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Erros on the charge distribution as derived from electron scattering are determined Bnd

they depend largely on assumptions about the possible large-q behavior of the form factor
{i.e. , at jarger-q values than have been measured). We use rather general expansions for
p{r), for example the cosine series or a set of spline functions. We find the charge distribu-
tion and its error to be not very dependent on the set of functions used for expansion but de-
pendent instead on assumptions about and knowledge of the errors in f{q}. Charge densities
and their errors for 3He and 4He based on electron scattering are shown.

1. INTRODUCTION

The charge density is assumed to be a linear
series using quite general sets of functions. This
allows study of the errors in the determination of
p(r). The functions used are, for example, the
cosine series or sets of spline functions. We have
investigated a large number of other sets but find
that the results are rather independent of the set
used provided it meets rather general criteria.
Our error analysis makes uses of the error ma-
trix of the coefficients of the series. The error
matrix can be diagonalized by transforming to a
new set of basis functions for expansion. In this
form the errors on the coefficients of the series
are uncorrelated. This formulation leads to con-
siderable conceptual simplication of the error
statement.

We find that in electron scattering experiments,
where f(q) is only measured out to some q,„, that

the error in p(r) is not well defined unless we use
a rather restricted set of functions. However, it
becomes well defined and of reasonable magnitude
for a less restricted set of functions when some
weak limits are assumed on the form factor in the
high-q region where there are no measurements.
In this paper application of the method has been
made only to systems which can be treated in Born
approximation. Therefore, we have studied only
'He and ~He elastic electron scattering as exam-
ples of the techniques described. The methods,
as we show, can easily be applied to any (higher-
Z) nucleus by straightforward application of any
scattering code suitable for calculation of the
cross section from the charge distributions.

Sections 2-5 give a derivation of the method,
There is little or none here that is new from a
mathematical standpoint, but it is included in or-
der to clarify exactly what we do and to clearly
define and distinguish between the ideas of the
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measured quantities (experiment space) and the
class of functions (model space) which must be
used for the expansion of p(r). Section 6 applies
the theory of the preceding sections to the analy-
sis of the charge distribution of 'He and 'He and
a determination of the errors in those charge dis-
tributions.

2. EXPERIMENT SPACE

The measurements f; which are made are as-
sumed to be related to the true charge distribution
by the form

f &

= hg(r)p(r)«,
0

(2.1)

8;(r) =4''j, (q,r), (2.2)

where jo is the spherical Bessel function and
where the factor 4'' comes from the weight func-
tion of the three-dimensional integration. With
this choice of g,. the f, is the form factor at the
momentum transfer qf Functions g, can also be
introduced to specify the mean squared radius
and/or other measured quantities which one wish-
es to introduce into the fitting process. The 5f
can be modified to incorporate finite experimental
angular resolution if one desires.

The set of N measured quantities therefore leads
us to a set of N functions 8,(r), 1 ~i ~¹This set
of functions will be referred to as the exPe~iment
SPQc8.

In ease Born approximation is not valid so that
the measured quantities are not linear functions
of the charge distribution, ' we may linearize the
problem by considering deviations from a charge
dlstl ibUtion which almost fits the data. Any of the
many functional forms already being used to fit
charge di.stributions ean be used as a. sort of base
charge which we will call p,(r). Then if there are
measurements of cross section related to the
charge distribution by some nonlinear functional
o, =F(p(r)) we can assume that if we take as mea-
surements

ao, =o, (measured) —a, (base),

we can linearize the functional I' and we obtain

ao; = (Fp(r)) —F,(p,(r))
"~F,(p(r))

o p( ) p, (r)
Dp(r)dr,

where p(r) is the charge distribution and where
the g, (r) are a set of functions which characterize
the measurements. The measured quantities f,
will differ from f', because of measurement errors.
In electron scattering in Born approximation we
have

where

D(r) =p(r) —po(r) .
Therefore, in all we say below the functions

5p p

are to be used instead of 8, (r) and the function
D(r) instead of p(r) and ho& ,instead of f, if we are
to apply the derivation to situations where Born
approximation is not valid.

