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Generator Coordinate Method for Scattering: An Exact Solution
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An analytically soluble model is given for which an exact numerical solution of the Hill-Wheeler
equation in the continuum can be calculated. Properties of this model, which concern in particular the
effects of the Pauli principle and the microscopic definition of an optical potential, are considered.

I. INTRODUCTION

It is mell known that one of the first physical
phenomena for the description of which the gener-
ator-coordinate formalism was invented by Griffin,
Hill, and Wheeler' was this very peculiar nuclear
reaction called fission. Actually, for many years
the formalism was applied to bound-state problems
only, such as nuclear rotations with' or mithout'
axial symmetry or the study of nuclear shapes
and collective motions in light nuclei. ' In the last
few years a fundamental reappraisal of this for-
malism was made by Jancovici and Schiff, ' Brink
and Weiguny, ' and Wong' and revealed how power-
ful and general this method was. The elaboration
of a generator-coordinate theory of nuclear reac-
tions was undertaken and revived by several au-
thors, ' "and it is gratifying that a first success
has been achieved mith their discoveries of not
one, but several, quite different solutions of the
Hill-Wheeler equation. One must notice, how-
ever, that these solutions have been used only in
the case of collisions between (very) light nuclei
and that the ultimate aim (namely a microscopic
theory of collisions between heavy ions and of
fission) is not likely to be reached without suitable
approximations in order to avoid enormous cal-
culations.

As in most generator-coordinate problems,
three main questions may be asked:
(i) What generator coordinates are relevant to
the problem?
(ii) What generating functions must be labeled by
these generator coordinates&
(iii) How should the Hill-Wheeler equation be
solved'P

A. Choice of the Generator Coordinates

There is no doubt that the distance between col-
liding nuclei is here the most important degree
of freedom and this consideration decides the
choice of the first generator coordinate. As shown
by Wong, "complete Galilean invariance for the
most general calculation [no factorized center-of-
mass wave function as in Eq. (3)] would demand

the use of additional coordinates corresponding
to an acceleration of the clusters. It is also most
tempting to take in account other degrees of free-
dom"' "such as the deformation of the clusters
if they polarize each other during collision or the
decompression of the "compound" nucleus in order
to correct for the unrealistic prompt" limit at
low energies. Also the question of complex ' ' ' '
generator coordinates arises. In view of the diffi-
culties which yet pave the way to a reliable solu-
tion of the Hill-Wheeler equation in most cases, it
seems that the present status of the theory is
more adapted to calculations with one generator
coordinate only. (We do not count the case of gen-
erator coordinates which correspond to the restor-
ation of a broken symmetry as an additional un-
reasonable task. ) In order to gain a better under-
standing of the nuclear reactions in the interaction
region, we thus advocate, in general, keeping the
separation distance as the only generator coordi-
nate and increasing the dimensions of the genera-
tor-coordinate subspace by either a set of dis-
crete configurations of the "compound" nucleus
or the coupling of various channels.

B. Choice of the Generating Functions

We want to specify a set of wave functions 4 „,
depending on a continuous vector label r (the gen-
erator coordinate) and describing two nuclei g)
and (B) at this relative distance r. The aim of the
formalism is then to find the many-body wave
function,

4 = Jt dr f (r)C „,
which, by a suitable choice of the Hill-Wheeler
amplitude f(r), describes the scattering of these
clusters.

Since by definition the interaction region (~r ~& a
few times b) breaks Galilean invariance for the
relative motion, the choice of 4 „ in this latter
region is more a matter of nuclear dynamics (two-
center shell mode]. ,

" constrained Hartree-Fock, "
. . . ) than of kinematics. . In the asymptotic region,
Galilean invariance for each nucleus can always
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be obtained in principle by means of a projection
operator" for any nucleus (A) with any internal
structure g '"', giving then for the wave function
of (A)

A[A„—Br/(A +B)j2x exp

where A and 8 are the nucleon numbers of nuclei
(A} and (B). This might give prohibitive configu-
ration mixings, however, if harmonic-oscillator
orbitals cannot be used because of g '"'(g). The
double projection method of %'ong16 for the ex-
traction of invariant nucleus structure might then
be much better. Then if we take for 4„ the anti-
symmetrized product of 4& and 43 we keep Gali-
lean invariance of the relative motion in the as-
ymptotic region (large r).

