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The electromagnetic current j, due to the exchange of a charged pion between a neutron and a
proton is rederived by comparing the bremsstrahlung matrix element computed from the Schrodinger
equation with that obtained from the lowest-order Feynman diagrams. No account is taken of
renormalization effects or nucleon resonances. The operator Jd'xj, (x)e i"'" which is needed for
neutron-proton bremsstrahlung calculations is evaluated, and an approximation to it obtained as an
expansion in powers of (photon energy)/(pion mass), keeping the first two terms. This is expected to be
considerably more accurate than expanding the bremsstrahlung matrix element itself in powers of k.
The second term in the expansion contributes to 'So 'S, transitions and may become significant even

for small values of k/p, . As a preparation for actual calculations the operator is rewritten in terms of
irreducible tensors. The treatment of nonlocalities other than charged-pion exchange is discussed briefly.

I. INTRODUCTION

It has been suggested that nucleon-nucleon (N-Ã)
bremsstrahlung experiments could be used to dis-
tinguish between the off-energy-shell behavior of
different potentials which have been fitted to elas-
tic N-N scattering data. Implicit in this notion is
the assumption that one knows the N-N electro-
magnetic charge and current density operators.
However, all of the realistic potentials contain
nonlocal and exchange terms, and in their pres-
ence the usual operators, p, (x) and j,(x), shown
in Eq. (2) are not conserved.

It is well known that the requirement of current
conservation alone does not uniquely determine
the form of the operators (pm, j,) which must be
added on to (p„j,). If the nonlocal (or exchange)
potential is strictly phenomenological, one will
not be able to decide which is the correct' choice.
If, on the other hand, the nonlocal potential was
derived from some theory, such as the exchange
of a meson between the two nucleons, then one
can go back to that theory and introduce electro-
magnetic interaction into it (e.g. , by the minimal

. substitution for every particle including the me-
son). (p„j,} are then determined by the require-
ment that the complete operators (p =p, +p„j
= j,+ j,) used in conjunction with solutions of the
Schrodinger equation containing that nonlocal po-
tential should yield the same matrix element that
the above described theory gives. (p„j,) found
in this way are, in general, not the same as those
obtained by making the minimal substitution di-
rectly in the nonlocal potential. ~

Since the realistic potentials have some non-
local terms which are phenomenological and some
which come from meson theory, it is fortunate
that we are permitted to focus on one at a time.

At the least this is true if p, is chosen to be zero,
for then j, is linear in the nonlocal potential.
This is already clear from the work of Osborn and
Foldy, ' and will be shown explicitly in Sec. II.
While we cannot justify setting p, =0 in general,
it is correct in the nonrelativistic limit for
charged-scalar' or pseudoscalar meson exchange.
The latter result mill be obtained in Sec. III.

For the neutron-proton system there are terms
in the realistic potentials which exchange the
charge of the nucleons, and the one with the long-
est range arises from the exchange of a pion,
V ~. We do not consider any further in this paper
the contribution to the current coming from the
other nonlocal terms in the potential, except for
some comments in the Discussion, Sec. V.

The procedure we follow, as described above,
is to write down the Feynman diagram for single-
pion exchange, Fig. i, attach a photon wherever
it can go, Fig. 2, and say that this defines the to-
tal current operator to order eG' where G is the
pion-nucleon coupling constant. (This was done in
Ref. 2 for a charged-scalar meson, and regarding
the potential as an exchange of the spatial coordi-
nates. Here we are interested in the pseudoscalar
case, and use isospin notation. ) (p„],) can be
identified as the portions of Figs. 2(a)-2(d) in
which the radiating nucleon propagates in a posi-
tive energy state; (po2PE, joPE} is defined to be the
remainder [including Fig. 2(e)].