3. MODEL SPACE

If there would be no practical limitations on the
design of the experiment, one would select an ex-
periment with such $,(r) and N that

p(r) = g e;S((r)
f=1

(3.1)

would hold and coefficients ef would be easily de-
termined by the least-squares fit. Usually the ex-
periment itself is not sufficient to determine the
density and consequently (3.1) is not true.

Some information additional to that obtained
from the experiment is required to make the de-
termination of the density possible.

An example of such information is our belief
that density is a reasonably "smooth" function and
has a certain, let us say "exponential, " behavior
in the tail region. This has led to assumptions of
specific functional shapes for the density. There
are many such shapes in the literature, ' an exam-
ple being the celebrated Fermi distribution and its
variations. In general, by a judicious choice of
the shape a good fit is obtained. The procedure
is open to the charge of arbitrariness, ' especially
when one is looking for fine structure ("wiggles" )
in the density.

We shall show how to determine p(r) under very
weak assumptions about (a) the functional form of
p(r) and (b) behavior of the form factor at large
q's. We shall consider M states (functions) K„(r)
which define a M-dimensional model space. They
are used to expand p(r):

p(r) = P a SR (r) . (3.2)

The model space can be used now to incorporate
information about the charge density that is not
determinable from the measurements taken.

There are two obvious properties of this kind:
(a) The density has no cusp at origin; and (b) the
density goes to zero outside some radius ro large
compared with the nuclear radius. A stronger
version of the condition (a) states: The density has
all odd derivatives zero at the origin. This strong-
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er version is fulfilled in the case of the cosine-
model space [see Eq. (6.1}j. For other model
spaces we did not use property (a) at all. Prop-
erty (b) has been incorporated into all model spac-
es we used by assuming for each model state:

K„(r)=0 for r&r, . (3.3)

In the cases we considered r0 is smaller than
the maximum distance probed by the experiment:

r,„=»»/aq, (3.4)

where b, q is the experimental increment in mo-
mentum transfer. Therefore, (3.3) is equivalent
to asking for a smooth interpolation for the form
factor between its measured values f, .

In the following part of this section we present
further less rigorous guidelines for the selection
of model states.

The property of "smoothness" of the density is
difficult to deal with. We do not know well how

many derivatives of the density should exist and
what their bounds are. However the experimental
resolution in radius is given by'

ar = »»/q, „, (3.5)

This equation gives a practical estimate of the
maximum number of independent functions which
contribute to f(q) mainly in the region q& q,„and
are zero outside of r, . We shall see in Sec. 6 that
the maximum number of states that is determin-
able from experiment agrees well with (3.6).

Because model spaces are finite the expansion
(3.2) is not always true. We therefore distinguish
between a good model space and one that is not
good. A good model space is one for which the

where q,„is the maximum measured momentum
transfer. On a length scale shorter than this the
experiment gives no information about the smooth-
ness. A natural and convenient way to introduce
additional assumptions about the smoothness of
p(r} is to assume upper bounds on the form factor
outside of the measured region (i.e. , for q& q,„).
This will be discussed in detail in Sec. 6.

Besides this assumption about f„ implicit as-
sumptions about smoothness are made depending
on the smoothness of the model states II (r) used.
In Sec. 6 we consider a variety of model spaces
from the very smooth cosine space through splines
to very unsmooth unspline spaces. It is encourag-
ing that results do not depend crucially on the
choice of the model space.

An important characteristic of the model space
is its dimension M. By combining (3.4) and (3.5)
we obtain for the number of experimentally re-
solved regions:

M= q,„ro/v. (3.6)

4. MEASUREMENT ERRORS
AND DENSITY

In this and in the next section we shall derive
errors in the determination of the density assum-
ing that the model space we use is good. The er-
rors determined will depend not only on the mea-
surement errors but also on the model space used.
They will increase with the dimension M of the
model space. We must keep, however, the dimen-
sion M sufficiently large to be sure that the model
space is good.

