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A many-body formulation of pion-nucleus scattering in the (3, 3) resonance region is pre-
sented. It is shown that the self-energy (optical potential) of a pion propagating through a
Fermi gas of nucleons can be expressed as an integral over density of an effective pion-nu-
cleon forward-scattering amplitude f(kq; kq) in the medium Us. ing a pseudoscalar pion-nu-
cleon interaction, one finds that f(kq; kq) satisfies a modified form of the standard Chew-Low
equation for pion-nucleon scattering. The effect of the medium is twofold: (i) The effective
pion-nucleon coupling constant is quenched in the medium, and (ii) the pion-nucleon threshold
of the effective amplitude is moved upwards in energy. Both effects are due to Pauli-princi-
ple restrictions on nucleons in intermediate states. Like its free-apace counterpart, f(kq;kq)
displays a resonance behavior in the (3,3) pion-nucleon channel. The resonance appears as
a characteristic energy dependence in the pion-nucleus optical potential calculated from
f(kq;kq). The resonance position in pion-nucleus scattering is determined by three compet-
ing effects, and generally differs from the free pion-nucleon {3,3) resonance energy. One
finds that: (i) The quenching effect moves the (3, 3) resonance up in energy and narrows its
width, (ii) the dispersive effect of the nuclear medium (increase of the real part of the wave
number over the free-space value) moves the resonance downward, (iii) the energy depen-
dence of the effective radius R +X seen by a pion of wavelength X~ also shifts the resonance
downward in energy. The net energy shift is thus a result of a rather delicate cancellation of
several competing effects. Absorption cross sections for negative pions are calculated for a
range of nuclei. In general, the net downward energy shift with respect to the free (3,3) res-
onance is found to increase with increasing mass number.

S:

I. INTRODUCTION

Several recent experiments have been reported
on pion scattering from nuclei in the (3, 3) reso-
nance region of pion-nucleon (wiV) scattering. ' 4

It is clear from these experiments that there is a
close relation between the basic wN (3, 3) reso-
nance' ' and the resonance seen in pion-nucleus
scattering, except that the latter resonance is
shifted downwards with respect to the free nN

resonance. In the case of g + "C scattering, for
example, the downward shift is about 30 MeV.

There is as yet no systematic experimental
evidence for this downward shift for a wide range
of nuclei, although such an effect is to be antici-
pated if one is to believe the philosophy of exist-
ing calculations for the resonance shift in p + "C
scattering. Several model approaches have been
tried in this case. ' " These include Glauber the-
ory, multiple-scattering theory, and optical-mod-
el calculations. Some of these calculations do pre-
dict a downward shift in the resonance of approxi-
mately the correct magnitude, but they are all
essentially numerical in nature. In spite of some

recent attempts in this direction, ' "the physical
effects which contribute to the energy shift re-
main somewhat obscure.

The present work attempts to identify and ana-
lyze as clearly as possible the various physical
processes which enter the pion-nucleus resonance
phenomenon. Vfe isolate and discuss three main
effects: (i) the quenching of the free-space pion-
nueleon interaction by the nuclear medium. This
effect generally weakens the effective pion-nucleon
coupling in the medium and tends to shift the (3, 3)
resonance upward in energy (ii) the. dispersion
effect of the nuclear medium. This is the nuclear-
matter analog of the multiple-scattering effect ob-
tained by solving the Klein-Gordon equation in co-
ordinate space. " This effect is found to produce
a dozonmard shift of the (3, 3) resonance. (iii) the
energy-dependence of the effective nuclear radius
seen by the incident pion. This effect also pro-
duces a dosonsoard shift.

Each of these three effects turn out to be about
equally important; (i) tending to cancel the effects
of (ii) and (iii). Thus the actual resonance posi-
tion in a given nucleus is determined by a rather
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511(q) = 4wi f(kq; kq) . (1.2}

The zero density limit of Eq. (1.2) yields the
usual free-space amplitude f,(kq; kq) for vN scat-
tering. In the limit of infinitely massive nucleons
(the static limit), one knows that f,(kq; kq) satis-
fies a Chew-Low equation. "

At finite nuclear densities, we find that f(kq; kq)
satisfies the modified Chew-Low equation (3.17},
provided that we neglect polarization processes
induced by the intermediate-state pion. This equa-
tion is identical in structure with the free-space
Chew-Low equation (3.3), except that the free-
space nucleon propagator Go(k+q —p) in inter-
mediate states in Eq. (3.3) has been replaced by
the nucleon propagator G(k+q —p) of a nucleon in
the nuclear medium in Eq. (3.17). Ignoring nucle-
on-nucleon interactions for the moment, one sees
that G(k+q-P) registers the effect of the Pauli
principle in intermediate pion-nucleon states.
The nucleon cannot recoil into occupied states of
the Fermi sea, and hence the phase space avail-
able to such nV encounters is reduced. This is
the physical origin of the quenching effect re-
ferred to under item (i). This effect is seen most
transparently via Eq. (3.84), which shows how the
gN coupling strength X is modified at threshold to

delicate interplay of effects (i) to (iii).
Our approach treats the nucleus as a slab of

nuclear matter, and is most conveniently couched
in the language of propagators. ' The effect of
the nuclear medium on a pion propagating through
it is fully accounted for in terms of the pion self-
energy function 11(q), where q is the momentum-
energy index (q, &u} of the pion. "" We calculate
the change of wave number of the pion entering
the nuclear medium from II(q). This is conve-
niently done via a nuclear "refractive index"

a( ) 1
11(tI ~)

p'

for pions, where P is the incident momentum of
a pion with energy &u, so that q =n(&u)p. Since the
self-energy II(q) is complex due to pion absorp-
tion, so is n(&u). Thus we can calculate a pion
mean free path A, in the medium from the imagi-
nary part of n(u&), and hence the pion-absorption
cross section from A. via the optical model.

Our main effort is directed towards obtaining
the pion self-energy II(q). The starting point of
our calculation is the observation that the func-
tional derivative of II(q) with respect to a nucleon
propagator G(k) (the "cutting" of a nucleon line
in graph language) defines an effective forward-
scattering amplitude f(kq; kq) for pion-nucleon
scattering in the nucLeax medium. In symbols,

A. ', where

(1.3)

(p, is the pion mass). Here C is the mV scattering
volume per scatterer and N, the density of scatter-
ers. For C &0, the effective mN coupling constant
is seduced in the medium.

An important feature of Eq. (1.1) is that it in-
volves II( q, &o) at a pion momentum q and energy
co, such that row (q'+ p, ')"'. This means that the
pion propagates "off the energy shell" in the nu-
clear medium, and we thus require off-shell val-
ues of the scattering amplitude f(kq; kq) in order
to construct II(j, v) (by functional integration). It
is an added advantage of the present approach that
the modified Chew-Low equation (3.17) for f(kq; kq)
is valid both on and off the pion energy shell.

A knowledge of 11(q, &o) determines n(~) at a giv-
en incident pion energy ~. Since the ~N interac-
tion is pseudoscalar, one finds approximately that
II(q, &u) =q'c. (&u) and thus n(u&) exhibits a resonance
form

(1.4)

that describes the dispersion and absorption of the
pion wave in close analogy with the scattering of
a light wave by a classical medium. " In the case
of pion-nucleus scattering, one finds that the dis-
persion tends to move the (3, 3} resonance docvn-

zvaxd in energy.
The general outline of the paper is as follows:

In Sec. II we introduce the necessary formalism
to define the pion self-energy, refractive index,
and pion mean free path in the nuclear medium.
Section III reviews the standard Chew-Low theory
for free wN scattering in a nonstandard way, mak-
ing use of graphs to derive the nonlinear integral
equation for the scattering amplitude. The dis-
cussion is then extended to include scattering from
nucleons in a nuclear medium, and a rather com-
plete discussion of the properties of this amplitude
is presented, with particular reference to the
quenching effect of the medium. Section IV pre-
sents numerical solutions of the modified Chew-
Low equation for a variety of nuclei from He to
'O'Pb. We give predictions of the (3, 3) resonance
energy as a function of mass number A.. The sum-
mary, conclusions, and criticisms are to be
found in Sec. V.

II. PROPAGATION OF PIONS
IN THE NUCLEAR MEDIUM

The language of propagators, or Green's func-
tions, is used for the present discussion. '
Since we will be discussing pions propagating in
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a nuclear medium of infinite extent, it is useful
to introduce a plane-wave basis in which meson
and nucleon states are labeled by their three-mo-
menta p, k, etc. , together with the spin and iso-
spin labels (a, v) for nucleons and a single isospin
label fn) for the spinless pions. We normalize all
plane-wave states in a box of unit volume and
choose units such that 8 = c = i.

We now introduce the basic time-ordered pro-
pagators that are required in the theoretical de-
velopments to follow. These are (i) the single-
pion propagator defined by

D(qa. , t) =t(rlqq„(t)q2 (0))) (2.1}

of the spin and/or isospin of the particles.
We now introduce the self-energy H(q) of a pion

propagating in the nuclear medium according to
the equation

D(q) =D,(q)+D, (q) tI(q)D(q), (2.7)

where q= {q,&uJ. In the language of Feynman dia-
grams, II(q) is given by the sum of all irreducible
diagrams having two external pion legs. "'4 The
energy-momentum relation of a pion propagating
in the nuclear medium is given by the pole of D(q).
Rewriting Eq. (2.7) in the form

for a pion of momentum q and isospin index n,
and (ii) the single-nucleon propagator defined by

(e)- 2 . „(), (2.8),

q;„=(2.-,„)-'~'(B-„.+Bt-,.) (2.3)

(together with the Hermitian conjugate of this
equation) in terms of creation and destruction op-
erators B-.and B-„ofpions in the state(q, n)
having a total energy ru-„=(p, 2+q')"2, where p is
the rest mass of the pion. The symbol T in Eqs.
(2.1}and (2.2) denotes the chronological time-or-
dering operator. The angular brackets indicate
that the expectation value of the resultant product
is formed with respect to the exact ground state
of the coupled pion-nucleus system.

We will also require the Fourier transforms of
D and G. These are defined by the equations

D(qn, &u)
=' dte' 'D(qn, t),

G(pv, t) =t(T(ap, (t)a&2„(0)}) (2.2)

for a nucleon of momentum p and spin-isospin in-
dex v=(v, ~j. In Eq. (2.2), the a'~, and a&, arethe
usual creation and destruction operators for a nu-
cleon in state Q, v} with energy e z

=P2/2m (m is
the nucleon mass). The operators appearing in Eq.
Eq. (2.1) are defined by

we see that the pion energy-momentum relation is

(u'=(u-„'-H(q, (u) =q'+ p,
' —II(q, (u), (2.9)

n(~) =e/p (2.10)

In our case n(v) is found by solving Eq. (2.9) for
the ratio q/p after stipulating that up =(p'+ g2)"2

~

One finds that

instead of co = co-, as in free space. Thus a pion
of momentum q propagates off its energy shell in
the nuclear medium. In Eq. (2.9} we are free to
fix either the pion energy ~ or the pion momentum
q. In the present instance, we are interested in
how pions of a prescribed energy propagate in the
nuclear medium. Thus &u is fixed by &u=(p'+ p, 2)"2,
where p is the momentum of the incident pion in
free space and we determine q from Eq. (2.9).
The energy (d is of course the same for the pion
both inside and outside the nucleus, the interac-
tion with the nuclear medium bringing about the
change in the momentum of the pion.

