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reaction is then probably not a nuclear structure
effect, but rather a facet of the reaction mecha-
nism. Future studies of the (°He, ®He) reaction
on targets of 2*Mg and '*C will be useful in ans-
wering the questions posed by the present experi-
ment.
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We consider a projectile scattering elastically from a system of finite-mass constituents via a separable
microscopic interaction. In order to reduce the situation to a solvable problem, several standard
assumptions are necessary. The validity of these assumptions can be checked in a given model problem.
The optical potential is identified by comparing the multiple scattering series we obtain with that
obtained in the equivalent one-body problem. The optical potential explicitly exhibits the effects of the
Fermi motion and finite mass of the target particles and is a generalization of an optical potential
obtained earlier. Our results are in a form suitable for application to intermediate energy projectile

many-body target scattering.

I. INTRODUCTION

The concept of the optical potential has been ex-
tremely useful for reducing the complexities of
the many-body elastic scattering problem to the
simplicity of the equivalent one-body problem. Op-
tical potentials not only provide a convenient way
of describing elastic scattering but yield valuable
input, in the form of distorted waves, for current-
ly fashionable approaches to inelastic scattering
and reaction processes such as the distorted-
wave Born approximation. Of course one wishes

to understand the relationship between the optical
potential and the more elementary interactions be-
tween the (perhaps complex) projectile and the in-
dividual constituents of the target. In this way,
for example, one may limit the geometrical forms
adopted for the optical potential whose parameters
are to be obtained by fitting to a given experiment.
In addition, by studying microscopic theories of
the optical potential one gains some insight into
(1) the limits of validity of the concept and (2) the
dependence of the optical potential on the energy
of the projectile and the detailed characteristics
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of the target.

The microscopic theory uses as input the ele-
mentary two-body (projectile-elementary target
constituent) interaction which is usually obtained
from experimental two-particle scattering. Often
the concept of a two-body potential is avoided by
using the experimental data directly to define the
on-shell two-particle ¢ matrix, then some multi-
ple scattering theory is used to relate the two-
body ¢ matrix to the optical potential. In fact, of
course, several important approximations are
necessary in order to use the free two-particle ¢
matrices in a tractable way in the many-body prob-
lem. The two-particle { matrix in the many-body
problem can, in general, be considerably differ-
ent than the one obtained from free two-body scat-
tering (the kinematical restrictions and relations
are of course much different because of the pres-
ence of more than two bodies.) It appears that for
projectiles at sufficiently high energy the problem
greatly simplifies because the approximations us-
ually adopted [for example, see Kerman, McMan-
us, and Thaler! (KMT)] in the impulse approxima-
tion become appropriate.

Recently Foldy and Walecka® (FW) have investi-
gated, in considerable detail, the theory of the
optical potential for a projectile elastically scat-
tering from a system of A fixed scattering centers
(i.e., infinite-mass constituents). Two basic as-
sumptions utilized in their elegant discussion are
first, the projectile energy is high enough so that
closure may be used on the target and second, the
projectile-single target particle potential is sep-
arable. The lowest-order optical potential ob-
tained by FW not only includes in a natural way
the two-particle ¢t matrix and the bound target par-
ticle momentum distribution, but also allows for
off-shell intermediate propagation of the projec-
tile between scatterings. Using further limiting
approximations FW make connection with the sim-
ple high-energy Glauber approximation® for the op-
tical potential.

Our purpose in this paper is to consider the
same situation as FW but not assume that the in-
dividual target particles are infinitely heavy.

This requires that certain 6 functions missing in

the FW discussion must now be included in the
scattering equations. Relatedly, the microscopic
potential becomes nonlocal in both the projectile
and target particle coordinates. Because of these
additional complications we are forced to use a
different approach than that followed by FW. How-
ever, we use exactly the same assumptions as
adopted in Ref. 2 except for an important “angle
average” approximation adopted in order to obtain
a closed form expression at one point in the dis-
cussion. It is argued that, in nontrivial situations,
this additional approximation may be valid when
one does not wish to assume the individual target
particles are infinitely massive. The validity of
the approximation can be checked in a given mod-
el. The result we obtain for the optical potential
shows explicitly the effect of the finite mass of the
constituent particle and demonstrates several ef-
fects due to the target particle’s Fermi momen-
tum. While our result for the optical potential is
naturally more complicated than that obtained
earlier it still remains tractable and therefore
should be useful in future applications (for exam-
ple, in studying intermediate energy pion-nucleus
scattering). It is also useful because it explicitly
demonstrates how, under the assumptions adopted,
an effective two-particle f matrix in the many-
body problem can be expected to differ from that
obtained in free two-particle scattering. Of course
if one assumes that the target particles are infin-
itely heavy the optical potential contained herein
reduces to the lowest-order optical potential ob-
tained by FW.

In the next section we consider the problem in
the simplified setting of a two-particle interaction.
Drawing on the results and techniques developed
in Sec. II, we tackle the many-particle situation in
Sec. III. The result for the optical potential,
which will correctly reproduce the elastic scatter-
ing amplitude as obtained from the multiple scat-
tering theory, is the most important result con-
tained in Sec. III. Finally, in the last section we
review the approximations leading to the results
obtained in this work, identify and discuss the
main results, and suggest applications or fur-
ther generalizations.

II. TWO-BODY PROBLEM

In this section we define the basic two-body separable interaction that will be assumed in the many-body
problem treated in the next section. In addition we briefly review the two-body scattering problem for
the case of a nonlocal separable Galilean-invariant potential. The basic procedure adopted here will ap-

pear in a more complicated setting in Sec. III.