The measurements f, are not exact but are
known to some accuracy»»» (not to be confused
with the cross section c used in Sec. 2). That is,
there is assumed to be a normal distribution of
possible values f; given by

(4.1)

Furthermore, the joint probability of all measure-
ments having a given set of values (f»j is given by:

P((f;))=e "" (4.2)

where

X
= Q (f» f )/o'» ~. (4.3)

Since we assume that the model space is good
we may write, using Eq. (3.2):

We may then minimize y' by varying the a . This
is a simple least-squares minimization.

Introducing the definition'

(4.5)

we obtain, from the conditions ey'/ea =0 that the

expansion (3.2) holds while for a not-good model
space (3.2) is not exact. In other words, a good
model sPace contains the charge density.

Consider a model space M. After an experiment
is performed we may find out that M is not good
(because y' is not low enough, see Sec. 6). If this
is not the case it is not proved, however, that the
model space is good; another experiment (with
greater precision or greater range of q values)
could show M to be not good. We summarize: It
is possible to show experimentally (on the basis
of y') that a model space is not good. It is not pos-
sible using a finite experiment to verify that a
model space is good. This is equivalent to saying
that an infinite chain of measurements is nec'es-
sary to find the density exactly.
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N

P Mnmam Gn p (4.6)

a which minimize X' are solutions of the equation while its probability is given by

P(hb»j =expI -Q»D»(b. b») ]. (4.17)

where the error matrix is defined by
N

P;nP&m

1=1
(4.7)

Z)
—1/2

Therefore adding any one of the functions

(4.18)

Therefore one standard deviation in 5, is given by

and where, m, (r) D, (4.19)

N

Q flltl
i=1

(4 8)

In Eq. (4.6) the superscript e on the a' indicates
that it is derived from experiment. The most
probable charge distribution corresponding to ex-
periment, p'(r), is given by

p'(r) = Q II„(r)a' .
m=1

(4 9)

The distribution of coefficients a =a +ha is
given by

P(za„) =Ce "'~", (4.10)

where C is a normalization and where

X'~=X'0+ Q b.a„b,a M„„.
nt, n= 1

(4.11)

Here X'0 is the minimum value of X', i.e., corre-
sponding to a =a' . Since these errors are cou-
pled it is useful to obtain new functions W„(r)
which are linear combinations of the II (r) and
which correspond to a diagonal error matrix. To
do this we may use the orthogonal transformation
which diagonalizes M„

Q U„»M„U, =5»,D».
n, m

Then defining

b» —=QU„»a'„,

b, b»
—=QU„b, a„»,

(4.12)

(4.13)

we have

X' =X'a+aD»(~b»)' ~ (4.14)

Transforming the basis of the model space we ob-
tain the functions

to the experimental distribution p'(r) changes X'

by 1 standard deviatinn. This gives a convenient
way of exploring the charge densities permitted
by experiment.

Because the errors on the coefficients 5 are un-
correlated we may compute the error at any one
point on p(r) as the square root of the sum of the
squares of the individual error contributions
(4.19). Therefore

(4.20)

where b, p(r) is the error in the estimation (4.9) of
p(r). This error hp(r) is of course not uncorrelat-
ed to errors in p at other values of r. It is, how-
ever, extremely useful to have this error quantity.
It answers the question: What is the uncertainty
in our knowledge of p(ro) at a single given ro on
the basis of a given experiment and with certain
model assumptions'? The error correlations are,
of course, also quite important and instructive.
They are treated in the next section.

We summarize: If the model sPace is good then
the exPeriment determines the charf, e density
p'(r) + ap(r). '

S. CORRELATED ERRORS IN THE
CHARGE DENSITY

For convenience in what follows it is useful to
change the normalization of the functions % (r)
so that the diagonal error matrix becomes the
Kronecker 5. This is accomplished by defining:

There is only one requirement on the functions
C, that they are orthonormal with respect to the
error matrix. Therefore any orthogonal trans-
formation on C 's will provide another equivalent
set of functions.