C. Solutions of the Hill-Wheeler Equation

Among the solutions which have been proposed
we may quote the following: (i) a boundary condi-

tion constraint method'; (ii) a direct, discretized
solution in coordinate space"; (iii) a soluble mod-
el in coordinate space. "

Only in the first solution were Coulomb effects
included. Solutions (i}and (ii) concern f. The
last solution concerns a function g (which in the
asymptotic region becomes identical with the
relative-motion wave function), and gives de-
tailed understanding of the effective potential
and the effects of antisymmetrization, at least
for simple eases where the formal expressions
can be obtained (for instance when the one-parti-
cle basis and the potential are Gaussian). A
choice between these solutions might be easier
if the calculation of the kernels could be simpli-
fied, for instance by an omission of possibly weak
terms due to core nucleons (or exchange terms)
or by a suitable parametrization of these kernels.

The purpose of the present paper is to present
a soluble model in momentum space and to dis-
cuss some of the physical insight that this formal-
ism provides. The basic formalism is presented
in Sec. II. Discussions and proposals for approxi-
mations are given in Sec. III. Section IV is our
conclusion.

II. BASIC FORMALISM AND ILLUSTRATIVE EXAMPLE OF AN EXACT SOLUTION

In this section, we recall with some detail the analytical illustrative example of Ref. 10. The example
is a system of twice two neutrons (dineutron) in an elastic collision. The simplicity of the system allows
us to describe the basic formalism without too much complication and it seems to us an easier way to
make things comprehensible.

A. Basis Cz

The simplest case which is interesting for us as a significant illustrative example of our theory corre-
sponds to

g 7/ 3/2~ (r, —r/2)' + (r, —r/2)'
12. 34 12m exP —

2I,. X X.

3/2h 2 (r2 + r/2)' + (r, +r/2)'x 34m exP 252 X3 X4 (2)

The first bracket in Eq. (2) is the wave function of a cluster (A) made of two neutrons with coordinate
vectors r, and r, and spin functions X, and p2 (& and X correspond to spin up and down, respectively).
The spatial wave functions for both these neutrons are Gaussian wave packets ( of length b) which are
centered about the point with coordinate vector r/2. The second bracket has obviously the same meaning,
except that the second cluster (B) is centered about -r/2. Each cluster is antisymmetrized by means of
the proper operator, for instance here 8» = —', (1 —P»), where P» exchanges nucleons 1 and 2. Complete
antisymmetry between both clusters is obtained through the usual operator 8» „=—,'(1-P» —P„-P»

24 13 24 14P22)'

B. Relation with the Resonating Group Method

The first bracket in Eq. (2) ean be rewritten as
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where R„ is the center-of-mass coordinate, R„=-,'(r, +r, ), and g „'' depends only on the internal coordinate
(„=r,-r, The same property holds of course for the second bracket if we replace R„, g„', and g„by
R~, g g', and 4. If we now reduce R„and Rs to their relative coordinate p = R„—R~ and center-of-mass
coordinate R=-, (R„+Rs), we find

(4)

with

(5)

In this equation (4) we notice that the total center of mass is in a Gaussian wave packet (i) centered about
the origin, (ii) obviously a state with zero angular momentum, (iii) independent of r.

The formalism is thus Galilean invariant and we can forget the center of mass (c.m. ) in the following.
We also notice in Eqs. (4) and (5) that the dynamical distance coordinate p between the two clusters fluc-

tuates in a wave packet about the generator coordinate r. This was indeed expected from the definition of
4, . At short distances, however, the physical meaning of r becomes ill-defined because of the antisym-
metrization. This question of antisymmetrization will be considered in subsection IID.