Consider the Schrddinger equation for two particles interacting via a two-body potential

< n: n?
T 2m, i 2m,

V3 - V.f. ) (T, Tp) +f u(F,, Ty T, TU(TL, Th) AT, AT, = EP(F,, T,) . (2.1)
2
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A simple special case of the operator v(¥,, T,; T;,T:) that is frequently encountered is given by
v(F,, Ty T, Th) =0v(| ¥, = F,| ) 6(F, =) 6(F, - T}) (2.2)
(i.e., alocal, Galilean- and rotationally-invariant potential). The familiar Galilean-invariant potential

which is nonlocal in the relative coordinate, ¥, —¥,, may be written in the form

- - - w ox 1 - 1 -
o(F,, Tpy T, ) =0v(F, - T,, T} —-fé)élim—l:-;‘: (m,F,+m,T,) —m (m, r;+mz?;):| . (2.3)

Using the standard change of variables,

- 1
PO - -
F=%, -7 R=—"—"—(m,%, +m,T,)
1 2 1+1 242/
m,+m,
= 1
- =, = - -
¥/=F] =T}, R/ =——"——m,T|+m,T}), (2.4)
my+m,

M=m,+m —1——'*’-
1 2y M= m,rm,’

and adopting the potential given in Eq. (2.3) we may rewrite Eq. (2.1) in the form
n? n = = - - -
.(—— Vi-— v;) »(T, R) +f (%, T)6(R -R)Y(F", R')d¥’ dR' =Ey(F, R) . (2.5)

Making use of the 6 function appearing in Eq. (2.5), and following the standard procedure one can break up
Eq. (2.5) into the two differential equations,

2 vt o)+ [ oE, FhoENaE a0 (), (2.62)

—%2 V2 x(®) =(E - Nx®), (2.6Db)
where

(F, R) = p(F)x(R) . (2.7)

We now investigate the equation involving only the relative coordinate [Eq. (2.6a)] and work in the center-
of-momentum (c.m.) system. It is important to note that in order to reduce the two-body problem to an
effective one-body problem in the ¢c.m. system it was necessary to make use of the 6 function appearing
in Eq. (2.5). In the problem we consider we shall be able to obtain the potential from a knowledge of the
phase shifts in the c.m. system (the inverse scattering problem). If this potential is utilized in the many-
body problem we must be careful to also include the term 5(R —R’). [Note: Since 6(R —R’) is a two-body
c.m. coordinate 5 function it will not, in general, trivially disappear in the many-body problem.] If the
energy originally available in the lab system (where particle 2 is originally at rest) is denoted by E,, then
the energy available in the c.m. system is

my

E —_2
m,+m,

E - (2.8)

cm.”

We may rewrite Eq. (2.6a) as an integral equation (with the outgoing wave boundary condition)

(P("‘)('I’.) =ei_1;_, f 1[ o (T-T") d-{ (-., »,,)(p(r,,) ,dr,, (2 9)
12— K —ic (2n)° ’ :
where
v (F, ”)——& #, ), (2.10)
and where

2 2 2
k2=_u Ec.m.z—uszlab=<_’i‘2—_) kl(lah)z' (211)
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The elastic scattering amplitude may be determined from

f(ﬂ',ﬁ)=—-41—ﬂ f e~ TV, ) o () dF dF (2.12)
The particular nonlocal potential v(¥, ¥') assumed in this paper is both separable and rotationally invari-
ant and may be written as

o(F, F') = 3 4mau, ()0, () Y, Q) YE(Q1) (2.13)
Im

Now substituting the expression (2.13), for »(¥,¥’), into Egs. (2.9) and 2.12), iterating Eq. (2.9) and substi-

tuting the result into Eq. (2.12) allows the scattering amplitude to be written as

—4nf(k', k)= f A ,2 410, 0, o0y (1) Yo (0,) Vit (036 5T dTg dF,
o™o

- bk 2
- f ik 21 hu mzm;oz;nx,ov,o(ro)v,o(rl)Y,Omo(sz DY (27)

dt. Py tl-(rl- ) 2 = 3
3 h—z 2 477)‘11'011(7’2)”11(73)Ytlml(Qrz) zlml(Q‘r’s)eik rsiI;Io dr;

@n) - F—ic @ 2,
+ f f ( II 3 (=1)r1 f -l ﬁ“ 2 40071070 Vi @1 Vil 2)
i=0 o™Mg

net > s
dt, etlittfzi-1-Tad 2
X —

H l: (217)3 t2-K-ie n*

x E 477)\1(”!{(7’2{)1)1;(72“1) Yt{m;(Qrz()Y’tm, (Qrgh_‘)]‘
Lim;

X ei.‘:'?zn -1€ PR (2-14)

First substitute the partial wave expansion for a plane wave
(2.15)

We now concentrate on the nth order term.
‘k.r_4772 (z)'],(ky)Ylm(Q )Y (Q )

into Eq. (2.14) everywhere a plane-wave term appears. The resultmg express1on can be easily simplified

by carrying out the integrations over the angles of ¥,, ¥, and all the t and ¥;,. Because of the orthogonal-

ity relation for spherical harmonics the angular integrations collapse the many sums over various ! and
m’s to a single sum, say over [ and m. The resulting expression for the nth order term (n>1) in Eq.
(2.14) is given by

2n=1

~af, @, 0= [+ ( I+ ar, )} v T [ 03,7 2 40,00 ¥, @700,

" (47)? 2dt ) . 2
Xl [ ftz 7e ]l(ti'rzl—l)]l(tl”'zi)ﬁ_’:

(27)
X4">‘lvx(72i)vz(7’2i+ 1):' % 4n(2)’ jz(k'rz,.q) Yz’.;n (Q'k’) . (2.16)
i
Now defining
v, (&) =VET i Y, (Qp)v,(R) (2.17a)
and
v, (R)=47 f v,(%) §,(kx)x® dx (2.17b)
and utilizing the property
(2.17¢)

3 0¥, &0, () = (214 1)[v,(R) 2P, (cosb,.,) ,
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we can rewrite Eq. (2.16) as (note | k|=|k’|)
_ 2u LA t2dtdn|v (t)|2>""
- n=-1 2 1 !
anf (&, %) =(~1) E Nlv, (B2 1+ 1) P (cosé’k,k)(;zz 3 )3f e . (2.18)
Now if we define
2u A, ft 2)
2.19
X= (722 2n)° - |Uz(t)’ ( )
then using Eq. (2.18) (the result for the nth order term) we see that the scattering amplitude, Eq. (2.14),
may be written
> > 1 2
rl,R=-1- Z; A —h%lv,(k)lz(zn 1)P (080, ) X[1 =X + X%+ ]
L 2 (2u/7%) | v, (R)|2(21+ 1)P (cosb, )
(2.20)