The result of this part of the paper is not new,
and was already used in a remarkable paper, con-
sidering the date, by Villars, on the pion-ex-
change-current contribution to the magnetic mo-
ments of '8 and 'He. The formula for joap appears
for the first time, to our knowledge, in Wahlborn
and Blomqvist. '

Although (p, +poP, j, + joPE ) would be a con-
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FIG. 1. The one-pion-exchange diagram.

served current if V were the only nonlocal term
in the potential, this does not guarantee that this
current is correct even for such a potential. For
we know that diagrams other than Fig. 1 contrib-
ute to the renormalization of the coupling con-
stant which appears in V, e.g. , Fig. 3, and one
should insert a photon at all possible places in
this diagram as well. The resulting set of dia-
grams is gauge invariant, as are the photon in-
sertions on Fig. 4. It is only to the extent that
diagrams such as those shown in Fig. 5 are un-
important, that we are justified in saying that Fig.
2 correctly gives the one-pion-exchange current.

If other particles or other couplings are intro-
duced into the theory then additional diagrams are
present, e.g. , Fig. 6. If the heavy line in Fig. 6
represents a spin —,

' particle such as the A(1236),
then the sum of these two diagrams is gauge in-
variant. The corresponding diagrams without the
photon are identically zero, and therefore contrib-

ute nothing to the one-pion-exchange potential.
Lacking a fundamental theory, it is unclear to us
whether or not the electromagnetic current as-
sociated with Fig. 6 should be included. All we
can say is that it is not forced on us by the non-
locality of V . So much for the philosophy be-
hind this paper.

In Sec. II we write down the Schrodinger equation
for two particles interacting with each other via a
potential which is allowed to be completely non-
local and fairly general with respect to isospin
dependence. In searching for a conserved current,
we identify the customary operators p, (x) and

j,(x), and obtain an expression for V ~ j,(x).
The contribution to j, from the exchange of a

pseudoscalar meson is considered in Sec. III where
the formula for j, is verified. In Sec. IV we find
the general expression for jd'xjo2PE (x)e '"'", the
operator needed for bremsstrahlung calculations.
This operator is expanded in powers of k, keeping
the first two terms, and is then rewritten in terms
of irreducible tensors. The magnetic moment
operator m P is also obtained.

A general expression for the k=0 limit of the
operator is obtained in Appendix A. Appendix B
contains a discussion of the "recoil" emission dia-
gram. Some of the angular momentum formulas
needed to obtain Eq. (17)are collected in Appendix C.

II. CONSERVED CURRENT WITH NONLOCAL AND EXCHANGE POTENTIALS

The Schrodinger equation for two nucleons of mass m is written

The isospin dependence is made explicit by writing V= V~+ V~Ti T2 where the terms VD and V~ stand for
direct and exchange potentials. Other isospin dependences are possible but we shall not need them. VD

and Vs a,re operators in the (Pauli) spin space of the two nucleons, and the spin and isospin dependence in

FIG. 2. (a)-(e) The five Feynman diagrams which are considered in this paper as defining the electromagnetic
current operator eG2.



ONE -PION-EXCHANGE -CURRE NT CONTRIBUTION. . . 2357

the wave function has been suppressed. Translation and Galilean invariance and Hermiticity require' that

& r„r, ( V(r,', r,'& = d'&(R- R') & r( V(r'),

& r( VI r'& =
& r'( Vr(r&+,

where R=-,'(r, +r, ) and r=r, -r, .
One writes down the equation corresponding to Eq. (1) for gz, multiplies the former on the left by

ieg -jr, , where t~'" =--,'(lax'), the latter on the right by -ievfP, , and subtracts the two, integrates over
d'r„and then relabels r, as x; repeat using v~» this time integrating over d'~» and then replacing r, by
x. Summing the two results, and defining

d'r, tjp(x, r2)v fg, (x, r,)+ d'r, gp(r„x)7 f g, (r„x)
v

&gz I j,(x)I g;) = . d'r, gp(x, r, )sf V„g,(x, r,)+
~

d'r, gp(r„x)7'f V„g,(r„x)
R

+ curl„dsr, gz (x, r2) p, g, (x, r~) + curl„d'r, gf(r„x)g,g, (r„x}, (2b)

where p V&t =y Vy-X Vp, and p, =[vfp~+T", 'p" ]cr„ the current is seen tobe conserved, that is,