Vfe introduce coefficients:

(4.15)

The charge distribution which corresponds to the
values 65 is

so that:

(5.1)

(5.2)

p(r) = p'(r) +Pm, (r)ab„, (4.16) The normalization is such that the standard er-
rors on the coefficient d are unity, as is evident
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~p(r) = [PC„'(r)]"'. (5 3)

from Eqs. (5.1) and (4.19), and b, p(r) takes the
form

where

, ( )
Qc„(r,)c (r,)

&p(r, ) &p(r, )&p(r, )
' (5.8)

C'.(r,) =pe C„(r,) =5,„C',(r,) (5.4)

and therefore:

p'(r, ) =d,'C,'(r, )

p'(r, ) =d,'C,'(r, ) + Q d'„C'„(r,) .

Because errors on d' are uncorrelated:

U,„ is found from (5.4)

~,„=c„(r,)/(Qc„'(r, ))"'

We shall determine now a change bp(r, ) from the
most probable value p'(r, ) when p(r, ) is changed
from its most probable value p'(r, ) by bp(r, ). To
do that we shall seek an othogonal transformation
U such that the new basis functions C' have the
property

where Eqs. (5.4} and (5.5) have been used for the
very last step. We will eall the quantity g(r„r,)
the correlation function.

In words we can say: The deviation of p(r, ) from
p'(r, ) as a fraction of the error hp(r, ) due to a
constraint of p(r, } to a deviation bp(r, ) expressed
as a fraction of Ap(r, ) is simjly the correlation
function g times the fractional deviation of p(r, ).
The error b,p(r, ) is reduced by the factor (1 —g')"'
as a result of the constraint.

It is easily seen from Eqs. (5.8) and (5.6) that
g(r„r,) cannot be greater than 1. When g is very
close to 1 or -1 then strong correlations in the
errors are implied.

6. CHARGE DISTRIBUTION OF He AND He

To illustrate these considerations we have stud-
ied the 'He electron scattering data, of Sick and
McCarthy. ' We include as data the value f (0)
=1+0.0001. The effects of experimental resolu-
tion have not been included. We first use the M-
dimensional cosine model spaces,

=c„(r,)/a p(r, )

and therefore

(5.5) eos[(m ——,')(w/r, )r] if r & r,
3R (r) =

0 if r&r,
(6.1)

~p(r, ) =[Bc„'(r,)]"' =[pc".(r,)l"' (5.6)

and because the constraint merely eliminates the
contribution of the function C', (r) from the error
in p(r) we may write

ap(r, ) =([ap(r, )]' —[C',(r,)]')'".
The results obtained above can be written in a

more symmetric way if we write the variations
as fractions of uncorrelated errors Ap(r, ) and
b,p(r, ). We obtain

bp(r, )
~ (,') =g(re ri}

x ' +[I-g'(r r )]"'
&p(r, )

(5.7)

C,' =ap(r, ) .

Finally,

cl
ap(r, )

The error in p(r, ) will also be changed because
we have effectively added a constraint by specify-
ing p(r, ). Now because the uncorrelated error
ap(r, ) is given by

for 1 &m &M and we try several values of M. ro
is chosen reasonably large, i.e. , r, =5 fm. Fig-
ure 1 shows y' and the error b, p(0) in the value of
p(0) as a function of M for the 'He data

We find that for M & 7 the value of y' is outside
and above its normal region

y „„g=N-1 + [2(N- 1)]'~ (6 2)

where N is the number of degrees of freedom.
Therefore, expansion (3.2) is not true and the
cosine spaces (6.1}with M& 7 are not good. For
M =7 or 8, y' reaches the normal region (6.2) and
we have a model space which cannot be shown to
be not good. At the same time Lp(0} is finite
which shows that all coefficients a„ in (3.2) are
determined. The charge distribution correspond-
ing to this situation is so similar to Fig. 4 that
we have not shown it separately. For M&8 we
find that b,p(0) suddenly becomes very large [com-
pared to p(0)], while y' drops somewhat lower
than might be required by statistical considera-
tions. The value of M for which hp diverges
agrees well with the value obtained from Eq. (3.6):
M =5x4.5/m='l. 2. The transforms of the first sev-
en or eight cosines overlay the region 0 —q
enough so that their coefficients can be deter-
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FIG. 1. g~ and Ap(0) the error in the density at r =0,
for 3He, as a function of the number of model states M.
The expansion used is the series of cosines (6.1) with