As in classical optics, it is therefore useful to
characterize the medium by a refractive index n,

(2.4) n'((u) —1=(1/p')II(q, (o). (2.11)

and

1
O(qt )

( 'g)2 2
q

Z
(2 5)

G(pv, e)=J dte"'G(pv, t).

The propagators for a free pion or nucleon are
elementary, " ' and their corresponding Fourier
transforms are given by

Equation (2.11) is exact. However, it requires a
knowledge of how II(q, ~) depends on q and &u sep-
arately. Thus we must have a model for calculat-
ing IL(q) that details these separate dependences.
This point is discussed in detail in Sec. III.

As in classical optics, we can pass from a
knowledge of n(~) to the mean free path A. of pions
in nuclear matter by evaluating the imaginary
part of n((u}:

G,(p, e) = 1

P
(2.6) I/'=2PImn((u). (2.12)

The positive infinitesimal 5 locates the poles of
these functions appropriately. '4 Note that the free
propagators Do and Gp are taken to be independent

This equation will allow us to estimate the absorp-
tion cross section of pions by various nuclei in
the optical limit.
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FIG. 3.. Irreducible pion-nucleon scattering graphs to
second and fourth order in the coupling constant f„. The
dashed lines represent pions while the solid line indi-
cates the nucleon. We have introduced the notation f „
= second-order graph with uncrossed external lines,
f ~ =second order with crossed lines, etc.

III. EFFECTIVE PION-NUCLEON

INTERACTION IN THE
MEDIUM

A. Review of the Chew-Low Theory-
An Alternative Derivation
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FIG, 2. Sixth-order irreducible pion-nucleon scatter-
ing graphs. We have not shown the counterpart of each
graph with crossed external lines. The last two graphs,
which involve two-pion intermediate states, are not in-
cluded in the Chew-Low equation.

We first review the usual Chew-Low theory" of
pion-nucleon scattering. We do so by presenting
a graphical derivation of the Chew-L6w equation,
which makes rather transparent its extension to
pion scattering from a nucleon in a nucleus.

Using the language of Feynman diagrams, let
us consider all irreducible graphs for pion-nucle-
on scattering in each order of perturbation theory
in the pion-nucleon coupling constant f„. (We use
the rationalized, renormalized value of f„ through-
out this paper, which means that f„'/4v =0.08.)
These graphs are shown in Figs. 1 and 2 through
order f„' The remain. ing pion-nucleon graphs that
one can draw to the same order are reducible in
the sense that they either renormalize the coupling

FIG. 3. Fourth-order reducible pion-nucleon graphs.
The first process represents a self-energy insertion,
and is already included in the definition of the dressed
nucleon. The second and third processes are vertex
renormalizations, and are included in the definition of
the renormalized coupling constant.

constant (vertex renormalization) or "dress" the
nucleon propagator (self-energy insertions). In
Fig. 3 we show typical reducible graphs to order
f 4

In order to derive the Chew-Low equation for
the pion-nucleon scattering amplitude, we first
introduce an amplitude 4wif(kq; k'q'), see Fig. 4,
labeled by the four-momenta k =fk, k,) and q
=(q, qJ of the nucleon and the pion in the initial
state; k' and q' are the same quantities in the
final state. The amplitude f(kq; k'q') thus defined
only becomes the physical scattering amplitude
when both the pion and the nucleon lines are "on
shell, " i.e., qo = (d - = (q'+ p') "' and ko = e k

——k'/2m
etc. , in the initial and the final states. The nor-
malization of f is such that

~ f ~' gives the cross
section for prescribed initial and final states
without additional factors.

Consider the product" ftf after formally ex-
panding f in terms of the perturbation series of
irreducible graphs shown in Figs. 1 and 2. One
can perform the conjunction f~f graphically by
imagining two irreducible graphs side by side and
then connecting the nucleon line and one pair of
pion lines. Typical conjunctions are shown in
Fig. 5. For any given pair of graphs, the pion
lines can be connected in two, rather than four
different ways since we must remain with one in-
coming and one outgoing pion. Thus each conjunc-
tion leads to two graphs in the next order. One of
these is reducible, the other not. We reject the
reducible graphs as explained above. The irreduc-
ible conjunctions of f~f are then found to generate
the set of graphs (apart from the Born term) for
the amplitude f which only have one pion in inter-
mediate states for at least part of the time. For
example, the last two graphs of Fig. 2 are not
generated by ff. We return to this point again.

To illustrate the procedure outlined above, in-
troduce the notation f„a') and f,m' for the irreduc-
ible graphs with uncrossed and crossed external
pion lines that contribute to f in order i = 1, 2, . . . .
Then one sees for example that f('~ f(') generates
f(" according to

f(2) y(2) f(4)
(8.1)

f(3)~f(2) f(4)
C C 8
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q

= 4wif(kq;k q ),

q

=4mif (kq;kq) (2)
C
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In the next order one finds (Fig. 2 identifies the
individual graphs)

f(2)tf(4) f(8)

f(2)tf(4) f(e)

f(2)tf (4) f(6)

f(~)+f(4) f(6)

(3.2)

with corresponding results for f(4) f(') One ob. -(4)~ (2)

serves that the graph corresponding to f(~6) (and
its crossed version) is left-right symmetric.
Consequently it will formally be generated twice,
once from f(' f„4 and once from f„4 f(2 . Both
of these conjunctions correspond to the same
graph of course and only one is to be taken in the
graPhical expansion of f The .fact that this count-
ing procedure reproduces the Chew-Low equation

FIG. 4. Pictorial representation of the pion-nucleon
scattering amplitude f (kq; k'q'). The incoming nucleon
and pion lines are labeled by four-momenta k={k,ko)
and q=(q, qo), respectively. The amplitude f is related
to the amplitude T defined by Chew and Low (Ref. 27)
f(kq;kq) =-~&T,(q)/2x. Our f has the property that the
differential cross section do./dQ for the pion-nucleon
scattering is given by do/dD =~fi .

(&)
G

(2)
C

(6)
3u

FIG. 5. Pictorial multiplication of graphs in the per-
turbation series for f. To get the product shown on the
right, one connects one pair of pion lines, and the nu-
cleon lines. The product graph is another irreducible
graph in the perturbation series.

confirms that it is correct.
We have thus shown that, apart from the two low-

est-order Born graphs f„') and f,') of Fig. 1, the
conjunction ftf generates all graphs for f that we

consider. The summation of these graphs can thus
be accomplished by "solving" the graphical equa-
tion shown in Fig. 6 for the cross-hatched box dia-
gram that represents 4' f. In Fig. 6, the unhatched
box represents the Born approximation 4mfs, given

by the sum of graphs f(a) +f~," shown in Fig. 1. Upon

supplying the propagators iQ, and iD, for the inter-
mediate-state nucleons (solid lines) and pions
(dashed lines), the graphical equation of Fig. 6

translates into the following nonlinear integral
equation for the amplitude f. After passing to in-
tegrals to symbolize the sum over all intermediate-

state variables p, one has

4

f(kq; k'q') f(Oq; Yq') —4 i=I 0 {P)G (k+w P)f~(Vq'; 0+@—P P)f(ke", k+-q —PP)

4
—4'

J 4 Do(P)Go(k —q'-P)ft(k', -q; k —q' P, P)f(k, -q—', k —q' P, P), - (3.3)

upon canceling a common factor 4zi. The conservation of four-momentum requires k+q = k'+q' in Eq.
(3.3). We emphasize that this equation for f includes all graphs containing one virtual pion in the inter-
mediate state, but none of the graphs containing two or more virtual pions which are present for the en-
Ii e time between absorption and emission of the external pion. Graphs in which two or more pions are
present for part but not all of the time are included (examples being f(„'), f(„'), and f(„') in Fig. 2). The
last term (the crossing term) in Eq. (3.3) ensures that f is crossing symmetric. " It is obtained from the
term with uncrossed pion lines by the transformation (q —-q').

We now demonstrate that Eq. (3.3) reduces to the Chew-I ow equation" in the static limit p/m -0, where
m is the nucleon mass. An equivalent statement of the static limit is that the amplitudes f in Eq. (3.3) can-
not depend on the nucleon four-momentum variables, but only their spin and isospin. Then we may per-
form the integral over the nucleon intermediate-energy variable ko+ qo —po (or equivalently p, ) by contour
integration to find

o D,(P)G (k+q P)ft (k'q', k+—q P', P)f(kq; k+—q P, P)=—
2(d ~ 6 —6 —tg +(d —Z5

p k+q-p k 0 p

~f'(q', p)f(q, p)j;= -,
2(d (d —g —2 5p p 0

(3.4)
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after neglecting all nucleon energies in the final step in accord with the static limit condition. Hence gp

=go. In Eq. (3.4) we have set f(kq; 0+q-p, p) =f(q, p) to emphasize the dependence on the pion four-mo-
menta only. The result (3.4) is only consistent in the external variables q and q' if q, =qo. This is so be-
cause the general four-momenta conservation law 0+q = 4'+q' leads one to conclude that

(Io Qo =(~ k

in the static limit (here we consider the external nucleons to be on shell). Therefore, the amplitude

f(q, q') is more conveniently written as f(q, q', &u) where &u is an energy parameter (note that q82 q in gen-
eral, since static nucleons can accept any amount of momentum). In general, f(q, q; ru)is a «Iiy off-shell
amplitude; its half-off-shell value f(q, p, &u-) appears in Eq. (3.4), while if (d=&g-= u&; the resulting am-
plitude f(q, q, ~-„) is the on-shell physical scattering amplitude. Bearing these remarks in mind, we use
Eq. (3.4) and its crossed version under the exchange {q-q', &u--u&) to obtain

f'(8', 8; ~-,(f(8, (2; ~;(,2 ( t8t;(~-,-)f(-8', 8; ~ 8()
(2v)' (u-

P
07 —(d —z5 (d + (d —z5

P P

(3.5)

in place of Eq. (3.3). This equation expresses the off-shell amplitude f(q, q; (d} in terms of the half-off-

q q

5
k k

q g q

+ & 8
k k k' k+q-p k

p

+ F/i Fii

q'

k k q'p k

FIG. 6. Graphical representation of the integral equa-
tion (3.3) for the pion-nucleon scattering amplitude

f(kq; k'q'). The last term is the "crossing" amplitude.

shell amplitudes f(q, p; (d ~).
When (d = w- =w q„ i.e., when the external pions

are on shell, Eq. (3.5) is just the Chew-Low equa-
tion, if we assume a pseudoscalar pion-nucleon
coupling. To see this in detail, we recall that in
the static limit the dependence of f(q, q'; +) on q
and q' for pseudoscalar mesons is known trivally
since only p-wave scattering occurs. We exhibit
this property by means of projection operators
P„(q', q) onto the four allowed isospin-spin chan-
nels n ={2T,2J] ={11,13, 31, 33] and set

f(q, q'; ~) =g P.(q', q)I.(~), (3.6)

0
where the superscript zero on Iz will serve as a
reminder that Eq. (3.6) refers to scattering from
an isolated nucleon (the zero-density case). Ex-
plicit forms for the P (q, q) have been written
down by Chew and Low":

P»(q', q)=-', ~, ~,(~ q')(~ q),

P.(q', q)=l~, ~, I. 3(q'q)-(~ q')(~ q)], 3.7
P»( q'. , q} = (6, , —

2 ~, ~,) (o q') ( o q),

P„(q', q) =(6„,„—-', ~„,7„)I3(q' q) —((x q')((7 q)].
Note that we have absorbed the .coordinate r = 1, ,

(fQ
p
P„(q', p)P8(p, q}=47(P'P„(q', q)5„s, (3.8)

where dA- is the differential solid angle associ-
P

ated with the vector p. In the crossing term a
projector Ps(-q, -q') =Ps(q, q') appears on the
right-hand side of Eq. (3.8) instead. However the
crossing relation"

Ps(q, q') =Q &.8P.(q', q), (3 8)

where A„8 is the crossing matrix

i -4-416
1, -2 -1 8 4

8(—2 8-( 8) (3.10)

allows us to reverse q and q'. Using Eqs. (3.8)
and (3.4) in conjunction with the expansion (3.6)
for f leads to the following set of coupled equa-
tions for the Iz:

0
~0 1

h, ((u) =—+-
I d(d-P'v'(P)

(d W J~
0 0

I ~.(~;)I',~~ I &8(~ P}I'
(3 11)—~ —z5 ~ (d +& —z5

P

2, 3 relating to the three charge states of the pion
into the symbol q etc. on the left-hand side of
Eq. (3.7), a practice we shall continue to follow.
The operators 0 and 7 refer to the spin and iso-
spin of an isolated nucleon. We also remark that
the expansion (3.6) is not useful if we attempt to
include nucleon recoil (albeit without any real
justification) in Eq. (3.5). Instead a complete par-
tial-wave expansion would have to be considered.