If we now insert Eqs. (4) and (5) into Eq. (1) we find

with

(6)

a(p)= ~" drr(p, r)f(r).

We recognize that the function g(p) is the usual scattering (or possibly bound) wave and that our formalism
is equivalent to the resonating group method (RGM)." As we show in the next subsection, however, the
generator-coordinate formulation of scattering might lead to calculations easier than those of the BGM,
for it is never necessary to use relative coordinates p, $„, g~. All calculations can be performed with the
single-nucleon coordinates r„r„.. . .

C. Hill-Wheeler Equation

It is now convenient to rewrite Eq. (2) in second quantization. This is trivial because 4; is a Slater de-
terminant, and this can be generalized by means of suitable translation operators if clusters (A. ) and (B)
must be described by configuration mixings. In the present case, we define the creation operator a, (y) of
a neutron with spin up (down) in a Gaussian wave packet of length b centered about the point of vector co-
ordinate y, and we obtain

(8)

where ~0) is the vacuum.

Our HamiltonianH contains the kinetic energy of all nucleons and a two-body potential Q; „V;,, where

V;,. =U exp — '
2

' A+BP +CP„+DP P,

In Eq. (9), U, is the potential depth, p is the range, I', and I', are exchange operators for spin and iso-
spin, and A. , B, C, D give the corresponding exchange mixture.

We take advantage of Eq. (8) to calculate the kernels

H(, ')=(C-, iH (4 )

and

N(r, r') = (4 -, ~4-, ') (10b)

of the Hill-Wheeler equation. The second-quantization technique we used is that of Lowdin22 and has al-
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ready been used by many authors. We thus find the overlap operator

N(r, r') = exp —
&,

—exp

As regards the Hamiltonian kernel H(r, r'), we can take into account the fact that only the relative energy
between the clusters is of interest in the formalism. It is then necessary to subtract from the total energy
of this four-nucleon system.
(i) the internal energy of each cluster, namely, if we call the nucleon mass m, T~( =-, if'/(mb') for the
kinetic energy and, as it can be shown in a trivial calculation, V~2=2U, (A-B+C -D)(1+2b'/p, ') "' for
the potential energy;
(ii) the kinetic energy of the total center of mass, T™= h'/(mb').
If thus we subtract from the Hamiltonian kernel the quantity (2T 2~+2V)D(+T m)N(r, r'), the eigenvalue E
which is left in the Hill-Wheeler equation is the relative kinetic energy (5'k')/(2m) between the two clusters
(where k is the relative wave number). The new Hamiltonian kernel II' is then the sum of a kinetic-energy
part,

T(r, r')=, exp —
&, ~

—expmb'

3 (r —r')' (r —r')' 3 (r +r')' (r+r')'
4 @2 8/2 4 8b2 Q {12)

and of a potential-energy part,
+f 2 I2

V(r, r')=2U(1+21~/2 ) "x2'(A B+C--D)exp(-, 1 —exp —,—exp

+(2A+B+2C +D) exp —, , exp —, +exp —
&, , exp

8b +4p.' 4b' Bt)'+4p, '

r'+r" (r+r')' (P
~ e)2—(A+2B +C +2D) exp —

b, exp —
&, , +exp852 + 4p2 8b2+4p, 2 (13)

We point out that for large values of r and (or) r', the kernels N, T, V have the following properties:
(i) N(r, r') becomes Gaussian, and actually N= F',
(ii) T(r, r') also fulfills the Gaussian overlap and quadratic-approximation conditions, ' and the kinetic en-
ergy ~ h'/(mb') due to the zero-point relative motion coexists with significant negative-energy contribu-
tions due to the nonlocality of this kernel (indeed the limit f'of T in the region depends only on x =r —r
and j K(x) dx =0);
(iii) V(x, r') is negligible.

D. Exact Solution

Given the Hill-Wheeler equation

d r'[T(r, r')+ V(r, r') EN(r, r')] f(-r') =0, (14a)

or, in operator notation

(T+V —EN)f =0,

we can reduce it to an operator diagonalization problem by two methods, namely the following trans-
formed equations: either

[N 2~2'(T+V)N 2)'& E](N2~&f) =0
or

[(T + V)N ' -E](Nf) = 0.