xp =5.0 fm. No additional assumptions have been made
about the form factor outside of the measured region.
When M =7 or 8 the density obtained is very close to
the density shown in Fig. 4. The errors obtained are
unrealistically small, however. The divergence of Ap(0)
begins at M =q„„„.~p/7I, where q,„„,„ is the maximum mea-
sured momentum transfer (4.5 fm ).

mined. A space with more than eight cosines con-
tains states which almost do not overlap with the
measured region. The coefficients for such states
cannot be determined well and b,p becomes very
large.

The situation is now as described at the end of
Sec. 3. We have determined the density using a
model space which is not disproved by the present
experiment. As the new measurements are not
immediately available we shall test the credibility
of our result by: (a) simulating a null experiment
and (b) trying model spaces different than the co-
sine model space. Starting with (a) let us consid-
er the semilog plot f(q), as in Fig. 2. Here we
see that f (q) falls rapidly and we imagine that it
will be limited by an exponential such as the
straight line in Fig. 2. We therefore introduce
fictitious data: f(q, ) =0 with &x, =value from

TABLE I. Coefficients of the cosine series (6.1) for the
densities of 3He and 4He.

3He 4He

9
10

0.2769 —1
0.1806 —1

0.7633 —2

0.1621 —2

-0.7113—3
-0.1149—2

—0.7821 —3
-0.3062 —3

—0.3474 —4
0.1246 —4

0.2980 —1
0.1981—1

0.8228 —2
0.1140—2

—0.1441 —2
-0.1574 —2

-0.8809 —3
-0.2498 —3

0.7280 —5
0.4543 —5

11
12

-0.3367 —5
0.1080 —5

—0.1700 —5
0.1344 —5

FIG. 2. The absolute value of the experimental form
factor for 3He and for 4He as a function of momentum
transfer q. Outside of the measured region we have in-
troduced fictitious data with f (q&) =0 and with error in-
dicated by T marks. The T marked errors follow the
"exponential assumption" and fall on a straight line. The
V marked errors follow the "q 4 assumption. " These
errors were adjusted to be identical at q =4.8 fm . In
each case the fictitious data go out to qm~=8. 8 fm i.
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straight line, for q values separated by 0.4 fm '.
The values at q =4.8(0.4)8.8 are used.

Since r, =5 fm we do not need to introduce q val-
ues closer than 0.4 fm ' because this spacing satis-
fies the rule b, q ~ m/re=0. 6 fm '. We call this as-
sumption the "exponential assumption. " We wish
to emphasize that the introduction of this assump-
tion about f (q) does not influence its functional
form in any explicit way. It merely influences it
to be not larger than the error introduced but al-
lows all sorts of oscillations or other behavior so
long as the magnitude of f(q) is limited. [Actually
the frequency of oscillation of f(q) is also limited
because of the assumption that p(r) =0 for x& 5.0
fm. ] The exponential assumption simulates a con-
ceivable null experiment. In practice the value of
f(q) in this region becomes rather small and
therefore p(r) is smoother than would be indicated
by the error bars (Fig. 4). We believe the smooth-
ness of p(r) is a result of the ease with which a
fit can be found with very small f (q) outside the
measured region. The error bars on p(r) are a
better indication of our imperfect knowledge in
the large q region than the lack of structure in
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FIG. 4. Densities of He determined with 12-cosine
series, with 12-parameter splines, and as given by J.S.
McCarthy eta/. , Phys. Rev. Lett. 25, 884 (1970). Both
p(r) and 47tr p(w) are shown. The normalization in this
and in the following figures is fp(r)4m dr ="1. The er-
ror bars are uncorrelated errors for the 12-cosine
series fit. (This density and error are also shown in
Fig. 8.) X, for the fit is 24. The errors for the spline
function fit are similar to those shown above. The small
difference between the spline and the cosine fit is prob-
ably a result of the fact that the spline functions were
not constrained to have slope dp/dh =0 at r = 0.
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X2