We now substitute the expansion (3.6) into Eq.
(3.5) for f. The direct term in Eq. (3.5) involves
the product of projection operators P„P~. This
can be reexpressed as'
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The intermediate steps involved in obtaining (3.11)
have been to shift from the momentum p to the en-
ergy &u z

= (P'+ g')"' of the intermediate pion as
integration variable, and to include a nucleon
form factor v'(p) to prevent high momentum di-
vergences due to the use of point nucleons. The

0
coupling constants A. appearing in the Born am-
plitude X„/~ are identified as

(3.12)

by computing the Born amplitude,

tion for obtaining the off-shell extension of the
Chew-Low amplitudes that confirms the original
prescription of Chem and Low."

B. Pion Scattering from Nucleons

in a Nucleus

We now proceed to the proMem at hand: How is
the Chew-Low equation (3.11) modified by the
presence of the nuclear medium? The motivation
for this question comes from looking at the con-
nection between the pion self-energy in a nucleus
(represented now by nuclear matter) and the free
pion-nucleon forward-scattering amplitude f,. At
low densities no, one finds

2

4vifs(rt, j', &u)
=", {(v q')(o q)w„r„G,(k+q)

II( j, (u) = 4mn, f,(kq; kq), (3.14)

+(q- -q')j. .. (3.13)

in the static limit, Go(k+ q) =+(1/q, ), and project-
ing onto states of good {J, T) Equat. ion (3.11}is
the more familiar form of the Chew-Low equation
for pion-nucleon scattering. The form factor
v'(P) is of course arbitrary here, as in the origi-
nal treatment" and is simply a device for ensur-
ing convergence of an otherwise divergent inte-
gral. Clearly we expect convergence difficulties,
since our approach is nonrelativistic. "" These
difficulties will not be discussed here. In later
sections we simply adopt a one-parameter form
for v'(P), and adjust this parameter to correctly
position the pion-nucleon (3, 3) resonance.

Equation (3.11) gives us a prescription for eval-
0

uating the amplitudes k (~) off shell ~w +;. By
contrast, Eq. (3.3) allows an extrapolation of

f(kq; k'q') in both energy variables q, and q,'. As
will be seen, the problem of computing the pion-
nucleus self-energy II(q, &u) only requires the
special case q, =q,'=~c ~q, i.e., an off-shell ex-
trapolation in one variable.

The derivation of the Chew-Low equation given
here serves two purposes: (a) It provides a
straightforward graphical derivation of the Chew-
Low equation which can easily be extended (see
next section) to the case of pion scattering from
nucleons in a nucleus and (b) it leads to a prescrip-

=4mifo(kq; kq)
oil(q) (3.15)

from which Eq. (3.14) then follows, as is shown in
detail in Ref. 26.

If the density of the medium is not small, the
situation is more complicated. However, if we

a result that can be derived in many ways. One
way" is to use the fact that the functional deriva-
tive of each self-energy diagram for II(q) with
respect to an intermediate nucleon propagator
G,(P) yields a graph which contributes to the pion-
nucleon scattering amplitude. Thus, upon sum-
ming all such graphs, one has the formal result

7T (q) &I lz

+ + + 04 ~

FIG. 7. Simplest perturbation-theory diagrams for
the pion self-energy D(q), containing one particle-hole
bubble.

FIG. 8. Illustration of the pion-nucleon scattering
graphs which result from cutting a single nucleon line
(functional differentiation) in pion self-energy diagrams.
The nucleon line that has been cut is cross-hatched. The
corresponding cut diagram {unfolded) is shown on the
right-hand side.
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restrict the diagrams contributing to II(q) to be
of the type depicted in Fig. V, i.e. any number of
intermediate pions, but a single particl. e-hole bub-
ble, then a major simplification occurs. For then
it is clear that the functional derivative

=4vif(kq; kq),
6n(q) (3.16)

where G(k) refers to a renormalized nucleon prop-
agator in the medium (see below), defines a den-
sity-dependent effective mN forward-scattering am-
plitude f(kq; kq) in the medium. The amplitude
f(kq; kq) is given by exactly the same set of graphs
as fo(kq; kq), but with G replacing the free-nucleon
Green's function Go everywhere. The nucleon de-
scribed by Q carries self-energy insertions due
to meson exchange with the inert nuclear medium
(Hartree-Fock insertions) in addition to mass re-
normalizations due to interactions with its own me-
son field.

In graphical language, a functional derivative like
5/5G corresponds to cutting each nucleon line in
turn in each graph for II(q}. The result is a graph
with two external nucleon lines as well as two ex-
ternal pion lines. This cutting process is shown
pictorially in Fig. 8 for some of the graphs for
II(q). The graphs generated in this way can again
be grouped into the three classes: nucleon self-
energy insertions, vertex renormalizations, and
irreducible graphs that contribute to f(kq; kq). As
previously, we absorb the self-energy insertions
and vertex renormalizations into the renormalized
nucleon propagator and pion-nucleon coupling con-
stant. Note that these renormalizations are nom
density-dePendent. In particular, the renormal-
ized gN coupling constant need not equal the free
one f„used in Eq. (3.13).

The remaining irreducible graphs can now be
summed as before to yield an integral equation
for f(kq; kq). Considering for the moment the
more general amplitude f(kq; k'q'), where k+q
=k'+q' as before, one has

f(kq; k'q') =f (kq; k'q')

d4p
D,(P)G(k+ q -P)

(2w

xf&(k q', k+ q p, p)f(kq; k+ q- p, p

+ (q- -q') (3.IV)

The renormalized coupling constant enters this
equation via the Born amplitude fs, and also par-
tially via the propagator G that carries the self-
energy insertions. A part of these insertions are
due to the pion-nucleon interactions [which corre-
spond to the one-pion-exchange part of the nu-
cleon-nucleon interaction] but nucleon-nucleon

interactions that do not arise from simple pion ex-
change also contribute to Q. Note also that the
free pion propagator D, must appear in Eq. (3.1V).
This is so because of our restriction on the cate-
gory of graphs me consider. Renormalization of
the pion lines mould involve multiple particle-hole
pairs in intermediate states, contrary to our as-
sumptions.

On the other hand, the nucleon propagator 6 is
renormalized, as outlined in the previous para-
graph. Symbolically, we may write

G(P) =G.(P)+G.(P)L (P)G(P), (3.18)

where g(p) is the self-energy insertion referred
to previously. Thus G differs from Go due to the
effects of the medium on nucleon propagation
through it. In the simplest case these are just
Pauli-principle effects, interactions being exclud-
ed. For example, treating the nucleons as an
assembly of noninteracting fermions (i.e. an ideal
Fermi gas), one has" "

G(P) =G(p, P.)
n(p) 1 —N(p)=,

-, ,... „,. ..) (3.19)

G.(p) —G(p) = 2vis(p) &(~ -, -po) (3.20)

so that Go and G only differ on the energy shell in
a Fermi gas. In particular, this shows that the
Born term f is not modified by self-energy in-
sertions in a Fermi gas. Therefore fso and f, can
differ only in coupling constant due to the density-
dependent vertex renormalization in fs.

We now come to the basic point of our method.
By excluding certain multiple particle-hole ex-
citations from the diagrams that contribute to II(q)
we have isolated a subset of diagrams for which
me can perform the sum to infinity, not of the sub-
set itself, but its functional derivative. This sum-
mation is accomplished by Eq. (3.1V). In princi-
ple one can then obtain II(q) by solving Eq. (3.16),
i.e. by performing a functional integration. In
general this would be a very complicated proce-
dure. However, in the Fermi-gas model, one can
reexpress Eq. (3.16} in terms of the functional
derivative of II(q) with respect to the occupation

where 5-0' as before, and n(p} is the occupation
number of the state p in a Fermi gas, being one
or zero according to

~ p~ & p~, where p~ is the
Fermi momentum. For p„-0, Eq. (3.19) reduces
to the free propagator (2.6), while for finite Pz it
correctly registers the effect of the Pauli princi-
ple. Later in this section we discuss further modi-
fications of G (Hartree-Fock corrections). For
later use we also that Eq. (3.19) can be written as
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numbers n(k):

511(q} dP 511(q) 5G(P)
5n(1) (2v)' 5G(P) 5n(k)

=4'(kq; kq) ~...
after computing

= =-i(2m)'n(p)5(p —k)5(P, —e p) .5G(P}
5n(k}

(3.21)

(3.22}

Furthermore, if f(kq; kq} turns out to depend on

the occupation numbers n(k) only through the total
density n, =g k n(k), the-functional integration of
Eq. (3.16) is equivalent to an ordinary integration

1

over the total density variable. Hence"
) tip

11(q) =4m dn,'f(q, n,'), (3.23)

where we write f(q, no) to emphasize the density
dependence of f. In Eq. (3.23), we integrate over
all values of np up to the actual nuclear density np.

The connection (3.16) between 11(q) and the effec-
tive density-dependent scattering amplitude f
forms the basis of our later discussion of the pion-
nucleus optical potential. As a check, note that
Eq. (3.23) correctly reduces to the low-density
result (3.14) if we replace f by the free pion-nu-
cleon amplitude f, and then integrate on n,'.

" d'p» f'(q', p;~-.)f(Z, p; ~-.)