—,', &y, lp, (~)lq,.&+~ ~
&y, lj, (x)+ j,(~)ly, &=o

provided

V'. &r„r, l j,(x)lr,', r,') =-,'ed3&(R-R')

x & rl i V[6&'&(x —r, ) - 8'&(x —r,')+6&'&(x —r, ) —6&'&(x —r,')]
+ir', {Vn[d'&(x-r, }-d'&(x-r„')]+V [d'&(x-r, )-d'&(x-r,']}
+is~{V~[@'&(x—r, ) —6~'&(x —r,')]+ Vs[@'&(x-r,) —6~'&(x —r,')]}
+ (T, x T,)'Vg [@ &(x- r, ) —6~'&(x —r, )+6't'&(x —r,') —6't'&(x —r,')] I

r') . (4)

The second set of terms in j,(x}is the current due to the total magnetic moments of the particles and is
conserved by itself. p"'~ is the total magnetic moment of the neutron (proton); p, "=Z"gs, p~=(1+K~)lja, i&s

= e/2m, and K"= -1.91, K~ = 1.'l9.
The solution of Eq. (4) for j,(x) has considerable arbitrariness, since the curl of any vector field can be

freely added on. Osborn and Foldy' expressed some of this arbitrariness by writing

j, = Vs(7, x&,)'$(x, r„r„Px„o,) + (other isospin dependence which is divergenceless),

where V„~ $ =6~'&(x-r, )-6~'&(x-r, ). [They were
concerned with a charge-exchange potential with
no spatial nonlocality, so that only the third term
on the right-hand side of Eq; (4) is present. The
one-pion-exchange potential is of this type; see
Eq. (6).] Although the vector field ( has consider-
able pedagogic value, and is simple for charged-
scalar-meson exchange, ' it is not a convenient
thing to do for a pseudoscalar meson arid we work
directly with j,.

In the next section we obtain a unique expression
for j, by the requirement that the bremsstrah-
lung matrix element computed with this current
agrees with a certain set of Feynman diagrams in
the nonrelativistic limit.

It is clear from Eq. (4) that if there is more than

one nonlocal (or exchange) potential in the Hamil-
tonian, one may construct j, by adding a separate
contribution for each term in the potential.

Note that it is trivial to generalize all of the
above formulas to a system of more than two nu-
cleons, since j, is just a two-particle operator.

FIG. 3. A contribution to the renormalization of the
pion-nucleon coupling constant.
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III. ONE-PION-EXCHANGE CURRENT

%e first state the result' for the one-pion-exchange current:

(r„r, ~

p~opE (x)~ r,', r,') =0,
g2

x 6~"(x —r, )o, (g, ~

-pl x-j;2t

-Ift x-r ~t
—d" (x —r, )o,(o, V„) x ri

e-P, )x-r j. t 8-PIX-r2t

where f '=(G'/4w)(p. /2m)'=0. 08, and p and m are the pion and nucleon masses, respectively. One checks
directly that V„~ j,(x) satisfies E{l. (4) using the expression

& r ( V "'
(
r') = 5'"(r —r')~, r Vo" (r)

where

(r)=—(o ~ )({Y '~ )

This guarantees that (p„j,+ joPE) is a conserved current if VopE is the only nonlocal (or exchange potential
in the Schrodinger equation.

%e will now verify that the bremsstrahlung matrix element,

{Rw)"{{'{Pz+k—P, ){a,M, -e M)=({z {xe '"'*{a,P{x)—Z j{x) {,."), (7)

where k, c are the momentum and polarization of the photon, computed to olde~ eG with p =p, and j = j,
+ j, , and using wave functions which are solutions of the Schrodinger equation containing V PE as the
only potential, agrees with the field theory calculation, i.e., the five Feynman diagrams in Fig. (2). This
is correct in the nonrelativistic limit for the nucleons, i.e., terms of order (P/m) and higher are neglect-
ed.