p(r). Introducing this new data from the exponen-
tial assumption we find a )f', b, p(0) versus M plot
as in Fig. 3. Here lf' reaches a, plateau and b, p(0)
also has a definite plateau. This plateau's value
is characteristic of the errors introduced in the
fictitious data. The curve for b, p(0) goes up sharp-
ly whenM=(r, q )/v=14, q,„now being 8.8 fm '
instead of the measured q,„=4.5 fm '. The same
simple expression from Fourier transforms thus
explains the location of the divergence of Lp(0) in
both Figs. 1 and 3. The plateau could clearly be
made to extend as far as one wants by introducing

lo-'- —lol
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FIG. 3. The same as Fig. 1 except for the inclusion
of the fictitious data above q =4.5 fm ~. The errors on
these added points follow the exponential assumption
shown in Fig. 2. Ap(0) and X, now both reach a plateau
before A p(0) diverges and X. lowers. The divergence
here and in Fig. 1 occurs when M =qm»~p/7l'.

FIG. 5. Charge density of 3He as fitted by the slab
model and as fitted by the 12 cosines. The form factor
derived from the slab model fits the measured points
well but we find it has a rather unacceptable character
outside the measured region, see Fig. 6.
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data at larger and larger q's. We will not learn
much this way and use the alternative device of
cutting off the cosine series at M = 12 thus cutting
off f(q) in a less controlled but surely satisfactory
way: We are prepared to believe for now that M
=12 is a good model space.

Figure 4 shows the 'He charge distribution and
its errors expanded in a cosine series with M =12
when using the exponential assumption from Fig. 2.
Table I gives the coefficients of the cosine series
for this case. There may be some reasonable
doubt as to the validity of the exponential assump-
tion because it cuts off f(q) somewhat rapidly. We
have therefore considered the possibility that the
charge distribution's Fourier transform goes
down more slowly than this. It can be shown that
if the charge distribution is no more singular than
expected from a discontinuous second derivative
(which is about as severe a discontinuity as could
be entertained on physical grounds) then f(q) must

3He form factor

I experiment

T exponential assumption

of errors

f jtted with the slab model

- --- f it ted with l2 cosines

~ lO-'
4—

fall asymptotically like q
We therefore also considered a limit in the form

of errors on f(q) for q on the points 4.8(0.4)8.8
as before but now making the standard deviations
from zero proportional to q . See the triangular
points in Fig. 2. This is called the q assumption.
The resulting p(r) is almost identical to that shown
for the cosine series in Fig. 4. The errors b, p(r)
with this q

' assumption and with the exponential
assumption, used for calculating the density in
Fig. 4, are compared in Fig. 5.

As stated earlier we shall discuss now fits ob-
tained with the different model spaces. We found
that sets of continuous functions give nearly identi-
cal results. An example is in Fig. 4 where p(r)
obtained with the set of cubic spline functions
(Appendix) is compared with the cosine series ex-
pansion of p(r). In both fits we used the exponen-
tial assumption. Similar results has been obtained
with a power series on the interval (0, ro). The as-
sumption that the density and its first few deriva-
tives are continuous is unobjectionable and there-
fore only continuous functions should be used in
final fitting. It is instructive, however, to see if
good fits can be obtained with functions which are
not assumed continuous or even are explicitly dis-
continuous. It would be disturbing if a good fit
could be obtained with p(r) having a very irregular
shape. It would suggest that our method cannot
discern between different shapes.

We shall consider now unspline functions. They
are polynomials of the order N, inside of fixed
intervals. At the boundary points between the in-
tervals the unspline can be continuous or discon-
tinuous depending on N~ and the expansion coeffi-
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I
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I

I

1~
l 1

I I I II ~ I

3 4 5 6 7
q (fm-3)
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0.04
V

0.03

0.02

0 .01

2
r (fm)

He fitted by:
l6 parameter unsplines

IZ cosines

FIG. 6. The absolute values of the form factor as de-
rived from the slab model shown in Fig. 6 and from the
cosine model Eq. {6.1) with M =12. Note that the fit for
the slab model is good through the measured points but
breaks down outside the measured region where the form
factor is as much as 5 times the maximum value we
would expect from the exponential extrapolation.