—4))n(q —p) — ' —'- . , ' ', +(q--Q', (u--(o)- f'(q', p; ~)f(q, p; ~)
(4)

&
—25) —hP

The additional terms characterized by {q- -q, v- -~}come from crossing symmetry, as for Eq. (3.5).
The first two terms of Eq. (3.25) are identical in form to Eq. (3.5). The third term, as well as its

crossed counterpart, represents the effect of the medium, and vanishes as np 0 The various terms in
Eq. (3.25) can be classified in terms of the on- or off-shell pions or nucleons they contain in intermediate
states. In the first term under the integral sign the intermediate pion is on shell, the nucleon in general
being off shell. The opposite situation prevails in the second term under the integral sign, because then
the nucleon is on shell. "

As before, we seek amplitudes h„(a&) of good isospin and spin such that

(3.25)

f(q, q', ~) =Q&.(fl', W&.(~).
Of

p
The h„ in this expression is an effective amplitude in the medium and of course differs from the h of Eq.
(3.6). The projection technique that gave us Eq. (3.11) goes through as before for the first term in the
curly brackets of Eq. (3.25) as well as its crossed counterpart. For the density-dependent terms, the fac-
tors n(q-p) and its crossing partner, n(-Q —p), place angular restrictions on the integral dQ &. As a
consequence, one finds that Eq. (3.8) is replaced by the more general one

d Q
p n( q - p) P„(Q', p) Pa ($, q) = 4))P'P„( q', q) S„8 (3.2V)

The next task is to calculate the effective amplitude f in a medium of prescribed density no. We can re-
duce Eq. (3.1V) in the Fermi-gas case by inserting for G the expression (3.20). The integrand D,Gf f then
splits into D,Gj~f, plus a remainder in which the nucleon is placed on shell" [by the 5 function in Eq.
(3.20)]. The part with G, is identical in form with the free-space Chew-Low equation and can be treated
as before. For the "remainder, " one finds

d
3n k+q-p Dp P ~a qy+q-P P uq&+q-Pp

'p Ap+qp

-}lf'(q', p)f(q, p))~; .
(2)))' ((o

p
-ib)'-q, '

(3.24)
in the static limit, i.e. after setting k=0 and neglecting all intermediate nucleon energies. Note, however,
that the nucleon line k+q -p is always on shell in our approximation. As before, we observe that qp qp.
Introducing the notation f (q, q; &u) with q, = &u, for the static limit of f, we now gather together the various
terms contributing to Eq. (3.17):

that is nondiagonal in the total spin J. The 6 8 are the elements of the following 4x4 matrix:

(3.28)
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where P, = —,'(3cos8-„—1), and the bar indicates the restricted angular average f n(Q —p)dQ-/4w. The b, „&
are independent of the isospin T. Thus amplitudes h of the same isospin, but different J, are coupled by

The equations for the new h 's are

h (v)=—+—
)

dna-p'v'(p) " ~ . ++A„s ~ . )
—4w M (e)+g A„sMq(-v)I Iz„(cu p) I'

I Izs(cu p) I'

C0 )T J ~ 0) —(0 —zf)
P B P

(d~+ M —25
B

(3.29)

0
where A.„w A.„is the renormalized coupling constant in the medium. The functions M„are defined by M„(u)
=Qz I„()Iz*„(&u)h()(+), where

I„B=4g dP P'a B

(2zz)' ((u - —z5)' —(o~
(3.30)

The integrals I B are complicated functions of the input energy w and the pion momentum q in the medium.
A useful simplification occurs if we replace |1 by the incident momentum p. Then the functions I 8, and
hence the amplitudes h, become functions of w alone. The q dependence of the forward-scattering am-
plitudes f(q, q; (d) - zI' is then isolated in the projectors P„ in Eq. (3.26). Consequently we will always have
1I(q) ~q, leading via Eq. (2.11) to a simple equation for the refractive index n(~). If we keep the full de-
pendence on l| in the I„s, the amplitudes Iz will depend on Q as well as &u, and thus on n((d). Equation
(2.11) would then become a complicated implicit equation for n(&u). We argue that our approximation Q= p
in I 8 neglects terms of order [n(&u) —1] and thus should be good at low densities. However, this point de-
serves further study. ' Using this approximation, we find that

M„((o)=I((u) I Iz„((u) I'+ 2[I((d) —I((u)]Iz,*z((())()zzz((u),

M ( ) =I((d)l Iz ( )I [I( ) -I( )]Iz*( )Iz„( ).,

Mzz((d) = I(&) I Izzz(~) I
+ 2 [I(z()) —I((())]&zz((())Izzz((())

M„((d) =I((u)
I Iz„((d) I'+ [I((o) —I((u)]Iz,*,((d)Iz„((d) .

(3.31)
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FIG. 9. The real part of the ratioI™(~)/I(p) as a func-
tion of ~ for values of density no ——0.1, 0.3, 0.5p of
interest for the nuclear problem.

FIG. 10. The imaginary part of the ratio I(~)/f(p) as
a function of total pion c.m. energy ~ for densities no
=0.1, 0.3, 0.5@3.
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In terms of the dimensionless variable p =p/p~ the functions I=-I»» and I= I»—» are given by

Rei(u&) =~ 1+—P'- —P(1 —4P') ln
n 3 3 1 —2p
4 2 8 1+2p

3r3 1—p' p&
2 ' 2

Iml(&u) =a &

4 i3~ 1
!I8P

n 15 3, 3 1, 3 9 3 1 —2PRei((u) =~ —+-p'- —,+- 3p' --p+ —,ln
4 8 2 16P 2 2 16P 32P 1+2P

3m p'—p&
2 ' 2

ImI((o) =a &

! 4 8p 16p' ' 2p&— ~

(3.32}

Equation (3.29) is the main result of this section.
It constitutes a set of coupled, nonlinear integral
equations for the functions h„(co) that determine
the scattering amplitude of a pion from a nucleon
in a nuclear medium. In the zero-density limit
np 0 both functions I and I vanish and we regain
the Chew-Low equation (3.11).

Let us note some features of the functions I and
I . For small P (i.e &u

-
p. ) I and I are real func-

tions

I((u) =—'(1+3p'+ ~ ~ ~ )4
(3.33)

Chew™Low crossing relation"

h ((u) =+A„8hg(-(o) .
8

(3.35)

(ii) Unitarity: Taking the imaginary part of Eq.
(3.11) one sees that

0 1 0 o 0
1m' ((u) =—.[h ((u+i5) —a (~-i6)]=P'[g„(~)!',

(3.36)
~ =(P'+ v')"',

0
which is the condition that h is unitary. Equation

0
(3.36) ensures that the physical amplitude h„(v}
has a representation

n 18 ,
'

I((u) =~ 1+—p'+ ~ ~ ~

4 5

For large p(p»pz) we have

n. 5 1
ReI(~) = —+ + ~ ~ ~

4 4 90p'

n 5 1'7
Rei((u) = a ——,+ ~ ~ ~

4 2 40p'

(3.34)

(3.37)

lmh „((u) = P'! h ((u)!' —4v lmM„((u) . (3.38)

0 1
h„((u) = o

P~(cot5„—i)
0

in terms of a real phase shift 5 .
The corresponding relation for h„(v) is only

simple if we neglect the crossing term

Q 8 A 8 M g(- &u) in Eq. (3.29). Then

The behavior of I as a function of + is illustrated
in Figs. 9 and 10 for various values of the density
no. The curves for I are very similar and are not
reproduced here. The curious loops in Rej and
the kinks in ImI are caused by the logarithmic
singularity in the first derivative at p = —', p„.

C. Properties of the Effective Amplitude
h ~{M) in Nuclear Matter

Let us compare some properties of the solutions
h„(cu) of Eq. (3.29) with their free pion-nucleon
counterparts that are solutions of the Chew-Low
equation (3.11). We easily deduce the following

0
properties of Q and fg.

(i) Crossing symmetry: Both h and h satisfy the

However for p & —2p~,

4w InuV~(v) = p'! h „(e)!'+4n g Reins Im(h*„hs),

(3.39)

since 4mImI 8
= P'5 8 in this case. Therefore,

the right-hand side of Eq. (3.38) vanishes for P
1

& 2P~.

Ima„((u) =0, P& 2Pp. (3.40)

This is so because the first term in Eq. (3.39) can-
ce].s a similar one in Eq. (3.38). We are thus left
with a homogeneous set of equations in ImA. „that
can only have the trivial solution (3.40). The re-
sult (3.40) has the rather remarkable implication
that the presence of the nuclear medium changes
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the threshold energy from p, to Thus I &
-—N05 8 and

(3.41) h„((u) = h„((u) -4m', [lh„(~)l'

which is density-dependent. The physical reason
for Imk vanishing at + = p. is related to the Pauli
principle. Looking at Fig. 6 for example, we re-
call that the intermediate pion-nucleon state is
real only if both particles are on shell and share
the 1nput energyp M=M q=N q P

In the static 11m-
it, the energy conserving condition is equivalent
to"

plql=lq-pl, or cosg-= —.
Pq 2q

' (3.42)

Imh„((u) =—.[h„((o+i5) —h„(a) —i5)]

For an isolated nucleon (p~ =0) one can satisfy Eq.
(3.42) for any p, so that there is no lower bound on

q. However, if the nucleon p forms part of a Fer-
mi sea, then we can only promote particles to
states outside the Fermi sphere

I pl &p~. The
smallest value of I ql that still allows this to hap-
pen is Iql =2p~ according to Eq. (3.42), leading
to the threshold (d = p. Numerically the change is
not small. For a representative value P~ = 2p. in
nuclear matter, one has P —p =(W2 —1)y, = 60 MeV.

The condition (3.40) is exact if crossing is ne-
glected. For ~ & p. the relation between Imh and

I
h„l' is complicated by the coupling terms in M„.

To the extent that this channel-channel coupling
can be ignored, one has

+QAnsl~s(-~)I ]

(3.45)

where N, =-,' n, is the density of nucleons of given
spin and charge.

Vfe next show that the approximate expression
(3.45) leads directly's to the P-wave optical poten-
tial derived previously from multiple-scattering
theory. ' To do so, we must first generalize
Eq. (3.23) to include scattering from more than
one type of scatterer (protons and neutrons). Not-
ing that only coherent forward scattering of pions
enters the picture, we see that the amplitude
f(q, q) in Eq. (3.23) is replaced by the average
amplitude

f h=-'Q&v «If(q, q)lv «)=-', q'Qv„h„(~),

(3.46)

where v„=(1,2, 2, 4) for w scattering The. latter
form of f„h follows upon introducing the expansion
(3.26) for f in the forward direction The .result
(3.46) is still independent of any approximations
one might use for h . The low-energy approxima-
tion (3.45) gives

f,.„=—', q'[ Q v„h ((o) —8sN, Q v„lh„((u) I'],

= (P' —4s Imi„„) I h„((u) I'

a result which means that

(3.43)
(3.47)

the direct and crossing terms contributing equally.
This comes about as follows. The identities

h„((u) = 1
(p' —4~ImI„„)(cot5„-i) '

0
where 5 w 5 is real. The only zero of
(p' —4s ImI„) is at p= —,'p„. The condition
(3.43) plus the fact that h (&u) is finite at cu = p
implies that the phase shifts 5 must go to zero
like 5„~p~'(p —,'p~) at p= —,'p~ in—contrast to the
0

that behave like P' near p =0.

(3.44)

D. Low-Energy Pion Optical
Potential —Quenching

A useful expression for the pion optical potential
can be derived in the limit of low energy and den-
sity, where the h„(&u) approach values independent
of e. This amounts to making the effective-range
approximation in Eq. (3.29). We thus calculate
hn(ar) under the following two approximations: (i)
evaluate the I„s at threshold ar = p, and, (ii) replace
the h„(~}on the right-hand side of Eq. (3.29) by
the zero-density solutions k (~) of Eq. (3.11).

Q v„A s =vs, Q vs Asy Ass =v 5 s

plus the crossing relation (3.35) show that

(3.48)

0 0

g v„A slhs(-~)l =Q vslhs(-&}I

=g v, lh, ((o)l'

0
and Eq. (3.47} follows directly. Replacing the h„
at low energies by the appropriate scattering vol-
umes C, one obtains

(3.49)

1 8gN0 2
fcch q 3 2 vnCn 3 E vnCn (3.50)

for the low-energy coherent scattering amplitude.
Notice that the free-space amplitude is always
quenched by the presence of the medium, in agree-
ment with the results of Refs. 26 and SV. To make
contact with previous work, ""we introduce the
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linear combinations C» and C»,
C, =C„+2C„, C, =(C„—C„),
C3 — 31+ 331 3

—( 31 33

(3.51)

(3.53)

Values of the constants C» and C» can be calcu-
lated from the tabulation in Ref. 38. We have

C x
——-0.28, C, =+0.11,

C, =+0.2V, C, = -0.33
(3.54)

in units of 1/i13, so that the spin-flip contribution
(=0.47', ') to Q„v C„' is about twice the non-spin-
flip contribution (=0.22', '). On the other hand, if
one simply neglects spin-flip terms, the sums in
Eq. (3.53) can be reexpressed in the form

Cn+C3
a 2a

, c„'+c,' (c„-c,)'

(3.55)
where 3C~= 2C, +C3 C C3.