(14b)

(15)

(16)

By definition [Eq. (10b)] the kernel N is nonnegative and therefore N'~' is well defined. But there might
arise difficulties in either method, for the inversion of N or N'" could be singular. In the latter method
[Eq. (16)] the operator (T+V)N is non-Hermitian. It thus seems preferable to stick to the former, [Eq.



2278 GIRAUD, HOCQUENGHEM, AND LUMBROSO

(15)]. Also, from the remark (i) we made just above, concerning the fact that N= I in the asymptotic
regions (large r or r'), the problem of finding the square root N'" of the operator N is almost solved by
the knowledge of I". Finally, in view of E(l. (7), it is clear that it is physically very useful to consider
g= I"f as the proper unknown function in our formalism. The corresponding, minor modification of E(l.
(15) is thus

I '(T + V —EN) I' 'g = 0

and this has the further advantage that the boundary conditions for g are the well known conditions for scat-
tering waves, while the prescription of suitable boundary conditions for f may still be considered as an
open problem.

The inversion of I', however, is not a regular operation in coordinate space. This well-known difficulty
is clearly revealed by the Fourier transform

2 2

r(t), i)') = ")'"8 'p (- ()(i) —i)') (18)

which shows that I diverges at high frequencies. This divergence, however, is compensated by the
strong decrease (at high fre(luencies) of the Fourier transforms of N, T, V;

N((l, (I') = (4v)"'b' exp(-b'q')[5((l —(I') + 5((l +(I')] —16b' exp[-b'(q' +q")], (19)

h2 b2
T((l, (I')=, (4v)'"b' exp(-b'q')[6(q —(I') +5((l +(I')] —8b'[b'(q'+ q") ——,'] exp[-b'(q'+ q")] (20)

V((l, (I') = 2U, (I +2b'/p') '"2(A 8+6 ——D)(b )) 2 )'

3 2 2 P2 IS
x' exp[-b'(q'+ q")]— exp — exp(-b'q")+ exp(-b'q') exp

(2A,/, 2g D)( b)s „(2b'+I')((I -(I')'+b'((I +(I')' „„b'((I-(I')'+(2b'+ P')((I +(I')'
4 4

with

-(A+28 +C +2D)(yb W2)' exp —,, ——((I +(I')' +exp — » ——(q —(I')'
2 4b'+p, ' 2 2 4ba+ p2 2

(21)

1 1 1 1 1 1
13' 2o.' 2b' ' y' o.2 2b' ' (21')

No critical divergence is left for the resulting kernels n = I 'NI" ', t = I' 'TI" ', and v = F '71 '. For
instance, we find

=2(2 )
(I I) (I I)- bl, ~ — q — q b (22)

QarP $2 I2
f((l q') =2(2v)' q' ' ' ' —v '"b'" exp — q2+q" — exp2' 2 2 2b 2

(23)

If we divide all kernels n, t, u by the irrelevant constant 2(2)))' and restrict ourselves to even waves g(q),
we can conclude that the final form of E(l. (17) is a Schrodinger e(luation in momentum representation

2
q' -E a'((I)+ dq' [&((I,(I') + ~((l, (I') +EQ(C, &I')la((l') =0. (24)
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E. Calculation of Phase Shifts

After a proper multipole expansion of g(q) and fv(q, q ) (with fft = 0 +v +EQ) we write Eq. (24) as (all angu-
lar momentum labels omitted)

(q'-k')a(q)+ t dq'~(q, q')a(q')=o.
0

The corresponding equation for the reaction matrix is

K(q, k) =fv(q, k) + dq'fv(q, q'), ,—,K(q', k),
I'

0
k' —q'2

where I' denotes a principal-part value. A suitable discretization of the principal-part integral gives
N

K(q;, k) =w(q;, k)+gfv(q;, q, ), ', K(q&, k), i,j =1,M,

(25)