5 2 ToT e T ) [T o 0P = =]

The familiar expansion for the scattering amplitude in terms of the c.m. scattering phase shifts is written

f(R, B) = Z S"‘é &) (314 1)P,(cos6,.,) (2.21)
so that we make the identification [using Eq. (2.20)]

e#1® ging (k) =(0/4m)2p/m%)| v, (B)|?
) T 1+ /(@2n)°]@2u/m?) [Lat] v, @02/ (t° -k —ie)]

We remind the reader that these results are standard and our main purposes here are to define some
basic quantities and to apply the basic techniques, to be used in the next section, in a situation where the
notation is not overly burdensome. Equation (2.22), which relates the phase shifts to the separable poten-
tial may be “inverted” so that given the phase shift in the /th partial wave at all energies allows one to ob-
tain v,(k). The inverse scattering problem for separable potentials has been the subject of considerable
study®® and often allows particularly simple solutions. For example if one assumes 5,(k=0) = 5,(k=x)=0
then several authors have shown that the potential may be obtained from the phase shifts via*~®

(2.22)

-\ ;Zz v (R)]P=4 (2.23)

Sin&,(k) ox <__z£ o 5,(k')k'dk/)
k P m PR ’

[

Of course the expression for the potential is more complicated if there is a bound state or if §,(0) — 5,(x)
=N7n(N# 0).> However, one can still easily work backwards from the phase shifts and obtain a parametriza-
tion of the on-shell two-body data with a definite prescription for going off shell (i.e., obtain the separable
potential).

Although we shall not make use, in this paper, of the fwo-body scattering amplitude in the lab, it may
be instructive to calculate it using similar approximations that will be adopted in the next section. We be-
gin by writing the Lippman-Schwinger equation describing the scattering in the lab system
ThH

. 2m it (0
9 7= et T 8, (F9) -2 <I>(*°>ff d¥ drfdt er 1T px
Zp(rl ) o\T'z Z 2 @) (=R ic ® X (T3)

X3S 4ma, (B = B0, (| B - BN Y, Qe ) Vi r37)
im

—-—'—1 >
xé[m +m, (m, ¥y +m,T3) - (m, r1+m2r2)]¢(+z 72, dTi dTs, (2.24)

m,+m,

where @ (T,) represents the total wave function, in the lab system, for the target (which would be a plane
wave for an elementary system without internal degrees of freedom). The sum over the complete set of
states of the target (including c.m. motion as well as internal excitations) is only symbolically denoted by
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> n (Naturally integration over continuum states is required.) The symbol » refers to the usual position
variable associated with a given “particle.” The subscript on the variable » refers to particle 1 or 2
while the superscript keeps track of the different dummy integration variables for a given particle and a
given coordinate. (Thus T2 and T3 are both the elementary particle 1 coordinate variable but refer to dif-
ferent dummy integration variables.) The quantity ¥ depends on the state &, of particle 2 and the initial
kinetic energy (in the lab) of particle 1 [E,(lab) =#2kZ/2m ],

B=F —iz—"gl[En(particle 2) - E (particle 2)], (2.25)

n

where E, is the energy (including recoil) associated with the state n of particle 2. The quantity E, is the
initial (here no c.m. motion and the internal ground state) energy of particle 2. Now let us assume that

2
K>3 (B, - E,) (2.26)
so that
B R, (2.27)

The condition assumed in Eq. (2.26) is one of the basic approximations made by FW and we discuss its
implications more fully in the next section. However, we note for an elementary target the condition is
most likely to be satisfied at forward angles. In fact, FW obtain the following condition on the scattering
angle

4 sin%30 <22 (2.28)
m,

Thus if m, is very large compared to m, the condition can be satisfied at all angles. (We shall use the
condition in the next section only for elementary particle-nucleus interactions and thus in that case the m,
would refer to the A body nucleus mass and not the mass of a single elementary particle.) Replacing ¥
by ¥ (or %2,) in Eq. (2.24) and using closure on the target wave functions

2 &, (F)® 5 (F3) = 6(F; - T3) (2.29)

permits the integral equation [(2.24)] to be simplified
ey ;> >0 =1
(+)(m0 =0\ _ ik+T0% (=0 _2m1 dt, eftr Fi-Tp
06, 1= e - S [ [ o

2 rip=ra

X 3 dmn,oy (| B = B0, (| B =LY, (@11 29 V(@727
Im

(m,T1+m,T3) = (mjfa—mﬁé)] P H(FE T ATV AT dTL . (2.30)

)
[m1+m2 m,+m,

Thus by essentially neglecting the final kinetic energy of the target particle we obtain the laboratory
scattering amplitude

-, T 1 > _itr. 79 2m =0 = > =
fao® R == [ [ @G =TT Z50 5 dmn 0, (1B - Eo(| B - B Y, p(@r9-29 V1)
im

1 - - -0 =
Xé[m(ml-f‘g-kmz_fg)— (ml'fi+m2r;)] zp‘*’(f{,'f;)dr‘}d'f{drgdré, (2.31)
1 2 2

m,+m
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where 3‘*’ is given by Eq. (2.30). Iterating Eq. (2.30) and substituting the result into Eq. (2.31) yields

2m

20 >0 - 7,20
—47Tflab(k k) E( -t f(zrr 3/2 e"kz"zq)*(k‘z’) etk T}
x 3 4o, (|5 = B9 Do, (| F] - B Y, nl@59 59 V(@21 1))

1 vo w0 1 I
X — m,;r,+m,r,) -———m, r;+m,r
o i 472+ = e, T, B

L+m
>1 > Tl a0 ey o0 g
X<61 (—5,%e*ké"w(k;)eik-'idrﬁdridrgdr;
n-1 e, 2m
GRSV § | g (27r t?—kz—ze L Z 4, v, ([T - T))
i=1 ¢ 1;m;

)y ([FF =B )Y,y (23 20 Yy (Vi 17 400)

xé([—-——l-—(m 2 em *2)——1—(m T em r‘“])(
m,+m, my+m, i

2n-1
2 i.l:"-T" n " 1
(yin 77 ol T am [T o)

where ¢(k,) is the Fourier transform of the target particle coordinate space wave function
- 1 N PR
(p(kz) =22—1T)m f drz e—ikz Iy qp(rz) .