The pion self-energy can now be computed from
Eqs. (3.50) and (3.23). The result is

1
II( q, (o) = 4wn, q3 —Q v„c„

(3.56)

where either of Eqs. (3.53) or (3. 55) determine
the quantities in round parentheses. Numerically
the set (3.53) is to be preferred The opp. osite
approximation (3.55) of assuming spin-independent
amplitudes leads to the result"

C „+Cp 47l'np
Ilj q, m) =47l'npg

1 C„'+Cq' (C„—C )
)4

(3.5V)

that are indexed by the channel isospin 27. The
p-wave part of the wN scattering amplitude then
becomes

f(q, q') =(C,P„,+C3P3/3)(q q')

+ (3C,P„,+C,P„,)[&r ~ (qxq')], (3.52)

where I'„, and I'„,are isospin projection opera-
tors. Nonzero values of the C measure the impor-
tance of the spin dependence of the scattering am-
plitude f. The sums of scattering volumes enter-
ing Eq. (3.50) are given by

—', Q v C„=—,'(C, +2C,);

that was also derived in Ref. 26 using a different
technique. " We have thus established the connec-
tion between the present approach and the density
expansion method of Ref. 26, which is appropriate
to the problem of pionic atoms, i.e. pion-nucleus
scattering near threshold.

E. Pion Optical Potential

near the (3,3) Resonance

fcc3= 0 13(~) ~

4
CO

where A—= &33 is the amplitude in this channel. The
neglect oi all other channels means that h. satis-
fies the following truncated version of Eq. (3.29)"

(3.58)

h((u) =—+— d&u- p3V3(p)
1

"&u

A(d ) —47/r(M)
~
13((d) ~' (3.59)

P

The quantity I has been introduced in Eqs. (3.31)
and (3.32), and the coupling parameter X = ~f„'/
4~ p,

' is the renormalized pion-nucleon coupling
strength, including renormalization effects of the
medium. An analytical solution of Eq; (3.59) has
so far eluded us, although its zero-density version
with I=O is simple to solve. " In this section we
therefore neglect the density deoendence in h and

p p
set h = h, where 5 is the known solution of the
Chew-Low equation at zero density. This will
give us an expression for f„„that is valid at reso-
nance, provided only that the density is low
enough, i.e. X«xp. The results obtained in such
an approximation lead to a description of pion-
nucleus resonant scattering that resembles the
model proposed by Ericson and Hufner. " We im-
prove on this approximation in the next section.

The Chew-Low (3, 3) resonance amplitude is ob-
tained by solving Eq. (3.59) in closed form at zero
density. The result is a function of the form"

p p~" d+P A.—f1 '((u) = 1-—i, P'v'(P)
(d 7l' Q (d

P
—e —s5

P

1() (3.60)
(op 2(dp

The low-energy expansion (3.50) and the result-
ing pion-nucleus potential are expected to break
down in the vicinity of the zN resonance in the
(3, 3) channel. The low-energy small parameter
np Cp 0 05, where C, is the average scattering
volume —3'(C„+C3) gets replaced by X/3 „where X

is the pion wavelength at resonance, and 3, the
internucleon spacing, see Sec. III F. We are there-
fore faced with a different meaning of low density.
On the other hand, the (3, 3) channel certainly
dominates in the resonance region. Therefore
we write



PEON-NUCLEUS SCATTERING IN THE (3, 3) RESONANCE. . . 2325

if one neglects Castillejo, Dalitz, and Dyson (CDD)
poles." From Eq. (3.60), we see that h(&u) dis-
plays a resonance having an energy-dependent
width

I'((u) = 2XP'v'(P) (3.61)

and a resonance energy ~0 that is also a function
of (d:

0
d&i& ~p v (p)

7T CO ~ (0 ~ —C0
p p

(3.62)

4m n0

n((u) =
3 Q v„dn,'h ((u, n,')

n
(3.64)

to~ find"

n'((u) —1 = o. ((o)
1 —o.(cu)

(3.65)

The resonance approximation (3.58) only consid-
ers the (3, 3) channel in computing o(~). There
is, however, a technical difficulty in this proce-
dure. In principle, the expression (3.60) gives
the wN scattering amplitude in the center-of-mass
system, although this fact is not obvious in the
Chew-Low equations because the static limit has
been taken. " On the other hand, the h's appear-
ing in Eq. (3.64) refer to the laboratory system.
W'e effect the transformation from the lab ampli-
tude h„(sr~) to the center-'of-mass amplitude
h„(&u„) by using the relation P h (&u~) = «h (&u„),
where «and &u„= («'+ p')"' are the pion center-
of-mass momentum and energy, and P and ~~
= (P'+ p')"' are the corresponding lab quantities. '
Gne can then calculate cv in terms of the ampli-
tudes h„(~„) in the center-of-mass system. Tak-
ing the (3, 3) channel only and setting q=«/P one

where P indicates the principal value. The result
(3.60) gives the effective range expansion of

0
Reh '(&u) if &uo is replaced by a constant.

We can now calculate the pion self-energy as
before. However, at incident pion kinetic ener-
gies -200 MeV, one can estimate scattering cross
sections semiclassically without passing to phase
shifts first via an optical potential. To this end,
we require the nuclear refractive index n(&u) giv-
en by Eq. (2.11). One finds from Eqs. (3.46) and
(2.11) that

n'(v) —1 = —g v„ t dno h„(v) n'(+) (3.63}
4m P tf0

a

without approximation. The appearance of n' =q'/
p' on the right-hand side of Eq. (3.63) is a specif-
ic feature of the P-wave nature of the interaction.
We solve for n' after introducing the abbreviation

has

6& 0
a((u)=

3 n,qh((u„) (3.65')

8«n, l'((u „)~(&~ = 3s (3.67)

We append the subscript CI to n to emphasize
the origin of the approximation (3.66). This ex-
pression has some features in common with the
Ericson-Hufner model. " In Sec. IV we compare
the results based on an exact calculation of n(&u)

with the first-order approximation nc„(+).
We close this section with some qualitative re-

marks concerning the use of the simple propaga-
tors G of Eq. (3.19) and D, of Eq. (2.5) to describe
nucleon and pion propagation in intermediate
states. As pointed out previously, our method
specifically excludes the renormalization of pion
lines in intermediate states. However, there are
some indications in the literature" that the pion-
propagator renormalization is not important.

The renormalization of nucleon lines is allowed
in our approach, as per Eq. (3.18). A complete
calculation of these effects requires a knowledge
of the nucleon self-energy Z(P). The contribu-
tions to Z(p) can be roughly classified as (i} aver-
age field effects, in which the medium remains
unexcited, and (ii) polarization of the medium by
the probe nucleon. Gur model does not include
polarization effects. However, to the extent that
the average field effects (binding-energy correc-
tions) can be described by assigning to the nucleon
an effective mass m*, we have

0}C P ~ Pep=2 +Z(p}=2,+Zo, (3.68)

where Z0 is a constant. One then finds that

Z

2w- c - —e- —q +v- —s5
p k+q-p k ~0 p

(3.69)
replaces the cofactor of f f in Eq. (3.4). Since
only differences of single-particle energies enter
this expression, the constant Z0 cancels out. If
we now pass to the static limit, Eq. (3.69) leads

0
at low densities. The function h(&o„) is given by
Eq. (3.60) with &u- &u, and p- «. Using the esti-
mate (3.65') for n, one has

a((u„)
(u, ((o„)—(g, —a((o„)—i[ I ((u„)/2J '

(3.66)

i.e., a resonant form that exhibits a shifted reso-
nance energy, with shift function s(&u„) given by
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to the same result as that given by Eq. (3.4) with-
out nucleon line renormalizations. One expects
such a result to hold, whether or not the effective
mass description is valid, as long as nucleon self-
energies are small relative to the pion mass p, .
One knows empirically that

~
Z ~-50 MeV for nu-

cleons deep in the Fermi sea, with Z decreasing
slowly with increasing momentum. Consequently,
the condition

~
Z

~
«p, seems reasonably well sati s-.

fied and we conclude that the Pauli principle modi-
fications in G(P) are the important ones. A quanti-
tative assessment of this opinion must of course
await a proper calculation of Z both on and off the
nucleon energy shell.

g(0) =1 is fixed by the choice (3.73)] of the form

(3.74)

as a function of the complex variable z, where
g(&u) now has the meaning

lim g(z), z = &u+i 5 .
$~0+

The spectral function p(&u} is determined by the
"jump" of g(s) across the cut starting at &u = P:

F. Iterative Solution for the Pion Optical
Potential near Resonance

%e finally address ourselves to the question of
obtaining a solution for II(q) under a minimum
number of approximations. %'e have devised the
following iterative scheme that is carried through
numerically in the next section. Vfe retain the
two assumptions of Sec. IIIE, i.e., that only the
(3, 3) channel is important and that crossing terms
can be neglected. Then the discussion leading to
Eq. (3.44) is valid. For the (3, 3) channel in par-
ticular, one has (5=—5»)

F((u) = h((o) + 4' ((o) i h(~) i' . (S.V1)

(S.V0)

We now return to Eq. (3.59) and cast it into a
form that contains cot5 as the unknown function,
since the structure (3.70) automatically satisfies
the unitarity requirement on h. Define the auxil-
iary function

or

1

( 1+4nI((u)n*((u) (' ' (3.75)

Equation (S.V4) can now be rewritten as an equa-
tion for h(&u} containing the modified coupling pa
gamete~ A. '.

This result can be cast into the form of an effec-
tive-range expansion for h '(&o),

4m X'8 (u i I'(&o)

(d (d (ato 2 (do

in terms of (energy-dependent) parameters

(3.78)

i
1 4 I( )h*( )i' '

We find the following equation for h(&u):

x'((u)
-[h '((u)+4'*(&u)]

h1
I

dCOp 3 2( }
X (COp.)J~~~QP~gg

P P

(S.VV}

(3.72)
d(o p 3 g( )

X (4) p)

p P

(S.V9)

1

(u F(co)
(3.73)

to remove the pole at &u =0. Then g(~) only has a
cut from p. to ~, and approaches a constant as
&u-~. Thus g(z) has a representation l the value

has exactly the same singularities (a pole at &u = 0
and a cut from p to ~ along the real v axis) as

0
the Chew-Low function h(cu) of Eq. (3.60), which
is a solution of Eq. (3.59) with I,=0. Thus a rep-
resentation for F(&u) can be found by following the
same procedure" as Chew and Low use for con-

0
structing h(&u). Introduce the inverse of F(v) via

I'(u)) = 2X'P'v'(P) —' 1—
(d P

(3.80)

after writing I(~) =&+i% If ~,' and I" .are slowly
varying functions of +, Eq. (3.78) shows that h(&u)

resonates near ~ = m„where

4rz'J
COp =(d 1

(d
(3.81)

Since the amplitude given by (3.78) is automati-
cally unitary in the sense of Eq. (3.43}, we con-
centrate on the real part only. For w & p, the func-
tion h(e) is purely real and given by Eq. (3.78}



PION-NUCLEUS SCATTERING IN THE (3, 3) RESONANCE. . . 2327

with f'—= 0. For &u&P we write Re(h ') in terms of
cot5, using Eq. (3.70). The equation for cot5 then
follows from Eq. (3.78):

2-
cot5 ==(&o, —&u) .0 (s.a2)

Clearly, Eqs. (3.76) and (3.77) present us with
the problem of determining x'(&u) and h(&u) self-
consistently, and we carry out such a program
numerically in Sec. IV. However, the qualitative
features of such a solution can be inferred from
the key Eq. (3.76) for X'. Near a resonance in

A(e), [Reh(&u)=0, Imh(~) =(p'-4mK) '] the factor
p(&d) becomes

(1-4wK/p')'
pres

=
1 + (4 J/ps)2 (3.83)

so that A.
' is alseays ~educed relative to A., i.e. A.