To order G', the initial wave function needed in E{1.(7) can be written

y(+&(r r ) =e~Pz 'x e~&2'''a

(8a)

where

(%a~ q2IV Ipi Pa) =(2{{')& (pi+Pa Qi-92)"i' 2V(pi-&h)~

(o, p)(~. p)
(2m)' ~p+ p'

with a similar expression for g~ involving p,
' and p,'. Using E{ls. (2), (5), ('1), and (8) one obtains

(8b)

T; (7, 7, ) (r, f;)r;M'(G')=em+
~

'
~, ', —

)
— '

@
',

)
V(p)-p,'-k),I — ~+g pQ '

g

M, (G') =eg V(p,. -p,'-k)

(p; ——,
' k)-k (p{ —~k

k} V(~ ~g k)
( j 2)( V, )

mk —k (p) —2 k)
(9b)
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(Qc)

II = Gy (x)y, 1 y(x) q&(x) + e y(x) y „T~((x)A & (x)

+ e y(x) x A" (x)+ ,' ps g(—x)(&~7~+%"v")o„„g(x)E~'(x),By x)
ex p.

where g(x) is the nucleon field, A (x) is the photon field, P(x) is the pion field, o„„=(y„y, —y„y„)/2i, and
E ""(x)= BA"/Bx„- BA"/Bx„. The first three terms in Eq. (10) couple the pion and nucleon, photon and nu-
cleon, photon and pion, respectively, while the last term is a Pauli coupling which describes the anoma-
lous moment of the nucleon. The Feynman diagrams of Fig. 2 lead to the following results. For the time
component, Fig. 2(e) contributes nothing, and the sum of Figs. 2(a)-2(d) equals the Schrodinger result,
Eq. (9a).

(10)

,p„ „ G , x „ o, ~ (p,
' —p, ) v, ~ (p,

' —p, )
j2mj (p, -p, +V ~p, -p2j +p

[o, (p,'-p, )][a, (pa-p. )l
[ (~l ~

)2 2][ (P~P.
~

)2 + 2] (P2 Pl Pl P2)

where M, is the matrix element due to j, and M, due to j„with M = M, + M2. The three terms in Eq. (9c)
correspond, respectively, to the three terms in Eq. (5). The symbol G' on the left-hand side of Eq. (9)
is a reminder that the calculation has been carried out only to that order.

We now wish to compare the result in Eq. (9) with the bremsstrahlung matrix elements corresponding to
the Feynman diagrams of Fig. (2). In order to do this we use the following interaction Hamiltonian,

M'=0e

u.'+)if,'+ m', + u', = uo(G') .
This is the reason for choosing p, =0. For the spatial components

(11b)

2

M, +M, +M, +M~=ie (,, (7, x v, )'2mj
[o, (pl -p, )J - [o. (pl -p.)]-I~I,~ &2 2 o2 I~I ~ s2 2 ai ™1iG)I
W& -pi& + g &p2-p2j + g

(1lc)

[&2'(P2-P2)J [&i'(Pi -Pi)] I + I i)M, =ae
(2 )2

(7', &2) [( p ~
)Q 2] [@1 ~ )2+ 2] &2 Pl Pl PRi&

where M, (G') is the result found in Eq. (9b). Adding Eqs. (llc) and (11d), and also Eqs. (9b) and (9c)
shows that

1VI, +M~+M, +M„+M, =M, (G )+1VI, (G').

(lid)

(12)

In Eqs. (lla)-(lid) terms of order (P/m) and
higher a~e neglected. It is thus verified that in
the nonrelativistic limit the matrix element gen-
erated by (p„],+12PE) to order eG' is the same as
that corresponding to the Feynman diagrams of
Fig. (2).

The first two terms in Eq. (llc) arise from the
portions of diagrams 2(a)-2(d) in which the propa-
gating nucleon is in a negative energy state. The
positive energy portions of those diagrams yield

M, (G'), the result obtained from the Schrodinger
equation with the normal current. Comparing Eqs.
(11c) and (11d) with (9c) shows that j2oP corre-
sponds to radiation from the exchange pion plus
radiation from a nucleon in a negative energy
state. The anomalous magnetic moment does not
contribute in the negative-energy states, and in the
positive-energy states merely adds to the Dirac
term to give the total magnetic moment.