The 6 function is zero unless its argument is greater than zero in which case it is unity.
Now we make the following variable changes

© =70 _ 30 1 0 %0

®Ro=T, - T, Ry=———m , N +m,T
0=T; = T3, 0 m1+m2( 1Ty 2T3),

o e O NP

®R,=T1-T1 R, =——(m, 7" +m,T7)
17T =T, 1 m1+m2( 1 2T2/,
_=2_ = =1_=1

&2‘1'1—1'2: ry=ry,

&%—1 r I, Ir,=r,,

B _n2i =i =3 _ 33

&y =Ty =T, Ty=Ty,

2n-2 an-1 xn—=1_wn=1
§2n-2—rl -r; ", Ty =rp .

E34

—P2n=-1
(Rznq =¥t -Fg,

(2.32)

(2.33)

The Jacobian, denoted by J, of this transformation is unity. (The Jacobian appears in the integrations

via the transformation

2n=1 2n-1 n-1
H atr H a*vi~Jd*R,d*R, II d»i II d%¢ )

i=0 q=1

(2.34)

The exponential involving 7c,. is easily changed from the » variables to the ] variables by making use of

T (r2-l_r2 o >
e“i'( =Ty )= eiti*(Ray =Gy

(2.35)



7 OPTICAL POTENTIAL FOR SCATTERING FROM A SYSTEM... 2263

The potential functions are, of course, already only a function of the ® variables. The 6 functions may be
used to eliminate the R, and T3, ¥2..-T7~! integrations, since the 5 functions require

1 R2n- -
ﬁl =m1+mz(m1r§ Fem, T3 (2.36a)
=y, + ] (2.36b)
m1+m2 2n-2 2 .
nil - - - .
=m1 +m, (Rap-z = Ropos + Rapy) +T572 (2.36¢)
m - . - - -
=m1 T, (Ran-z = Ropos + Ropog = Rppos + 0+ * = Ry + Ry = ®) +R, - (2.364)

The exponential expressions originally depending on 77 and 72"~! may be reexpressed using (2.33) and
(2.36d) so that

onrn > >2n-1 SRR . m - m - -
etkg rzeik ry =et(k2+k) Ry exp| 2 _ 1 k;l '(Ren—l
my+m, my+m,

. m, - m, =\ =
= exp z( 2 k- A— k7 )e®Rypey
m+m,  m,+m,

X exp[i(—l;'z' +E) . ("'!‘n_l"" ((—ﬁ2n-2 - §2"_3 +(-ﬁ2n-4 se +§2 - §1) +§o) ] . (2.37)
m,+m,
Similarly we find
—iRQTY -ik - TY_ -4 (k+k) R i Me T, M To),
e e 1=g-itkz OeXp[ z<m1+m2k P k2> &0]. (2.38)

Substituting Eqs. (2.37) and (2.38) into Eq. (2.32) and carrying out the integration over _ﬁo (which yields an
over-all momentum conserving & function) gives [R=|®&|]

~trfu (0= 3 oS f [ f [ algako@e K -i-R o" @)oo
n=1

. m > m > -
X exp | =i ik’ — —k2 ) (Ro]
m,+m, m,+m,

xexp[i( L - E;’)-(_f{z,,_{’Z411)\,11,(0‘{0)v,(d%l)Y,m(Q&O)Y;"m(Qal)
Im

m,+m, my+m,

T i, [t - K+ B)] - @Ry = Rp))} 2
><l:l-)1”"+ 9(n—1)H< (37,33 exp{i[t; ml/(mltgr:tz)z(j; )] - (Rey -y = Bpy)} 7”21"1
i=1

2n=-1
x Z 4mng, vy (Ray)vy, (s +1)Ylime(Qﬁfzc)YTimi(Q&ziu‘))‘] H dg, .
i=0

Lymg

(2.39)

The procedure followed in reducing Eq. (2.14) to the simple form given by Eq. (2.20) is not immediately
applicable in the present situation because of the more complicated expressions appearing in the exponen-
tials in Eq. (2.39). In the present case the procedure of expanding all the exponentials in a partial wave
expansion and then carrying out the angular integrations over all the ?‘. and é,- does not contract all the
sums over various I, down to a single sum because Y., Y5, terms that in the previous case [i.e., in going
from (2.14) to (2.20)] were functions of the same variable are now functions of somewhat different vari-
ables. We proceed by making the following variable changes

s =1 __an._ T 1 Te .
p; =t m1+m2(k2+k), for all ¢
ky=kg,

k=k. (2.40)
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The Jacobian of this transformation is one. The net effect of this variable change is that in Eq. (2.39) we
replace the expression

J‘ dat, exp{i[f, —=m/(m +m,) (&3 +K)] - @y, =Ry}

(2m)3 12 -k —ic
by
dp; oiPi* Gy g -Gy (2.41)
(27)® p2+ 20D, - (K1 +K) + 02(kn+K)? - B2 =i’ ’
where
S
Tmytmy”

Now if we replace the P; angle dependence in the denominator of Eq. (2.41) by some “average” value de-
noted by (P, - (k2+k)> then significant simplification is possible. We delay until the next section the dis-
cussion of an alternate approximation whose validity is more easily tested in a given model. We note here,
however, that an alternative approach is to assume that diagonal contributions in the I, sums dominate
and thereby motivate contracting all the sums into a single summation. (We will actually do this in the
next section.) Replacing

{-ﬁi . (E;'+E)]
by
B+ (kG +1)1),, (2.42)

and subsequently carrying out the angular integrations for the 85, and P; leads to the following expression
for the nth order contribution (z>1) in Eq. (2.39)

-4nf,(E',E)=(-1)"-12ﬁ—”2’lf dky o (kp+k -k Y m,(
Im

> m > m -
k' - L kp— L_k|)4n
my+m, m,+m,

m, = _m; =
X v, o L—ks2
my+m,  m,+m,

- > >)v* - >
> Ylm(gk’-ml/(ml +m2)kg—m1/(m_‘_ +m2)k)Y1m(Qm2/(ml+m2)k -mll(m1+m2)k;')

l:Zm1 N piapdn| vi(p)|? ]n—l 0.4
B —ic ’ .