'

Therefore, one expects that (dp shifts up rel-
ative to &u, (by about a factor p„, '). The reso-
nance energy Qp in turn lies lower than wp by the
reduction factor shown in Eq. (3.81), so that the
position of Qp relative to the free mN resonance
energy up is determined by which of these effects
dominate.

At low energies, += p. , the situation is differ-
ent. Here Imh=0, while Reh=C, where C is the
scattering volume. Hence

' =(I+4vN, C)' ' (3.84)

Thus C is reduced or enhanced depending on its
own sign. It is also interesting to compute H(q)
from the above expression for h(p. ). The result

4wnp, v~C„II(q)=
3 q Q 1 4 C, (d jLL

is a Lorentz-Lorenz form for II(q) that reduces
exactly to the Ericson-Ericson result, "

(3.86)

1 ~4vNoCO 3 '

for low-energy pion scattering from one type of
scatterer only, of density Xp The scattering vol-
ume C, = 3C in this case since the C„assume a
common value C. Notice that the expansion of Eq.
(3.86) to order no' coincides with the earlier re-

and hence A.
' is enhanced or reduced depending on

the sign of C. The modification given by Eq. (3.84),
which holds in every channel o., provided we ne-
glect crossing terms, is closely related to the re-
sult (3.45). If we solve Eq. (3.29) in Born approxi-
mation with A. replaced by A. ', and identify the
free mN scattering volumes C~ with A.„/p, , then

I.(u)=(I 4
" (s.a5)1+4wNpC „j

suit (3.56), a property not shared by the Ericson-
Ericson expression. ""

The resonance and off-resonance values of the
function p(&u) of Eq. (3.75) also show that "low
density" has a different meaning in the two cases.
If we are off resonance, we see from Eq. (3.84)
that low density implies 4nNpC ocnpC is small,
while low density in Eq. (3.83) means that 4'/p'
and 4nK/P' are small. The latter condition is met
for pion wavelengths «internucleon spacing, 4
«r, . For pions near the (3, 3) resonance ('X= 0.6/
p, ) in nuclear matter (n, = 0.5p'), one finds that
X= 0.7x„so that the resonance problem cannot be
handled by perturbation expansions in the density.

We also see from Eq. (3.80) that the (3, 3) reso-
nance width in nuclear matter I' is smaller than
the free nN width I' of Eq. (3.61) by a factor p&uo/

0
&u(1-4mK/p') if we assume A. = A., i.e. neglect re-
normalization effects. This reduction in width
comes partially from the factor p(&v) and partially
from the action of the Pauli principle, represent-
ed by the factor (1 —4wK/p'), that restricts the
phase space available to the struck nucleon. Fig-
ure 15 shows a numerical illustration of this ef-
fect. One thus concludes that the (3, 3) resonance
has a longer lifetime in nuclear matter than free
space. Note, however, that this conclusion is
based on the assumption of static nucleons. An

average of the resonance widths in gN collisions
in the nucleus over the Fermi distribution would
result in a superposition of resonances, and hence
a larger width. It is this Fermi-averaged reso- .

nance that is seen experimentally. We emphasize,
however, that for a fixed nucleon momentum, the
effect of the Pauli principle is to quench the (3, 3)
resonance width.

G. Pion Optica1 Potentia1 at Low

Density-Quasiparticles

If the criterion of low density mentioned in the
previous section is met at all energies, one can
derive a pseudopotential for describing pion scat-
tering by treating the pion as a quasiparticle'
propagating according to the dispersion law (2.9):

(u2= p, '+q' —II(q, (o) . (2.9)

We look for quasiparticle excitations of the form
& = &- —Zy- that propagate with wave number q:

(&u, —iy, )'= ij, '+ q' —II(q, u, —iy, ) . (3.87)

The quasiparticle solution of this equation as-
sumes that the width y is small, or that the life-
time v of the quasiparticle is long, (d-T»1. Then
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one can solve Eq. (3.87) as follows:

(u „2—p, 2+q —IIO(q (o q),

where II =IIp+iII, and

(3.88)

low-density limit. A direct calculation shows that

4mn
rl, (q, (o-„)=—~ q'P~P, (~-„—P, )

x [(b„'+2b„') + 3(b„+2b»')]

(3.95)

s~q, 1 eii, (q, (u)

2(d 9co

(3.89)

is the group velocity of the pion wave.
Since the effects of the medium are assumed to

be small in setting up Eq. (3.88), we can use the
low- density estimate, 4'

p

II(q, (o q) = 4mn, f,.„=- ~ q'g v IE (ro)
a

(3.90)

that follows from Eqs. (3.47) and (3.23) if we ig-
nore the va, riation of f„„with density. The imagi-
nary part,

near the modified threshold e = P, , where we set
h„(P) =b„. The linear behavior of II, with u&- near
&-= p. is clearly visible in Fig. 14, which shows
how one of the component functions, Imh»(&u)
=—Imh(&o) of II„vanishes at ru, = P. . Numerically,
one expects the 5„to be close to the (quenched)
values of the free vN scattering volumes h„(p) as
determined by Eq. (3.77). Figure 13 illustrates the
point for 5». One sees that h»(p) =0.160 versus
h»(P) -=5» = 0.156 at P = 1.23 p. , all in units of p, ',
to be compared with the free mN scattering vol-
ume" of C» = 0.201(1/p, ').

The dispersion law (2.9) can also be cast with
the form of a one-particle wave equation4' for the
pion, containing a pseudopotential ' v(r, -iV):

0
II,(q, (u-)= ' q'g v Imh ((o) (3.91)

[V'+P' —v(r, -iV)]4(r) = 0 (3.96)
has two limiting forms, depending on the relative
magnitude of q and P~. At high wave numbers,
q»Pz, one has the optical theorem~'

for a pion of incident wave number P. The pseudo-
potential is given by

p

4wq/3+ v„1m' ((u) =-', [c(m P)+o(m-n)j-=(x,

(3.92)

v = eR —iv, = -II,[p(r), iV; ~j —-III,[p(r), -i V, u)],

(3.97)

where o is the average mN cross section. Conse-
quently

II,(q, ~-„)=n,oq, q»p~, (3.93)

a result that coincides exactly with the impulse-
approximation estimate of the imaginary part.
The estimate (3.93) then combines with I/~ to give
us the standard relation

1 1
=Op(Xv-~

q

(3.94)

for the mean free path X of a pion moving through
a density np of scatterers with a collision cross
section g per scatterer. Note that no Pauli prin-
ciple effects occur in either of the above equa-
tions, as is to be expected for high-momentum
collisions. By contrast, Pauli-principle effects
dominate at low momenta, forcing II, to vanish
for q & +~. We pick up this effect to leading order

0
in the density if we replace Imh„(&o) by Imh„(~) in
Eq. (3.91) and then use Eq. (3.43). The forms giv-
en for Imf„„ in Eqs. (3.32) are still valid if we re-
place P by q, ~ by co-„ in those equations, where
&u-„=(q'+ p, ')"'. This amounts to dropping the cor-
rection IIO to e ~ in Eq. (3.88) in accord with the

where p = p(r) is the local nucleon density in the
nucleus. Note that the pseudopotential is expected
to be nonlocal and energy-dependent. These fea-
tures are familiar from the related problem of
constructing nucleon-nucleus potentials. " The
energy dependence of v arises from the elimina-
tion of all nonelastic pion-nucleus channels in con-
structing the wave equation (3.96), or seen from
our viewpoint, in constructing the propagator
D(q, &u). The nonlocal nature of v is specified by
the P-wave nature of the basic mN interaction in
our case. To see how this works, we look at v at
low and high wave numbers. At low wave numbers,
q «P~, v is essentially real. Using Eqs. (3.90),
(3.50), and (3.55) one has

4mn, C„+Cpv= —
3
' q'g v C„-4m " ~ (V PV)

(3.98)

that is just the finite-nucleus version of the first
term in the Ericson-Ericson result (3.57). Note
that the operator equivalent of q'np has been taken
as -V ~ p(r) V. One could equally well use the fully
symmetrized version ——,'[pV'+2V pV+ V'p] or the
purely local form -V'p(r)

At high wave numbers, the distinction between Q
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and its operator equivalent is unimportant. We find free path as before)

v — p'g v„Rek„(u)) —ip(r)(T((d)p
4wp(x), 0

(3.99)
1 np'~

v 2kI(. k n, k' ' (3.103)

after setting q =p»P~, in agreement with the im-
pulse approximation again. 4'

It should be pointed out that the absence of an
imaginary part in Eq. (3.98) does not mean that
the low-energy pion optical potential is real. The
inclusion of p-2N processes contributes an imagi-
nary part in order n, ' down to zero pion momen-
tum"

since for small absorption coefficients 2m= n,np'.
However, (d/(n, k') is just the quasiparticle life-
time 7 of Eq. (3.88) as calculated for the specific
dispersion law (3.100). Thus we regain the rela-
tion A, = v 7 by another method.

IV. APPLICATIONS

A. Chew-Low Solution

H. Pion Mass Renormalization

The dispersion law (2.9) can also be written as

(u'=q'(1 —n)+ p, ', (3.100)

k'
2+@

0

1n2=
1 —Qp —

zing
(3.101)

since II(q, &u) = q' n((v) in view of Eqs. (3.46) and

(3.63). The interpretation of Eq. (3.100) as a re-
lation determining the complex energy of the pion
as a function of a given wave number (quasiparti-
cles) has been discussed in the previous section.