The diagrams in which a nucleon radiates while

I
f
l

~g

FIG. 4. The two-pion-exchange diagrams.
FIG. 5. Additional contributions to the one-pion-

exchange current which are not considered in this paper.
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pi

k$ 'iq

FIG. 6. Nucleon resonance contribution to the one-
pion-exchange current. (Not considered in this paper. )

in a positive-energy state can be further sub-
divided according to the time ordering of the pion
interaction on the nonradiating nucleon, as shown
in Fig. 'l. Figure 'l(a), in which thephoton is radi-
ated while the pion is in flight, is referred to as
the nucleon recoil diagram, and it is sometimes
stated that this contribution is not contained in the
Schrodinger matrix element M, (G2). We show in
Appendix B by direct calculation that this state-
ment is incorrect. The sum of the three contri-

P) P~
0

FIG. 7. (a) -(c) Time-ordered diagrams.

butions in Fig. (V) (plus the other three sets of
three, where the photon comes off the other pos-
sible nucleon legs) gives a better approximation
to M, (G') than if the recoil emission diagrams are
omitted. This means that one should not add the
recoil current as as additional piece when doing
calculations with the Schrodinger equation.

IV. GENERAL EXPRESSION FOR THE BREMSSTRAHLUNG MATRIX ELEMENT, Mo~~

Having verified that the one-pion-exchange current is given by Eq. (5), we would now like to compute
its contribution to a neutron-proton bremsstrahlung matrix element using wave functions which are solu-
tions of the Schrodinger equation with an arbitrary potential. According to Eq. ('7) this requires the calcu-
lation of

~

d'xe ' "'" j oP (x) .

From Eq. (5) we find

2
d'xe '"'"(r R~ j (x)~ r' R') =5'(R-R')5'(r-r')e '"' e—(f, x )r'.

P
-pr -pr--'k k.rX e- —,kk r

2 r y 1 1 r r 2O +e"k' Cr V

where

——,[a, (i V„+—,
' k] [o, ~ (i V„-—,k] V„I(k, r) (13a)

(13b)

[If the spatial wave functions which multiply Eq. (13a) are taken to be plane waves, then the matrix ele-
ment reduces to Eq. (Qc).]

For actual bremsstrahlung calculations it is convenient to have an analytic approximation to Eq. (13b).
This can be obtained by expanding the integrand in powers of k'/(p'+ p') and [k q/(p'+ p, ')]'. If k (& p
this expansion is valid over the entire range of integration. But even if k = JLt. , the approximation fails only
for small q where the integrand is small, so we expect to obtain good results even for moderate values of
k/p. Proceeding in this way yields

m2 „1k'
I(k, r)= —e "' 1-—— (1+gr+ —,'g'r' co' s)8+6(k~)

p, 12 p.

where g is the angle between k and r.
To see how well the approximation works, we made a Legendre polynomial expansion of Eq. (13b)

00 e OO

I (k, r) =—g (2l+ 1)i'P, (cos 8) dq,
even l s'o ~ 0 (g +p, +k 4

(14)

(15)
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with z—= (q'+lL'+ka/4)/kq, and performed the integrations on q numerically. (The l=2 term is only two
percent of the I=0 term even for a photon energy of 200 MeV. ) The results are shown on Fig. 8. For a
photon energy of 50 MeV, the first term in Eq. (14), which is independent of k and e, is an extremely good
approximation of I(k, r). For k=150 MeV (which is larger than the photon energies measured in any of the
existing neutron-proton bremsstrahlung experiments) the second term in Eq. (14) is starting to become
important, and including it gives a very good approximation.

Taking only the leading term from Eq. (14), expanding the factors of e»i'"' in Eq. (13a) out to the linear
terms, and carrying out the integration over the c.m. coordinate we obtain

2
MopE=-e d'rq)z (r)(r, x T,)' r V (r)+i ——x N(r)+6(k') (t)I'}(r},

1

where

(16a)

1 cr~ xo2' r
N(r)=- 1+— ' ' r-o xo e ""

2 (16b}

and the y's are the wave functions for the relative
motion.

If M, is sufficiently large compared to the rest
of the bremsstrahlung matrix element, M„(and
if the experimental accuracy is great enough), then
it may become necessary to include the k' term
in Eq. (16a). This receives contributions of the
form (k r)' and (o, k)(o, k} from Eq. (13) as well
as the k' term from Eq. (14), and would be a
straightforward addition to the calculation. In the
limit k-0, Eq. (16a) agrees with the result found
in Appendix A.