7 2n° ) p2e2a(p- (E;’+§)) +a2(k+ k)2 -
where we have also made use of the definitions Egs. (2.17a) and (2.17b). Now, in analogy with the discus-
sion that led from Eq. (2.18) to Eq. (2.20) we may immediately write [B=m,/(m, +m,)]

> > 2, > -
Fu®, B ==3 3 252 [ aky or(ig+ k- K)o
Im

Uz(lE —01(E +E,)vl(lBE OZE2!)Ylm(ﬂk'-a(kz+k))Ylm(QBk—ak2)
1+[7t /(@n)*)(2m /0®) [ ab| v, (p)P/[p*+ 20D - (k3 +K)) + o*(kp+K)? = B —de]

Although somewhat more complicated in appearance, Eq. (2.44) is similar in form to Eq. (2.20) [the ex-
pression for fcm(k k)] The complications appearing in the present case include the appearance of the
Fourier transforms of the initial and final target wave functions in the numerator, the sum over m (which
can be trivially carried out even though the two splierical harmonics depend on somewhat different vari-
ables), and finally the integral in the denominator has a slightly more involved integrand. An expression
of this general form will be obtained (and indeed is one of the principal results) in the many-body problem
treated in the next section. Note that in the particular case that the target particle is initially at rest in
the lab system that ¢(%j7) = 63(k") and the integration over k" is trivially accomplished in Eq. (2.44) result-
ing in significant simplification. Of course if m, is infinitely heavy the ¢.m. and lab systems coincide and
in that case («=0, 8=1) Eqgs. (2.44) and (2.20) coincide. For m,—» Eq. (2.44) also coincides, naturally,
with the expression (in the lab system) given by FW for scattering via a separable potential from a fixed
scattering center.

Several variations of useful approximations may be possible in obtaining a tractable reduction of Eq.
(2.39) and the reader is encouraged to search for alternatives.

(2.44)
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III. MANY-BODY PROBLEM

At the beginning of this section we follow closely the discussion of FW in order to demonstrate why in-
clusion of the two-particle c.m. § function requires a departure from their approach. The starting point
is the many-body scattering integral equation in the laboratory system [compare Eq. (2.24) and the subse-
quent discussion and see Eq. (2.7) in FW]|

(+)(30 0 ZO) @ (%0...%0),ik-¥_ Mg £0 %0 #1 i o't 6-%p
PUED, LR, R =B(RY K Je K N0~ e Zq’n(xu RS SV IEREN IS SERRN 5 @Y -1 —ic
A
x&x(xi, ..., Xlla)z Z 4mnv, (| X5 =%} o, (| X5 - X5 | )Y:m[ﬂaé-ﬂ)]YTm[Qag_;?>]
i=1 Im
1 1 z1 1 z % +) 2 2
xﬁ[m(m0§0+mixi)-m(m0x§+m,.x?) POR, . LR, .. R R ARARIIR,
(3.1)

where the states &, represent a set of energy eigenstates’ of the A particle target satisfying

H,|®,)=E,|®,) . (3.2)

(H,, is the fotal free nuclear Hamiltonian including both c.m. and intrinsic nuclear coordinates.) The quan-
tity %2 is defined by

=kt 2;21" [E, (target) — E (target)], (3.3)
where E, is the initial nuclear target state (i.e., at rest in the lab with the nucleus in its intrinsic ground
state). In Eq. (3.1) we have used the integral form for the free particle Green’s function. All variables
referring to the projectile have a subscript zero (i.e., x,) while variables which refer to the ith target par-
ticle have a subscript ¢ (i.e., x;). Superscripts are used to distinguish between different dummy integration
variables. Now along with FW, we make the basic approximation that

2

m
R* > hzo(En‘Eo)a (3.4)

so that we approximate %2 by %% in Eq. (3.1). In the context of the many-body problem this means we as-
sume for the “important” intermediate scatterings that the energy transferred to the target as a whole is
small compared to the incident projectile energy. There are two contributions to E,, the recoil of the en-
tive A-particle nucleus and the intrinsic excitation energy of the nucleus. We ignore recoil of the whole
nucleus because we assume it to be considerably more massive than the projectile (or a single nucleon).
As far as the intrinsic excitations are concerned, if the “important” intermediate nuclear excited states
are, for example, low-lying collective nuclear states then one might imagine this approximation would be
valid. [Of course all of this depends on the sensitivity of the integral to very small changes in the denomi-
nator. One check of the approximation, as FW point out, is to evaluate the appropriate off-diagonal ma-
trix elements in Eq. (3.1) and see if the important states » of the target [(i.e., those yielding appreciable
off-diagonal matrix elements) satisfy Eq. (3.4)]. The important point is that there may be, for example,
because of the difference between the mass of the whole target and one of its constituents and because of
the average excitation energy of important intermediate intrinsic nuclear excited states, a problem where.
one does not wish to treat the mass of an individual target particle (nucleon) as infinitely heavy but still
may adopt the approximation #%2=%* or ¥2=%%,. Of course our main purpose here is only to see what modi-
fications are required if the 6 function in Eq. (3.1) is included in arguments leading to a derivation of the
optical potential. Replacing kf, by %% in Eq. (3.1) allows one to carry out the sum over » making use of the
completeness of the nuclear states. Since

T8, R RDEUR - FY) =6 - R -+ 08 - K, 3.9
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we may rewrite Eq. (3.1) as
A

- ite(X3 -%3)
(%0 22 ,%9) = (%0 %)tk %8 - o dtl _e_.t__; amno, (| =% o, (| B2 - %))
PXy, -, Xy, Xy o\Xyy . .5 Xy)e 7= ) G- - ic TA VN Ko = Xy 0
=1

no

- >0 >3 >1
X th[ﬂﬁé-??)]Y?‘m[Qﬁg-ﬂ)h[‘—m T, (moXo+m; X)) - (mo X +m, xi):'

mo+m;
XY, R LT R dR dRL AR (3.6)