(26)

(27)

where the M numbers co& are the integration weights related to the M points q& of the integration mesh.
The mesh andweights must of course be adapted to the principal part integration and necessarily q, 4 k, Vj.
The values of the M unknown quantities K(q;, k) are thus the solutions of a system of M linear equations
(27). It is then trivial to derive the "on-shell" reaction matrix K(k, k), whence the phase shift

tgq(k) = „K=(k, k). (28)

E (MeV) 0 3 10 20 40 50 60 70 100 200 400 500 1000

q (rad) 3.14 2.2 1.48 0.90 0.30 0.12 -0.02 -0.14 -0.40 -0.83 -1.02 -1.00 -0.79

For the sake of completeness we reproduce in the table below the results obtained" in the 8 wave with the
Brink and Boeker force Bl,"and a size parameter b =1.5 fm, although the choice of 4-, [Eq. (2)] is physi-
cally unrealistic. The energy range, from 0 to 1000 MeV, is also unrealistic when compared to the validity
range of our one-channel description of elastic scattering, but it was chosen for a complete check of nu-
merical accuracy:

III. DISCUSSION

Besides the several mathematical properties
which have been encountered in the previous sec-
tion in the process of derivation and solution of
the Hill-Wheeler equation, one may notice three
main physical aspects: occurrence of the exact
reduced mass, effects of the Pauli principle, and
calculation of an effective microscopic potential.

It is remarkable that the mass which appears in
o'ur final Schrodinger equation (24) is the exact
reduced mass. It is clear that this occurrence of
the correct reduced mass is due to the fact that
4 „[Eq. (4)] corresponds to Galilean invariance
of the relative motion in the asymptotic region
(large r).

It is often claimed that the way to parametrize
the behavior of the colliding system in the inter-
action region is to use an effective mass (which
of course would tend to the reduced mass in the
asymptotic region). We have just seen, however,
that only the reduced mass appears in the present
exact formalism, together with local potentials,
nonlocal potentials, and pseudopotentials. The
conversion of these nonlocal terms into correc-
tions from the reduced mass to an effective mass

would amount to replacing square-integrable oper-
ators by the presumed correction

1 1 d

meff (P) m red dP

which is no longer square-integrable (nor Hermi-
tian, but a symmetrization is possible). As far
as we know, the consequences of this mathematical
modifcation of the formalism have not been studied
and deserve more attention.

We now turn to the problem of the influence of
the Pauli principle on our formalism. A simple
inspection of Eqs. (19)-(23)proves that the action
of any of the operators N, T, V (n, t, v) upon any
odd-parity function f,dd(q) or g,dd(q) gives a vanish-
ing result. This corresponds of course to the
fact that we have considered the collision of identi-
cal even nuclei. Besides the potential kernel U,

Eq. (24) contains two pseudopotentials 0 and Q
which are the non-5-function terms shown by Eqs.
(22) and (23). These pseudopotentials are due to
exchange matrix elements in the calculation of the
kinetic energy and overlap kernels. As shown in
Ref. 10 and generalized by Zaikin" the role of Q
is to take in account the effects of the Pauli prin-
ciple which remain after we have eliminated the
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odd waves g,«. The same role was already known
in the framework of the resonating-group method. '4

An inspection of kernel Q reveals that it is a pro
jector (Os) (Os

~
onto the Os harmonic-oscillator

state of relative motion between the colliding di-
neutrons. This Os state of relative motion is in-
deed forbidden by the Pauli principle, a.s it may
be readily seen if one counts the number of oscil-
lator quanta which are present in 4 „when ~- 0
(one must normalize 4, to unity in this limit pro-
cess). The kernel n=1 —Q is thus the projector
onto the waves of relative motion which are al-
lowed by the Pauli principle, namely, in the pres-
ent case, all even-parity states except for. the Os.
A similar inspection of kernel t [Eg. (23)j reveals
that the "forbidden states" by n are also forbidden
by I;; in other words, there is an operator 8 which
fulfills the identity t= (1 —Q-)8(l —Q). Finally a
simple but tedious calculation shows that the po-
tential kernel U has the same property v =—(1 —Q)
xv(1 —Q). More details can be found in Zaikin, "
where this result is extended.