Note that the first two terms of the expansion of

fd'xj, (x)e ' "'" can give a very good approximation
to M, even when the first two terms of the ex-
pansion of M2o'E itself (or the full bremsstrahlung
matrix element M) is not a good approximation.
This is due to the fact that the k dependence of the
u)ave functions can be considerably more compli-
cated than that of the operator.

In order to project out the partial waves it is
convenient to write Eq. (16a) in terms of irreduc-
ible tensor operators. The details are given in
Appendix C, where the square bracket notation for
coupling angular momenta is defined, and the re-

suit is shown in the following expression,

e M, =-e(4m)2 'f'g (-1)" d'reap(r)p, x7,)'e ""
N =-1

x ~ „)[Y —,'+ +, , (vY(I;(r)x[o, xa,]'j'„N 5 3 ~y ~2y 2

)( 2 (F2(r) x [o2 x o»]2j2„) —,'(I'2(r) x[v» xo»]oj'„

——(2 x (k) x (1+ )[Y(k)x [—2, x ir,,]'}'„

+~2(1- [Y(r)x[YY, xv ]'}'„+8(k) kk(r).
2p. f' (17)

The term e„ in Eq. (17) comes from r V (r) in Eq. (16), while the term (exk) „arises from if'k
xN(r)/2p, . It is seen from Eq. (17) that the latter term contributes tothetransitions "8,—'S, of the neutron-
proton system (while the former does not), . and because of the importance of these states this operator may
become significant even for small values of k/t».

It is of some interest to evaluate the magnetic moment operator due to the current j, . This was first
done by Villars. ' From the definition of the magnetic moment operator

m -=—,' d'xxx j (x)

= lim —curl» d'xe ' "'"j(x)
@~0

(18}
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it is seen that if the quantity fd'xe ' "'"
j 2opE (x} is expanded in powers of k only the term of first order in

k will contribute to mops. From Eqs. (13) and (14)

{r, R~ d'xe ' '"
j o x (x)

~

r', R') = -e(v, x 7,)'6'(R —R')6 (r —r')

2

x r VoPE(r)+i ——xN(r) —i(k R)r V (r)+ 8(k') (19)

Combining Eqs. (18) and (19}gives the local operator

mops = ——,
' e(r, x r,)' [f'N(r)/p, + (Rx r) V (r)]

which is Villars' result.

V. DISCUSSION

We have obtained the electromagnetic current
operator due to the exchange of a charged pion,
and have expanded its Fourier transform in powers
of the photon's energy. The contribution to the
bremsstrahlung matrix element from this current
is shown in Eq. (16). In Eq. (17) the matrix ele-
ment is rewritten in terms of irreducible tensors,
and this (together with the formulas in Appendix C)
is all one needs to incorporate j, into calcula-
tions of neutron-proton bremsstrahlung.

What should be done with the other nonlocal and
exchange terms in the neutron-proton potential'P
If these potentials were obtained from Feynman
diagrams, one could attempt to carry out the same
program as was done here for single-pion ex-
change by inserting a photon at all possible places
in these diagrams. For the exchange of a single
heavy boson one will obtain a good approximation, '

l2—

lO—

I

E 8—
LL.

6—

0
2

r (fm)

FIG. 8. The function I(k, r) defined in Eq. (13b), for
cose =1, where 0 is the angle between k and r. The low-
er solid curve is an exact evaluation [obtained from
Eq. (15)] for k=150 MeV. The dashed curves are the
approximation given by Eq. (14), in which terms of or-
der k 4 are neglected. The upper solid curve is the simp-
lest approximation which neglects all k (and 8) depen-
dence. At k =50 MeV the exact result (not shown) falls
between the two approximations. Even at k =150 MeV
the simple approximation 7t' e &" /~ is not bad.

for values of k which are not too large, by using
the k=0 limit of the oPexatox, as given in Eq. (A2),
Appendix A. [This is the generalization of the
first term in Eq. (16a) to the case where the direct
and/or exchange potential are nonlocal. ] Equa-
tion (16a) shows that the corrections to this opera-
tor are of order (photon energy)/(meson mass),
and will be small for a heavy meson.