Now if, for the moment, we were to let the mass m; of the elementary constituents go to infinity the 6
functions in Eq. (3.6) simply require

X =%;. (3.7

This means the potential is essentially only nonlocal in the projectile coordinate x,. Thus as m; —«
(i =1 to A) Eq. (3.6) may be rewritten as

ite(xg=xg)
(F)(F0 ., . 30 0V _ (F0...30) ik Xg 2m0 dt e *o7%0
(CERES VIS HIEL N EREP VI ffwtz—kz—ie

A
X 23 23 V(X5 = K0, K=K 9 R -0 KD XY, D) ARG (3.8)
i=1Im

FW note that the solutions of Eq. (3.8) are of the form

PR - K5 RD) =B o(RD - - XS V(R (3.9)
where

T3 a4
(+) 20y _ ik %3 at_e’""*o7%o 1_20 30y () (2
() =TT 20 [ [ azy xO(zﬂ)a or PP e 2 3 VB TR UVE. (.10

Note that although the integral equation (3.10) contains the x; variables, the integration variables all refer
to the projectile. Thus Eq. (3.10) is an integral equation only involving the projectile coordinates in an
essential way. The elastic scattering amplitude may be written

- > 12 - >0 g - > iRy
R == 4 ;:_’z“’f --'fdx‘}w-dx%dxg@:(x‘},...,x"A)e"k %
X0 T 8 K015 YO 5L, R 0 (3.11)
i=1im

Combining Egs. (3.9) and (3.11) allows

L. 13
Fl, B =- m"f falx1 ARG BEE, ...,

A
er-ik'.;gf 33 0, (R K0, (KL - K 9, D a5 dig]%(ﬁ, LR, (3.12)

i=1 Im

One can think of the term in brackets in Eq. (3.12) as a many-body scattering operator f,.,(X3---%%).
Thus what has been accomplished in Eq. (3.12) is a separation of the problem into two parts; first, one
may treat the part in brackets involving only the coordinate of the projectile as an integration variable
and second, average the bracketed expression, f,.,(X}+++%5%), (which after integration over projectile co-
ordinates is a function only of the target constituent variables) over the target initial-state-probability
distribution. This technique is basic to the elegant discussion in FW.

Returning to Eq. (3.6) and not assuming m; =« we find that the technique discussed above needs to be
modified. The basic problem is that the potential is now nonlocal in both coordinates (with the 6 function
providing an additional constraint). Thus, for example, a solution of the form of Eq. (3.9) [where "’ (X9
satisfies an integral equation involving only the projectile coordinates as integration variables] does not
seem possible. Therefore, we shall adopt a somewhat different approach.

Our procedure will be to write down the series expansion for the many-body elastic scattering amplitude
incorporating Eq. (3.6) for y*’. We shall make the assumption that although a particle may be multiply
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struck (in fact we shall sum a certain class of projectile-target particle interactions to infinite order) that
once the projectile leaves the jth particle in the nucleus and scatters from the kth particle (j# k), the pro-
jectile does not return to interact again with the jth particle.

First consider the expression for multiple scattering from the jth target particle. Here we are motivat-
ed by the usual desire to replace the projectile-single target particle v matrix by something akin to the
two-particle { matrix. We obtain

P, T = - o - _ilte "0 2m > > >
—4nfi,(k ,k)=Z(—1)"71ffI>a‘(x2---x%)e W 2 Z 4mr, (135 =% v, (1 5 -%51)
n=1
1 - > >
X TynlS-p) Vhalhsy-50] 0| i 1o R, ) - e %, 5 |

Mo+m; Mo+

X

Bym @R, ... KL, ..., TR (Hd )di

1'-1

- )
+6(n~ 1)H i 20 3 4wy, (1% - %)
i tz—kz—ze i ’

lei(lf(gi ﬂ—i;*ll)Y,im ( 2i -z) 1y (Q;(z)iﬂ_;}'ﬂ)ﬁ[m
0 i

2n=-1 n A
" - =0y ik-%2n-1 = - -
XB X+ - KN %G e E x3" I‘I dxs§ l I dx! I | dax? % . (3.13)
g=1 q=1 r=0

The integrations over the variables X (r=1to A, not j) may be easily carried out since these variables
appear only in the function &,. The resultlng expression is quite similar to that obtained for two-particle
scattering in the lab system [see Eq. (2.32)]. The similarity with Eq. (2.32) may be made completely trans-
parent by simply making the identification X, ~T, and X; - T, and defining

(m X3 +m X —m X3+t - mﬁc}”]

> 1 > iR %s
(p(kj)=Wfdxi e ki%i o)),

where ¢(x; ) is a “single-particle” wave function obtained after integrating out the dependence of &, on %9
to X} (excluding of course Xj). The function ¢(k;) then is a measure of the momentum distribution of the jth
target particle [i.e., <p*(k )(p(k,) yields the target particle momentum probability distribution]. Then mak-
ing the variable changes given in Eq. (2.33), and repeating the discussion leading to Eq. (2.44) allows the
following closed form expression for scattering from the jth target particle:

> 2m > > > > > > >
o &, D=, @, 0 == 0 T30 [ dk; o*(&, +k- K)ok v,(| k' - ok, +B))
im

Ul(l BE - a-l;il )Ylm(ﬂ'l:’—a('ﬁj+i))yrm(g*ﬂﬁ-a.};i)_. -
+[0/(21)2)(2m o /1) [ dBl v, (p)2/[p7+ 2a(p « (k; +K)) + 02(k; +K)® = k* ~ie] *

X

(3.14)

We wish to consider the usual multiple scattering expansion, where after each scattering with the ith
particle the projectile may interact with other target particles. If we denote a singlé-projectile ith-target-
particle interaction by v; and adopt the common restriction (as in FW) that the projectile never returns to
a target particle once it has interacted with it and subsequently interacted with another target particle
(for each term in the multiple scattering series, we call this the never-come-back approximation) then
the multiple scattering series may be written symbolically

