we assign
every resonance observed to be f», the sum rises
to -0.57. Assigning the lowest one or three reso-
nances as P„, would essentially completely satisfy
the P„, sum rule.

In summary, treatment of stripping to frag-
mented single-particle resonances is seen to be
reasonably straightforward even when complex-
energy eigenstates are used to provide resonance
form factors.
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