FIG. 7. The charge distribution obtained from a 16-
parameter cubic unspline function compared with the
12-parameter cosines. Continuity is not demanded by
the unspline functions but it is allowed. The small dis-
continuity leads to a rise in the form factor only outside
of the region of the fictitious data, i.e. , above q =8.8 fm

for this fit is 22.
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cients. For simplicity we consider equal length
intervals. Further details about unsplines are
given in the Appendix. For N„=O the unspline is
constant inside intervals, it must be therefore dis-
continuous and we have a slab-shape density. With
M =15 we find p(r) shown in Fig. 5. Surprisingly
y2 =28 is quite low in the measured region q& 4.5

fm '. If the extrapolated region 4.5& q ~8.8 fm '
is included in the calculation of y' it rises to X'
=135. In Fig. 6 we see that outside q=4. 5 the
form factor is first rising and then oscillating in
an unacceptable manner. We may expect that the
expansion of "'Pb density in terms of spherical
shells' will lead to a similar behavior of the form
factor.

The last example is with N„=3 and M =16. The
density obtained is shown in Fig. 7. X =21.2 in
the measured region q& 4.5 and y' =22.3 if the ex-
trapolated region q ~ 8.8 is included. The p(r) is
nearly the same as one obtained with the cosine
series, except for small kinks at the boundaries
between the intervals. The size of the kinks gives

0 2

I

E

L

W lO
&l

CI

E

the measure of continuity that can be deduced from
the form factor known inside the limited region of

q ~8.8 only.
As emphasized in Sec. 5 the errors on the charge

density shown in Fig. 8 are not uncorrelated. The
correlation function for the errors g(r„r, ), as dis-
cussed, is one way of investigating these correla-
tions. We show in Fig. 9 the particular correla-
tion function g(0, r) for 'He fitted with 12 cosines.
This indicates the correlation of the value of p(r)
with the value of p(0). We find that most points
have a very high error correlation with the point
at p(0).

We note that the dips in the error b p(r) shown
in Fig. 8 correspond to the zeros of the correla-
tion function in Fig. 9.

We note that the wavelength of the correlation
function corresponds to a q of about 5.6 fm '.
This is probably because the error just past q
=4.5 is much larger than the error below that val-
ue. Furthermore the small error at q =4.5 fm '
will have a restrictive effect on f (q) because of
the smoothness impressed by the conditions p(r)
=0 outside r =5.0 fm. Therefore, we do not ex-
pect f (q) to have large uncertainty until q reaches
at least 5.2 fm '.

We have studied He in the same way and we find
that because of its small radius that f (q) at the
largest measured' q value is larger than for 'He
and as a result the extrapolated errors for f(q)
are larger. With exponential extrapolation as
shown in Fig. 2 we obtain the charge distributions
and errors for 'He as shown in Fig. 10. Table I

g (o, r)

I.O

4

IO I

I.O
I

2.0
I

3.0
r {frn)

I

4.0
I

5.0

FIG. 8. The charge density p(r) and its uncorrelated
error 4p(r) for 3He as fitted by 12 cosines. Ap(x) (case
A) results from the exponential assumption, Dp(x) (case
B) results from. the q

4 assumption discussed in Fig. 2.
The dips in the error curve almost coincide with the
nodes of the correlation function shown in Fig. 9.

-I.O—

0.0 I.O
I

2.0
r(&m)

I

3.0 4.0

. FIG. 9. The correlation function g(0, r) corresponding
to case A in Fig. 8. When g(0, r) is near 1 or -1 the er-
ror at that point is highly correlated to the error at ~ =0.
The correlations persist over a quite large range. If
the density has a fixed value of ~ =0 then the error (case
A) shown in Fig. 8 is reduced substantially. This is be-
cause of the strongly correlated nature of the error (ex-
cept at the dips of the error curve).
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fessor J. S. McCarthy for sending the 'He data to
us. We greatly acknowledge the excellent comput-
ing facilities at the Cyclotron Laboratory of the
Michigan State University.