The most important diagrams for which this ap-
proximation is not adequate are those which give
rise to the two-pion-exchange potential. One
should compare the sum of all such diagrams in-
volving a photon, to the Schrodinger equation cal-
culation correct to order eG [including Vo

+ VIE and (p„j,+j, )] and thereby deduce the
correct form for (p, P, j,~ ) to this order. This
would be a moderately involved task, and would
again raise the question of the correct treatment
of N* resonances.

All of the nucleon-nucleon potentials which do a
fair job of fitting the elastic scattering data have
some nonlocalities which are strictly phenome-
nological. As pointed out in the Introduction, the
best one can do is to try different forms for the
current j, to be associated with each such nonlocal
term in the potential and hope that the variation in
the computed bremsstrahlung cross sections is
small compared to the experimental uncertainty.
In this connection it is worth remembering that
there is one choice for j,(x), called the "maximal"
current, ' which, although very unphysical because
it falls off only as x ' at infinity, "is especially
simple to calculate with. It produces no addition
to the bremsstrahlung matrix element.
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APPENDIX A. ZERO PHOTON ENERGY

In the limit of zero photon energy, there is a unique value for the contribution of j, to the bremsstrahlung
matrix element, determined entirely by the expression for V j„provided j, falls off more rapidly than
x ' at infinity. " This is obtained from an integration by parts, with the surface term vanishing because
of the assumed behavior at infinity:

, d'xe '~'" j,(x),=, d'xj, (x) = — d'xx[V' j,{x)]. {Al)

Using Eq. (4) from the text gives

(r, R
J

d'xj, (x) r', R') =-—d'~(R-R') [ ia(r f r', -)(r - r')(rl VD-Vsl r')

+{r,xr.)*(r+r')&rl Vair'&],

and with some isospin algebra, Eqs. (7) and (A2) lead to

(A2)

limMa=
4

d'rr [{y&~ ~l Vl r)(r,'- r', )y~'&(r) -
q&&& ~*(r)(r', —r', )(rl Vly~'~)] . (AS)

Since the states y; and y& describing the relative motion of the two particles are solutions of the Schro-
dinger equation, the potential energy in Eq. (AS) can be expressed in terms of the kinetic and total ener-
gies."

For the special case of a potential with no spatial nonlocality, such as V, the term in Eq. (A2) pro-
portions. l to (r —r ) vanishes, and one obtains the first term in Eq. (16a) in the limit k-0.

APPENDIX B. RECOIL EMISSION DIAGRAM

In Sec. III of the text it is stated that the portions
of the Feynman diagrams in Figs. 2(a)-2(d) in
which the radiating nucleon propagates in a posi-
tive-energy state agrees with the Schrodinger
equation matrix element to within a relative ac-
curacy 8(P jm)'. This might appear surprising
when one thinks of the time ordering on the non-
radiating nucleon line of Fig. 2(b) as shown on

Fig. 7. [The sum of the three time-ordered con-
tributions in Fig. 7 is just the same as the portion
of the Feynman diagram Fig. 2(b) in which the
radiating nucleon propagates in a positive energy
state. ] In Fig. 7(a) the pion is emitted before the
photon, and absorbed after, and it is often stated
that this "recoil" emission contribution is not con-
tained in the Schrodinger matrix element because
the potential in the Schrodinger equation acts in-
stantaneously. We conclude that this statement is
incorrect by simply evaluating the three portions
of Fig. 7, called T„T„and T„and showing that

T, + T~+ T, is a bette& approximation to the Schro-
dinger matrix element than T~+ T, .

The essential point of the demonstration has to
do with the energy denominators, and this is all
we write down. The additional factors coming
from the spins and pseudoscalar nature of the pion
do not change the conclusion.