A A

A
S(k’, k)—Evi+ Z}vv +Z}v > vvv,ﬁZ} VOV Dy VU0 ) D00+ (3.15)
i#j=1 i=1

i#j=1 i#j#k 1 i#j=1

If we define the usual infinite sum of interactions with particle i [i.e., the “#’ matrix we have obtained in
closed form in Eq. (3.14)] as

im0+ 0,0, 400,040 0 (3.16)
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then the multiple scattering series [Eq. (3.15)] may be regrouped and written as

A A A
SR, R) =3 i+ 33 tity+ 3 titytytee-. (3.17)
i=1 i#j=1 i#j#k=1

Of course this is just a greatly oversimplified summary of the usual expahSion of the many-body scatter-
ing amplitude in terms of sums of products of two-particle { matrices. In the usual discussion one under-
stands that these are two-particle f matrices imbedded in the many-body problem and so are different
(“off the two-body energy shell”’) than the free two-particle ¢t matrix. In fact, one often wishes to relate
the two-body ¢ matrix in the many-body problem to the free two-body ¢ matrix. {In this way one can, for
example, eliminate the difficulties due to the ‘“hard core” in the nucleon-nucleon problem by using experi-
mental data for nucleon-nucleon scattering in the nucleon-nucleus many-body scattering problem. In

the standard approach, in order to relate the free two-particle ¢ matrix to the many-body two-particle ¢
matrix one must make certain approximations that lead to uncertainties in the validity of the approach.
For example, the free two-particle { matrix is often written #(k, #’, w), where k and &’ are the initial and
final relative momenta and w is the energy available in the c.m. system; (note the relation between w, #,
and %’ is here determined by two-body kinematics) for the two-particle ¢ matrix in the many-body problem
[which one would also like to write as #(k, k/, w’)] one is confronted with the many-body complications
which makes the w’ appearing in ' uncertain and also allows of course | k|#|k’|.} Our philosophy is some-
what different. We have a definite potential that is presumed to fit the two-body data. We wish to see in
some detail how the final expression we shall obtain for the optical potential is related to the expression
we found for the free two-particle ¢ matrix (as well as comparing our result with that of FW).

We wish to generalize Eq. (3.13) to include scattering from more than one taf’get particle (in the never-
come-back approximation) using a multiple scattering expansion of the form (3.17). Of course we start
with Eq. (3.15) and then just regroup terms. The question is will we get terms involving simple products
of ti (', k) as given by Eq. (3.14) or will the resulting expression be so complicated that it becomes in-
tractable. The answer is that by making one further standard assumption (which FW also adopt) the expres-
sion is quite simple and we believe instructive. Although the general expressions are quite lengthy, the
main details can be understood from studying the (relatively) simple expression for single scattering from
particle 7 and a subsequent single scattering from particle j. This contribution to the elastic scattering
amplitude is given by

My [ sozor i oz 13
—anfl) @ = 250 [ gD TR Y dun,0, (- K)o, (R -5
im

> Tl »2

1 -0 -0 1 ][ 2m, dt eit-Go- 0)]
Xé[mownj (m0x0+mjx,)—m————o+ (m, x0+m,xj -z f_—'(zn)3 PR

-2 > - 1 1
X 47,0, (X2 =X, (X2 - %} 6[——-— mXe+m,; X0) -———(m X +m; X+
,Z,, 10, - &) v, (X5 - %)) m0+mi(°° 1 X3) mo+mi(00 i X))
m
> >3 3
x e %0 o(&}, X})d%; dX; a%; %} [] d%;. (8.18)

There are several interesting features present in Eq. (3.18). First the expression eas11y breaks up into
two terms each involving a single scattering from a given target particle. The term e~* X3 acts as the
final projectile wave function with respect to scattering from particle 7 while the term e! %5 acts as the
initial projectile wave function for scattering from particle j. Interestingly enough the b functiorns do not
impose constraints between the variables associated with the projectile scattering from different target
particles. These features are not limited to single scatterings from just two target particles. One can
easily show that the same simple partial factorization holds for any number of scatterings involving any
number of target particles (in the never-come-back approximation).

There is one difficulty which makes the simple factorization incomplete — correlations among the target
particles which complicates the many-particle ground-state wave function. A procedure previously
adopted® is to expand & (%, - -+ X,) in terms of products of 1,2 - - n particle density functions and then
keep only the term involving products of single-particle density functions. We shall adopt this approxima-
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tion for obtaining the optical potential. Thus we assume that the many-particle density may be written

>

90(,).((;{1’-}?27""ij""a-}EA)(po(ii;ié’"~;x1{r XA) P(X1, 1)P(X2;X2) (Xj) ])"'p(xA;XA)
+ (other terms which can be neglected)
=X XD p* (R (%) - - - 0*(Xp) 0(X}) - (3.19)

Under these circumstances a complete factorization is possible and Eq. (3.18) can be written

—4nfhi® = f TRE f‘ab (k’, T single scattering) ————be (, k, single scattering) . (3.20)
As mentioned earlier the factorization is not affected by the number of scatterings involving a single tar-
get particle or by the number of target particles with which the projectile interacts (again these statements
are in the context of the never-come-back approximation). The expression for the multiple scattering am-
plitude Eq. (3.15) is easily obtained and can then be regrouped to yield the sum Eq. (3.17) in a straightfor-
ward manner. The final result for projectile-complex target elastic scattering may be written in the form

A
_47Tflab(§,, E) = Z fi(E’, k) Z Z f (2 )3 fj(-l;,’ B ?E__kllz_:—_ fi(T:r E)

i€
i=1j=1
i#i
3 }: z A S .0
¥ ff( 55 3f(k’,t —z““ftz,tl)"'z——z—f‘f‘tnk"',
e 27 \271) 13 ti-k
;z k:t ;ej
(3.21)
where [compare Eq. (3.14)]
i, > 2m - . -
F@,0=3xn ﬁz°fdﬁ,~<p*(k,-+q—q’)cp(k,)
im
477111([ q- a(Ei +?1)|)vz(| B - an 1) Yzm(ﬂ'a'—a(.}:ﬁéf)) Yt*m(ﬂﬂﬁ-afj) (3.22)