On the other hand, the scattering of pions re-
quires that we treat the energy w as given" and
determine the wave number q of the pion in the
medium via Eq. (3.100). Since o. ((d) =n, +ic(, is
complex, so is q. Consequently we write
q=k(1+is), n= n(1oi+),I(and find that

Before proceeding to the problem of pion-nucle-
us scattering, we investigate to what extent the
Chew-Low model describes gN scattering in the
(3, 3) resonance region. To this end we adopt the
framework of the static Chew-Low theory that was
reviewed in Sec. III A. The basic equation in that
theory is given by (3.11). If we restrict our atten-
tion to the (3, 3) amplitude is»(&o) =8((d) only, and

neglect the crossing terms, we are left with

k(~) =—+—
I

d(o- p'v'(p) p . , (4.1)
ik(&o-) i'

(d 7T P co- —(d -25 '
P P

where X =-,' f„'/4vp'. The explicit solution of Eq.
(4.1) has been given in Eqs. (3.60)-(3.62). Since
the coupling constant k = O. ll p

' is known, the
only remaining parameter is the high-momentum
cutoff in v'(p). This admittedly ad koc feature is
unavoidable in a theory using point nucleons. We
have employed two forms for v'(p): (i) a Gaussian

The n, ' factor in the denominator shows that the
pion speed (group velocity) is decreased in the nu-
clear medium by the self-energy q' a(ru), if o &0,
even though the pion wave number k is increased
in the medium. One sees this directly from the
expression for the group velocity v, = s(v/sk of
the pion wave. According to Eq. (3.101), one has

and (ii) a sharp cutoff

(4.2)

(4.3)

k p
(dnp npm

(3.102)

in the medium, which is slower by a factor np than
the group velocity p/(d in free space. This curious
effect, which runs contrary to intuition, comes
about because a self-energy of the momentum-de-
pendent form q' o.((v) "dresses" the free pion in a
way which at low energies can be described by giv-
ing the pion an effective mass p.*=np-'p, that is larg-
er than its mass in free space. This is to be con-
trasted with the case of an attractive and momen-
tum-independent potential, for which both the wave
number and the group velocity increase in the
medium, and for which there is no modification of
mass. As an added check on our interpretation of
Eq. (3.100) as determining a complex wave number

q for real (v, we note the property (X is the mean

1
2a' (d, —(o„—(i/2)1'((u„)

(4 4)

taking a constant value cop =1.904@. for the reso-
nance energy, but an energy-dependent width

r (o„)=
4m ~'a'y' p,

((o, + (v„)(l + x'a') ' (4.5)

Here m =proton mass, a=0.6277'. ', y =0.1709,
while g and +, are the pion momentum and total
energy in the mN center-of-mass system, as be-
fore. The parametrization (4.4) has the same

in order to get some feeling for the effect of vary-
ing the form of v'(p). In each case p, can be ad-
justed to fit the peak in the experimental wÃ cross
section. We have used the g'p data of Carter et

0
al. ' These authors parametrize h as
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Eq. (3.62) asquation (3.60) (as must an
amPlitude) except that &u is n tgnow en as constan
while the width f"(&d) in Eq. (4 5) i d

gie»elative to the Chew-Z ow result (3.6].).
F r the Gaussian cutoff of E (4 2)q. ~ ~, a value p

173.9-
& c»rectly positions the (3 3h

~ resonance at

—11.75 zs r
. -MeV lab kinetic energy while alieav uep,

p, is required for the sharp cutoff mod l "
pre ict~ons of the Chew-Low model with a

mo e.
Gaussian (G) and sharp cutoff (SC} are shown in

Fig. ll, together with the experimental points, '
and the fit (C) obtained using Eqs. (4.4) and 4.5 .
One notices that the peak in thin e cross section oc-
curs at an energy below 188 3 M V ~e ythe lab kinetic
energy corresponding to a&o) due to the ener de-

in &&„', as well as the wavelength factor
X'=z ' in the cross section. The other feature to
note is that the Chew-Low model gives a reso-

energies. This is because the Chew-Low width
parameter I'(&u) is too large t h' ha xg energies in
comparison to the I"(/d} of Eq. (4.5}, or other phe-
nomenological forms. '

One sees from Fig. 11 that the results for differ-
ent cutoff functions are essent' ll thia y e same.

erefore, we restrict ourselves in the follow-
ing to the sharp cutoff of Eq. (4.3), which is nu-
merically more convenient. Using Eq. (4.3), one
can calculate the resonance p tparame er &p from

(Mtc - S) ——cos '(=) c cosh 'tM)

(~2 l )3/2 (M ])1/2(~2 ])1/2 +M
(M —&u)

if ~&1 W, w"ere we have expressed all en
(4.6)

units of //, . Here M =(~ 2+1}U2 ll 6
mass.

is the cutoff

The effective-range expans o f Chi no ewandLow
uses the "soft-pion limit" of t =0.+p a ~= . A direct
calculation gives

1
(Mm ])1/2 l + s j

~,(o) u
+2 -g —2cos 3f 3p,

(4 l)

for'k=o. li -'
p. , a result which is inconsistent with

the required valueq
'

value vp=2p, ~n the energy range 1.5-
2p around the (3, 3) resonance Th'e. xs inconsistency
is again connected with the neglect of the crossed
channels. However~ 4)p ls a slowly varying fun c-
tion of & in the region of interest se F' 16,ee ~. , so

a x s replacement by a. constant i dxs a goo approx-
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cross section. %e have already anticipated this
result in connection with Eq. (3.80), which shows
the narrowing of the (3, 3) resonance in nuclear
matter by Pauli-principle effects. The energy at
which 5 passes through v/2 [cot5(&u) =0] decreases
slightly as n, increases.

In Figs. 13 and 14, we exhibit the real and imag-
inary parts of h(u&) at a density of 0.2p', and com-
pa, re these to both the Chew-Low amplitude given
by Eq. (3.60), as well as the solution of Eq. (3.59)
with I=I(p) =N~. The latter approximation is seen
not to provide a good approximation to the exact
solution of Eq. (3.59), except at high energies,
where all three amplitudes become equal. As seen
from Figs. 9 and 10, the approximation I=I(p)is,
actually quite poor in the resonance region (1.5p,

«u &2p) where I(&u) is typically of order 2-2.5

times 1(p,). The imaginary part of 1(~) is also of
the same order as the real part in the resonance
region, a feature that the approximation I(&u) =I(p)
ignores entirely. In addition, ImI is responsible
for the upward shift of the threshold from p, to p. .

The shift in peak energy is shown in Fig. 14,
which gives Imh(&o) as a function of &u at a density
n, =0.2p, '. We see that the peak in Imh(a&) has
been shifted uPzoard in energy by the presence of
the medium and appears appreciably narrowed.
Thus a modified p'p "cross section" a„+~ =Swp

ximh(&u) would display a resonance at a higher
energy with a smaller width than the basic Chew-
Low resonance. " This feature is a direct result
of the quenching of the effective coupling constant
X' as per Eq. (3.76). A reduced value of the cou-
pling moves the resonance energy upward (since
&uo is inversely proportional to X'). We have al-
ready discussed the narrower width in terms of
Pauli-principle restrictions.

C. Numerical Results

In this section we show some typical results for
the pion self-energy II(q), as well as examples of
the refractive index n(v) and the mean free path
of pions in nuclear matter. The self-energy is ob-
tained by combining Eqs. (3.58) and (3.23) in the
form

II(q) 16m
dn,'h ((o, n,')

p

(4.8)

and then carrying out the integration over density
numerically. The results are shown in Figs. 17
and 18. The first-order result obtained by replac-
ing h(|d) by the Chew-Low amplitude h(&o) is also
shown for comparison. We observe that the real
part of II(q) is generally diminished by the pres-
ence of the medium, in agreement with the quench-
ing effect discussed previously. Also, the peak
value of Im[q 'II(q)] has been shifted up in energy
and narrowed in width relative to the Chew-Low
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The width functions I'(a&) and I'(&u) given by Eqs.
(3.80) and (3.61) are shown in Fig. 15 as a function
of &u. The reduction of I'(&v) relative to I'(e), as
well as its smooth dependence on density, is illus-
trated by the curves at densities np 0.12@.' and

n, =0.2p, '. In Fig. 16, we compare the modified
resonance energy ~, of Eq. (3.81) with the Chew-
Low resonance energy &uo of Eq. (3.62). The same
curve also shows the approximate value of up if
we assume I=I(p) for all +. We note that 2&, var-
ies more rapidly than +p, and that gp»p in the
region of ru that lies below the peak value of Imh(&u).

I .2 I .6 2.0 2.4 2.8
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3.2

FIG. 15. The width function F(cu} of Kq. (3.80) as a
function of & for np=0 12@, and 0.2@3. The Chew-Low
width l'(w) of Zq. (3.61) is shown for comparison.

FIG. 16. The modified (3,3) resonance energy Zi p((d)
as a function of co for n p=0.2@3. The curve labeled
EXACT corresponds to Eq. (3.81) while curve APP re-
fers to the approximation I(~) =I(p) as in Fig. 13. The
Chew-Low resonance energy ~p(~) of Eq. (3.62) is also
shown for comparison (dashed curve).
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solution. This is just the reflection of the same
effects in imII(Id) as per Eq. (4.8).

A knowledge of o. =q 'll(q) determines the refrac-
tive index n(+) of nuclear matter from Eq. (3.65').
In turn, the imaginary part of n(Id) determines the
mean free path of pions of momentum p and energy
&u =(p2+ p,')"' as in Eq. (2.12):

(4.9)

T = l — 1+— exp (4.11)

One finds that the peak value in 0,„,occurs very
close to the minimum value of X(&o). This is seen
immediately if X»R by expanding 1 —T = —,8/X.
In realistic cases X/R is generaBy small rather
than large near a minimum value of X, but this
does not appreciably alter the qualitative nature
of the result. Thus if we adopt Eq. (4.10), Fig. 20

The mean free path obtained from the numerical
integration of Eq. (4.8) to determine cI is shown in
Fig. 19, for various final densities n, . The next
figure (Fig. 20) shows the energy for which X(&v)

assumes its minimum value as a function of the
density. The energy dependence of the mean free
path reflects itself directly in the total absorption
cross section for pions in nuclear matter. In or-
der to calculate 0,„,we treat the nucleus as an
opaque sphere of radius R and uniform density n, .
Then according to the classical optical-model
formula, '

(4.10)

where the transmission coefficient T is given by

may be interpreted as a plot of the (3, 3) resonance
energy in nuclei as a function of the nuclear density.

The results shown in Fig. 20 emphasize the large
difference between the predictions of the first-or-

0
der estimate h(&o) =h(+) for determining the mean
free path (broken curve) and the exact calculation.
The first-order Chew-Low model' predicts reso-
nance energies that are consistently 30-60 MeV
beloved those following from the complete calcula-
tion. Thus the error incurred in using the first-
order multiple-scattering approximation to II(q)
is of the same order as the energy shift one is try-
ing to understand. This suggests a poor conver-
gence of the multiple-scattering approximation
near the (3, 3) resonance. Other authors have ar-
rived at similar conclusions. '~"

We also note that our calculation predicts that
the 17-nucleus (3, 3) resonance energy decreases
with increasing density up to a certain critical
density and then starts to increase again. On the
other hand, the discussion of Sec. 8 above showed
that the basic resonance energy in Imh(&o, no} in
c~eases with increasing n, . Thus we have two
competing energy-shift mechanisms in m-nucleus
scattering: (i} an uPuIard shift due to the quench-
ing of the gN coupling constant by the medium
[Eq. (3.76}]and (ii) a downu ard shift due to dis-
persive effects in the medium [Eq. (3.66)]. Since
quenching is absent in the first-order calculation,
the corresponding minimum in X(Id) always lies
below the exact result as long as n, is below a cer-
tain critical density (no%0.44'' in the first-order
calculation and somewhat higher in the exact cal-
culation). Above this density, the resonance ener-
gy again increases. This effect comes about from
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FIG. 21. Minimum value A, mm of the pion mean free
path as a function of the density np. The solid curve
represents the result of solving Eq. (3.59), while the
dashed curve corresponds to the first-order approxima-
tion to h(~).