Defining E = (p'+ m')'~', co =—(q'+-p')'~', where p
and q are the momenta of the virtual nucleon and

pion as shown on Fig. 7, the three contributions

can be written as

1 m 1 1T ———
2+ EE2 E2 u Ex —E —(o

'

1 m 1 1
2' E E -E—k E'-E-co
1 m 1 ( 1 1

2+ E E -E,'-+ LZ, -E kE,'-E-w)'-
1 m 1 1

T ———
2m E E, -E-k E, -E,'-v-k '

(B1)

where we have made use of energy conservation.
Combining terms

1 m 1
k

-2(u+ (E, —E —k)
u&' —&u(E, —E —k) + (E,' —E)(E, —E,' —k)

(B2)

and going to the over-all c.m. system, p, +p, =0
=p,'+p2+k, where one can show that k&2p, q/m, a
little algebra gives

1 1 1
TQ + T 1

&u E, —E —k &u ——,(E, —E —k)

x 1+8 ~
From Eq. (B1) it is seen that when T, and the

second version of T~ are added together a cancel-
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lation occurs which leads to

1 m 1
P~ E E E jp

1 1

(X E2-E,'- ~ Z2- E21+~

dinger equation, so
p2

z+ T~+ +
—Tzch 8 2 I

Tschm )

Returning to Eq. (B3),

(B6)

m 1 1
E E, —E —k (E, —E,')2 —uP

1 1 p2
2ai* td —'(Z Z-k) m'km')

(B4) 3 m2$ 2 (B7)

which is just the original Feynman matrix element,
Fig. 2(b), with the radiating nucleon restricted to
positive energy. One shows directly that (E, —E,')'
( (p', /m')&u' and therefore

Except for the relativistic correction factor this
is precisely the result obtained from the Schro-

lf (k/&u) & (P,/m)', then the second term on the
second line of Eq. (B7) is at least as important as
the first, in which case the error in the Schro-
dinger result is essentially the same whether or
not the recoil emission diagram Fig. 7(a) is in-
cluded. This is due to the fact that this diagram
does not have the infrared divergence. If on the
other hand k-P, u&/m, then the error is less if the
recoil emission diagram is included. This means
that the Schrodinger matrix element already con-
tains the recoil contribution, and therefore Fig.
7(a) should not be added on as an additional con-
tribution.

APPENDIX C.

Two irreducible tensors, A" and B'2,, are coupled to form a third tensor, C~, as in Messiah"
ml

C&=[/'lx E&2] —( 1)'l.-'2+™(21+1)»2 ~ 2 /&1 E &2

M M m m -M ml
mlm2 1 2

(Cl)

where

is a 3j symbol. The spherical components of a vector are defined by

(a, +ia„)
1

a, =a, ,

(a, —ia„)al=-"
(C2)

and the spherical harmonics are related to the coordinate vector by

I/2 +Fu(~) (E4

Some useful relationships are

-~3 [a'x b']0=a. b

-iv 2 [a' x b'] ~~ = (a x b)~,

( ) F ( )
(2/1+1) ( l2+1)' '

(-1)~,-~, fl l2 6 ~ ( )ooo
v~ —3(r ' v)t'~/t' = v S'il [ F2 x o']~,

(C3)

(C4)

(C5)

(C 6)

(C7)
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and the recoupling formula

[A~xx[Bssx C~s]~ss] = Q [(2j s+ 1)(2j„+1)]'~s( 1)&i+&s+ss+~ ~' ~s ~" [[~s~x llew]&„xC&s] ~

&12 &3 J ~23

(C6)

where

~1 ~2 j12
&3 J ~23

is a 6j symbol. Using the above relations one can rewrite Eq. (16) as Eq. (17). It is now a simple matter
to project the partial waves from c M sos, Eq. (1'l), using the following equations,

1(zszssl(s, (s)x(sssI'")'„., II)'sv'I)=(-()'-"( „, ()szl(lls(s)x(s, xsl*"I'Il)'s's'),

(C9)
)I Sl JI

&IS@)((I;(s)x[o,x o,]'")'I( l'S'Z'& =[(2J+1)(2J'+I)3]'~' I, S" 1 &l (I I",(~))i I'&&S(] [v, xo ]'"(["&
S J

(C10)
where

&I () y (-)(( I,
& ( 1)g (2l+1)(2l'+1)(2L+ I) ' l I l'

L 4m' 00 0 (C11)

——81 1
2 2

&S() [o,xos] ')[S'& =6[(2S+1)(2S'+l)(2S"+1)]'~' 1 1 S"
——S1 1
2 2

(C12)

*Work performed under the auspices of the U.S. Atomic
Energy Commission.
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