Finally, as regards the validity of an optical
potential, several points can be raised. It has
been seen above that the transformation of the
Hill-Wheeler equation into an equivalent

Schrod-

ingerr equation leads to an effective potential so,
namely the bracket [0+v+ZQ] of Eq. (24). This
potential is of a great physical interest in itself
and may be analyzed either in momentum space
or through a Fourier transform back to coordi-
nate space. However, the burden of calculations
in realistic cases becomes rapidly prohibitive
and one may think of replacing se by an optical
potential. In each specific case the detailed anal-
ysis of M~ must allow us to determine which terms
are important (for instance it has been shown in

Ref. 1O that the exchange terms in n was not) so
as to obtain a simplified expression. We can hope
that this will lead to prescriptions for calculations
of optical potentials.

IV. CONCLUSION

The results which have been achieved may be
summarized as follows: transformation of the
Hill-Wheeler equation info a Schrodinger equa-
tion allowing the calculation of the phase shifts
in a simple way, understanding of the Pauli princi-
ple effects, obtaining a way of derivation of the
optical potential starting from the nucleon-nucleon
force.

The next steps which are desirable are clearly
the inclusion of coupled waves, nuclear polariza-
bility, and Coulomb effects. They can be obvi-
ously included in the present formalism.
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It is shown that the energy-weighted and inversely-energy-weighted (IEW) random-phase-approximation
sum rules may be obtained simultaneously by a doubly constrained self-consistent field calculation.
Applications of the IEW sum rule are made to the quadrupole-force Hamiltonian, including a case
when zero-frequency modes occur. The relevance to certain higher-order sum rules is noted and
discrepancies in' some calculations of centrifugal stretching effects in spherical and deformed nuclei are
pointed out.

I. INTRODUCTION

The energy-weighted (EW) sum rule in the ran-
dom-phase approximation (RPA) has been dis-
cussed by many authors, ' but relatively little has
been said about the inversely-energy-weighted
(IEW) sum rule, which is of importance, for ex-
ample, in calculating effective charges. The pur-
pose of this note is to fill this gap in the literature.
In particular, it will be shown that the IEW sum
evaluated with RPA eigenstates is proportional to
the reciprocal of a "spring constant" obtained
from a constrained self-consistent fieM (SCF) cal-
culation, in accordance with the interpretation of
such sums as polarizabilities. Also, the EW sum
may be interpreted as the reciprocal of a conju-
gate "mass parameter, " both sum rules following

at once from a doubly constrained SCF calculation.
Thus, it is not at all necessary to diagonalize the
RPA matrix to evaluate the IEW sum as has been
done in some previous work; a perturbed SCF cal-
culation is sufficient.

Examples will be given for a Hamiltonian with
separable interaction such as the quadrupole-
quadrupole force. The case when zero-frequency
modes are present will be illustrated for nuclear
rotation. The extension of these ideas to higher-
order sum rules will be pointed out, and, in this
connection, some shortcomings of previous calcu-
lations of static quadrupole moments of vibrational
states of spherical nuclei and rotation-vibration
coupling effects in deformed nuclei (both may be
regarded as centrifugal stretching effects) are
noted.

II. EXACT SUM RULES

The exact EW sum rule for any operator Q is given by

2Q(&, —E,)(0I QI&)(&IQI0) =(0I[Q, [&, Q]llo),
k

(n.2)

leading to

2 P (o I Q I )( I Q I
o)

(0 I [[0,s], s] I 0) = (0 I [Q, s] I 0),
Ek -&0

k&0

where H Ik) =E, Ik), IO) denoting the ground state of the Hamiltonian H. The IEW sum rule can be obtained
from PI. l) by introducing an operator S satisfying the relations

(&l[e, s]I0) =(~IQI0)