APPENDIX

A. Spline Functions

We shall describe here an expansion of p(y) in
terms of spline functions:

0.00
I.O 2.0

r(fm)

~

0.0
4'.0

K K

p(r) =P aq»»(»r) +P b»q;(~), K=-,'M. (Al)

FIG. 10. Densities of He determined with 12-cosine
series. The uncorrelated errors are shown. X, for the
fit is 18.5.

We want p(r) and its first derivative p'(r) to be
continuous on the interval (y~, x~). Moreover, for
a given set of points

shows the coefficients of the resulting cosine ser-
ies corresponding to Fig. 10.

( o ~ ~ (r, s ~ ~

1 2 i k

we want to have

(A2)

7, CONCLUSIONS

It is quite possible to analyze electron elastic
scattering data in terms of rather general expan-
sions for the density. The errors are largely de-
termined by what kinds of limits we place on the
behavior of f (q) for q values larger than those
me a.sured.

We find that the most probable density p(r) is
quite insensitive to the kind of expansion used pro-
vided the assumption is made that f (q) continues
to fall beyond the measured region.

We found the plot of y' and 6p versus M (see
Figs. l and 3) very useful in finding the dimension
M of a model space. This is the M('s) for which
X' reaches its normal range before Ap becomes
too large for our purpose. If such an I does not
exist the model space is useless.

Since the limits on f (q) are introduced by giving

f (q}=0 with some error it is clear that even a
null experiment at q values larger than the mea-
sured ones would be quite useful if it would pro-
vide a bound on f (q) with limits comparable to or
even somewhat larger than the measured errors
on the last few points. Such bounds would not need
to be taken at very many q values and could be de-
termined with fairly wide experimental angular
resolution, since b, Q = 0.5 fm ' is compatible with

p(r) =0 for r& 5 fm.
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p(r}=»a, ,

p (., ) =5, .
The (A3) will be true if the functions q»»(r) and

»l;(r) fulfill the following conditions:

(A3)

Q for r ri-1 & r ri+1
q »(r) =

1 for r =r,. ;

q»';(r) =0 for r =r;, , r», r;„;
»)»(r) =0 for r & r» „r=r, , r & r„,;

0 for r=r, „r=r„,
q,'(r) =

1 for r =r, .

(A4)

There are many functions with such properties.
We use a simple representation in terms of cubic
polynomials:

f ' for r» & r &t'»+»
ri+1 ri

q;(~) =

!If —' for r», &~ &'r»
~», —~;

(A5)
ri(r;„—r)g»for r» &r &r»„

!
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where

f(x) =2x'-3x'+&,

g(x) =x' —2x'+x. (A6)
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B. Unspline Functions r-r; if r] —2D 1&r]+2D
y, (r) =

0 otherwise.
(A8)

Let us divide the region 0 ~ r ~ r, into N, equal
intervals of length D =so/N, and let us call the
midpoint of the i's interval r, .

We shall consider now the following expansion
of p(r):

i=j. 0=0

where

Inside of each interval p(r) is a polynomial of
degree N~. No continuity conditions are imposed
on p(r) at boundaries between intervals. However
form (AV) allows p(r) and/or its derivatives to be
continuous. With the increasing N, higher degree
of continuity (that is in higher derivatives) at
boundaries is possible. For N, =0 we have the
"slab" model and unless p(r) is constant it must
be discontinuous. A typical shape is shown in
Fig. 5. For N» = I, p and/or its derivatives may
be continuous.

*Work supported in part by the National Science Foun-
dation.

~Actually the measured quantity in any case is the
cross section which is a square of a linear functional
even in Born approximation. However, we have as-
sumed that the derived f(q) and its error can be taken
as input data for our calculation when Born approxima-
tion is valid.
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