FIG. 22. Trajectory of the pion index of refraction
n(a) as a function of m for n

p
=0.2p . The solid curve

represents the exact calculation, while the dashed curve
corresponds to the first-order Chew-Low approximation.
The curves are labeled by the value of the pion lab ki-
netic energy at each point.
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the energy dependence in the shift function A(a&„)
given by Eq. (3.67). If we write

a((u„) =a,—',
K

0
where 60 = 16mn, krl/3 is the value of b, at &o = e„
and assume that the deviation from unity of the
refractive index nc„ in Eq. (3.66) is small, then

1

2(u, [s —s' —(n, /(o, )] —i('ka'/(o, )

(4.12)

(4.13)

with s = &u„/&o, . The imaginary part of this expres-
sion determines the mean free path as

p60 (XK /(d„)
( )

(s) +0 [s —s —(6O/(do)] +(XK /(do)

where p is the pion momentum in the lab, p=~ '.
The minimum value of X(s) occurs approximately
at the larger root of s —s' —(b, ,/&u, ) =0 or

s =-,'+-,'[1-4(a,/~, )]"' (4.15)

provided that this root is real Since. b, o/vo is pro-
portional to the density, this root moves down with
increasing density until it reaches its limiting val-
ue s = —,

' for 4h, = +0. Using the values v, =2.17p, ,
I =0.11', ', and y=0.67 near resonance (s=1) one
finds that 4b, o = 3(don, in units of IU. ', so that the
critical density is of order no= 3 ILI.', in agreement
with the broken curve in Fig. 20. When 460 ex-
ceeds v„ the minimum value of X(s) would occur
at s = —,

' independent of the density, were it not for

the phase-space factor g' that moves this maxi-
mum to higher energies in a fashion that depends
on density because of the factor 6, in the numera-
tor of Eq. (4.14).

In Fig. 21, we plot X as a function of density.
We remark that the first-order and exact calcula-
tions of X;„are very close, but the energies at
which X;„is reached are of course quite different.
For n~ ~ 0.1p.', we see that A, ;„ is small compared
to a typical nuclear radius, even for light nuclei.
Near resonance, the absorption of pions is thus
essentially a surface reaction, since the small
mean free path prevents the pions from penetrat-
ing into the nuclear interior.

It is also interesting to plot trajectories of the
real and imaginary parts of the refractive index
n(&o), as in Fig. 22. One notices that the trajec-
tory is of a smaller size for the exact calculation,
which implies that the change in the real part of
the wave number as the pion enters the medium
is correspondingly smaller (for v«o, ). Once
again, this exhibits the quenching effect of the
medium on the basic (3, 3) resonance.

D. Absorption Cross Sections

The classical formula (4.10) for the absorption
cross section neglects the wave nature of the inci-
dent particle in the scattering process. In particu-
lar, this formula assumes that the incident parti-
cle can be localized with arbitrary precision. It is
well known from nuclear reaction studies with

strongly absorbed incident particles that consid-
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R+X TABLE I. Equivalent spherical radius R and bulk
density pb„lk for various nuclei.
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FIG. 23. Comparison of the absorption cross section
o,b, calculated classically (curve R) and with an energy-
dependent effective radius (curve R + 4), both according
to Eqs. (4.10)-(4.11). Both curves are for the reaction

+ C at a density n0=0. 16@ . The experimental points
are taken from Ref. 1.
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erable improvement between theory and experi-
ment results on replacing the nuclear radius in
Eq. (4.10) by an effective radius R' =R+X, where
X = 1/p is the reduced wavelength of the pion. '4 The
increase of the nuclear radius by a wavelength ac-
counts in a very rough way for the lack of localiza-
tion of the incident particle to better than its own

wavelength. Hence, we use

o,„,= v(R+X)'I1 —7'(R+X)] (4.16)

in comparing with experimental data. The correc-
tion R -R' is particularly important for light nu-
clei where X is of the same order as the nuclear
radius (in which event one should do a complete
wave mechanical calculation anyway). Figure 23
shows the classical absorption cross section for
w + "C scattering, with and without the wavelength
correction, using a nuclear density of n, =0.16p,'.
The agreement with experiment is probably better
than the crude formula (4.16) would justify. Quali-
tatively, the replacement R-R' has the effect of
introducing an additional energy shift that moves
the (3, 3) resonance peak in a,b, below the energy
at which the mean free path is a minimum (the
numbers are 14S.3 versus 175.3-MeV lab kinetic
energy in Fig. 23). Clearly a full quantum-mechan-
ical calculation is necessary, based on the wave
equation (3.96), before quantitative comparisons
with experiment are really meaningful.

The acquisition of more extensive data at the Los
Alamos Meson Physics Facility and other meson
facilities should justify these more extensive cal-
culations at a later stage. For the moment, we
content ourselves with some semiquantitative pre-
dictions of the (3, 3) resonance energy with mass

number A. To do so in the framework of the semi-
classical formula (4.16), we require (i) a nuclear
radius R and (ii) an effective density for nucleons
in the nuclear surface. We obtain the former by
averaging values of the equivalent charge radius"
obtained from electron scattering. We then as-
sume that neutrons occupy the same volume as
protons and obtain pb„a = 34/(4'') for the bulk
density. These values of R and pb„lk are tabulated
in Table I. However, pion absorption takes place
primarily in the nuclear surface, so it would be
incorrect to equate the n, of our nuclear-matter
calculation to pb„lk. Instead we use the observed
peak position (145 +8 MeV) of the (3, 3) resonance
in g + "C scattering to determine n, . Figure 24
shows calculated curves of o,„,for n, =0.1, 0.16,
and 0.24@,'. The choice n, =0.17p,

' correctly posi-
tions the resonance peak at 145 MeV and at the
same time reproduces the absolute absorption
cross section above 100 MeV remarkably well.
(A fit to the lower-energy data can only be under-
taken in a model that also includes s-wave scatter-
ing. ) The value n, =0.17',' corresponds to

=2
0 3 pbulk (4.17)

200

for "C. If we assume this prescription for all nu-
clei then the peak value of o,b, varies with A. as
shown in Fig. 25. The general trend is towards
lower energies as is to be expected, the local vari-
ations coming from nonsmooth changes in pb„lk.
For instance, the classical model predicts very
small shifts in 'Li and 'Li, which are loosely
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FIG. 24. Absorption cross sections 0',b, for 7t' + C at
various densities m 0. An effective radius R + A was used
in Eqs. (4.10)-(4.11) with R =3.18 fm. The values of the
mean free path A. (m) are obtained by solving Eq. (3.59)
for h(~). The experimental points are taken from Ref. 1.

FIG. 25. Predicted (3,3) resonance energies as a func-
tion of mass number A of the target nucleus. The solid
curve corresponds to using an effective density no

3p b„lk, where the values of p b„lk are given in Table I.
The broken curve uses densities pb„lk from Ref. 57.
The 15 dots correspond to the nuclei listed in Table I.
Connecting lines are drawn to guide the eye, and do not
represent the results of calculations.
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bound, but a larger shift" in He. For nuclei heav-
ier than mass number 80, the solid curve in Fig.
25 indicates that the resonance energy saturates
at about 100 MeV.

An alternative to Eq. (4.17) is to use pb„~=2''/
Sz2, and then adopt values of the Fermi momentum
obtained from quasielastic electron scattering. "
Except for 'Li, these values are consistently larg-
er than those following from the uniform model.
The results obtained with this prescription are
also shown in Fig. 25.

The relation (4.17) is of course a very qualita-
tive one, and pion absorption on different nuclei
could well sample different regiqns of the surface
depending on the incident energy. In fact, in the
uniform model it is probably more correct to de-
termine the effective density from individual ob-
served resonance positions than vice versa. As a
qualitative guide, Fig. 26 shows how the resonance
energy in He, C, and Pb changes with density,
assuming the validity of the semiclassical result
(4.16) to compute the resonance energy. We re-
mark again that these curves are of qualitative
significance only and cannot replace a full-wave-
mechanical calculation, especially in the case of
light nuclei. The calculations we have described
use a very simple model of the nucleus as a uni-
form sphere, so that no detailed nuclear struc-
ture or shell effects can appear. Strong devia-
tions from the trend of energy shifts shown in
Fig. 25 could be associated with effects of nuclear
structure. But in any case we feel that the qualita-
tive information in Fig. 25 should be of some use
in planning systematic experiments in the (3, 3)
resonance region.

V. SUMMARY

While most of the results and developments of
the previous two sections are self-contained, it is
useful to summarize the main procedures and phys-
ical assumptions used in this study of pion-nucleus
interactions. We have based our approach on the
construction of the pion self-energy II(q), which is
related to the pion-nucleus optical potential via
Eq. (3.97). The self-energy II(q) summarizes the
entirety of polarization processes induced by the
pion in the nucleus. As has been demonstrated in
Eqs. (2.9)-(2.12), a knowledge of II(q) leads direct-
ly to expressions for a nuclear refractive index
and mean-free path for pions moving through a
nuclear medium.

We have calculated II(q) by first constructing an
equation for its functional derivative with respect
to a nucleon propagator G(k) in the medium. This
gave us the effective pion-nucleon scattering am-
plitude f(kq; kq) of Eq. (3.16) that satisfies the
modified Chew-Low equation (3.17). In the case
of a Fermi sea of noninteracting nucleons, the
functional derivative of II(q) with respect to G(k)
is proportional to its derivative with respect to
the nuclear density. Hence one can easily obtain
II(q) in this case by integrating f(kq; kq) over den-
sity. Our derivation of the integral equation for
f(kq; kq) allows one to extend this amplitude off
the pion energy shell. This is a crucial feature,
since pion propagation in the nucleus is off shell
(see also Ref. 19).

The effective amplitude f(kq; kq) differs from
the free-space mN scattering amplitude in several
interesting respects:
(i) The pion-nucleon coupling constant is reduced
in the medium due to the action of the Pauli princi-
ple."
(ii) The pion-nucleon threshold is pushed up in en-
ergy. This is again due to the Pauli principle,
which requires that intermediate nucleon states
lie outside the Fermi sphere.
(iii) The (3, 3) pion-nucleon resonance in f (kq; kq)
is narrowed and pushed up in energy relative to
the free vN resonance as a result of (i) and (ii).
This modification of the energy and width of the
pion-nucleon (3, 3) resonance due to the nuclear
medium has not been considered in previous
work. ' " Our results indicate that these correc-
tions may be important. Equivalently stated, con-
tributions to the pion optical potential of second
(and higher) order in the nuclear density appear
to be significant. "

The pion-nucleus absorption cross section cal-
culated from f (kq; kq) also displays a resonant
behavior. The position of this resonance is deter-
mined by three competing effects: (i) an upward
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shift due to the quenching (renormalization) of the
mN coupling constant; (ii) a downward shift due to
dispersion in the nuclear medium; and (iii) a down-
ward shift due to the energy dependence of the ef-
fective nuclear radius R +X seen by the pion. The
latter effect simulates qualitatively wave-mechan-
ical effects in our otherwise classical estimate of
the absorption cross section. Since effects (i) and
(ii) tend to cancel (iii), the actual resonance posi-
tion in pion-nucleus scattering is the result of a
rather delicate interplay of several opposing ef-
fects.

Except for "C, there is little information on the
precise position of the (3, 3) resonance peak in
pion-nucleus scattering. The pion mean free path
at resonance is found to be small in comparison
with the nuclear radius. Consequently, pion ab-
sorption is mainly a surface reaction at resonance,
and thus subject to nuclear-structure effects that
are associated with the nuclear surface. We have
attempted to make rough predictions of the expect-
ed position of the resonance peak as a function of
target mass number A. , using an effective surface
density =—,'p„„,„. This is clearly the weakest point
in our calculation. A proper calculation of the res-

onance scattering should employ scattering phase
shifts calculated from the Klein-Gordon equation
given by Eq. (3.96). Note that the "local density"
approximation n, —p(r) employed in obtaining the
pion-nucleus optical potential of Eq. (3.97) from a
nuclear-matter calculation of II(q) is probably
quite reliable at the energies of interest in the
pion-nucleus scattering problem.
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