+[0 /20 )(2mo/B2) [ dBl v, (p)12/[ 9% +2a B~ (& +8)) + a?(k; +Q)* = £ — | *

[Note: 35, ¥, @g_ack;+5) Vin(@e% -ak;) # (1/47) (20 + 1)P (oS, BN
In order to define the optical potential we consider the equivalent one-body problem assuming a nonlocal
optical potential. We w1sh an optical potential, U, which when inserted into the one-body projectile Schr&-
dinger equation
1'f o(T=T")

(+) - ii:' r/ MNAR! A"

WO F) =e fff aF = - UG, E)y(EnaE aF (3.23)
will yield a scattering amplitude

—4nf(k’, &) = f e T UE T (F)dF dF (3.24)

which is identical with the elastic scattering amplitude calculated from Eq. (3.21). Substituting Eq. (3.23)
into Eq. (3.24) and iterating yields

—4nf (K, k) = f Ty 7 e T gF aF

n o (7 _T") ToTm df E P r IV E L P
f j —lk rU(r I") . U(f//,'l’.m)eik-r (2‘")3 drdr’dr"dr’”+"' . (3.25)

Now defining

u®,d) =ff TR UR,§) 6T dxdy (3.26)
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Eq. (3.25) may be rewritten
’ Tr 1) 1 T %
4y (&, B = U, F) - f(z 5 UK, D rmg—y UL
1 -
ff (2_")3 (277)3 U( )—‘———"kz U(tz,t )———————-—kz_in U(tl,k)... . (327)

Note that Eq. (3.27) is very similar in form to Eq. (3.21) except for the summations appearing in the latter
equation. If we treat all the target particles as equivalent, the summations in Eq. (3.21) are easily car-
ried out and we obtain (for an A particle target)

-a4-1 [ 5 )sfk'*> = /(LB

>

~4nf (&', K) =Af (K", &

caa=04-2 [ [ Al )b (0, D £ B

(3.28)

If we assume the number of iterations of Eq. (3.28) needed for an accurate result is small compared to A4,
then by comparing Eqs. (3.27) and (3.28) we immediately identify

U@, =A@, (3.29)

where f(q’, q) is given by Eq. (3.22).
If we assume that the individual target particles have infinite mass, then in Eq. (3.22) ¢ -0 and 8—~1 so
that the optical potential becomes
e L 2m \v,(g")v,(g)(21+ 1)P,(cosb, )
Ulg’, q) = - =2 = < —, 3.30
(@) =A4p@ =0 52° 3 T, /n 1 @me/i?) | bl v, (DI (*~ F =ie) (350

where

p@ -7 = f %, o* (& + 4 -8 (k)

fdkj dX dxl z(k]+q q 7). xl <P*(X) -z(kj) xl(ﬂ( ,)

(21r
=f d%, et - Tz, (3.31)
If we define
_ 1 2m, MU?(k)
155 | P TR e T abl o/ P77~ - ) (3-32)

then Eq. (3.30) may be rewritten

—,Lq-()—vﬂ(r) (k)P (cosbq’q) (3.33)

Ulg', q) = =47 Ap(T’ —q)z a2+ 1) 4

which is the result obtained for the optical potential in Ref. 2. If one assumes that p(q’—-q) falls off much
more quickly as a function of momentum transfer than the other terms in Eq. (3.33), then setting k~ ¢
=~ g=~F’ in all the other terms yields the usual Glauber® or eikonal result

Uglg'q) = —47 Ap(q’ - @) £,(0) (3.34a)
or
Uglx, y) = ~47 Ap(x) f,(0)6(X-F). (3.34b)

We now consider several approximations which allow the optical potential [Eqs. (3.29) and (3.22)] to be
reduced to a more tractable form. Studying Eq. (3.22) we see that the initial target particle momentum k;
enters in a complicated way in both the numerator and denominator. Thus if one wishes to study the effect
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of the Fermi momentum in a more realistic manner, Eq. (3.22) provides a good starting point. However,
we note that E,. is everywhere multiplied by a(~% for pion-nucleus scattering) except in the target particle
density. If we assume that the most important effect of the Fermi momentum is contained simply in the
nuclear momentum probability distribution <p*(§,. +3-q")¢(k;), (the standard assumption - usually this is
the only place it appears in previous treatments®?) then eliminating k; everywhere in Eq. (3.22) except in
the wave function and carrying out the integration over k; yields

2m o ~
=% 2, Aoi(8 - oo, (1 63l)
Im

417Ylm(9q _(xq)Yzm(QBq)
T+ In, /(2n)*)(2mo/R%) [ dBlo,(p) P/ (p*+ 205 - ) + o’q* - #*)

The c.m. of the nucleus is assumed at rest in the lab. We ignore in this discussion the 1/A effect result-
ing from Y34k, =0.

Now of course one can introduce an adjustable parameter (to be fitted to experiment) to take care of the
term (P +§). We do not attempt to motivate a realistic choice for the parameter in this paper.

Since one is averaging over the angles of P a rough first approximation would be (p-§) =~ 0. It is probably
consistent in this situation to ignore the term depending on the square of «. Under these limiting assump-
tions the only effect of the finite mass is in the numerator.

We recall that the reason for the angle average approximation was that one wanted a closed form expres-
sion for the repeated scattering of the projectile from a given target particle. The usual technique did not
suffice because certain angular integrations, which before had collapsed many sums over partial waves
into a single sum, were now more complicated and hence did not lead to a simple solution [see Eq. (2.39)
and the discussion immediately following]. The basic difficulty resulted from terms of the form [we have
taken terms from the i and i — 1 integrations in Eq. (2.39)]

o, = exp{i[t, - a(kI+k)] «(&,,_, - &,,)}
IIRULIDY ”f(z b5 Ay Gy B
i

XXy Ay M) Bt ) Vi (@, )01, @) Vo (R,

-Ef(ll ’)Z fff (gt;3 d(_ﬁzlqdazit_?":]:T_‘i_e;4ﬂ(i)1jz[17{”a(-ﬁg*‘-ﬁ)l(ﬁzi-l]

l"

U(q, @) =A40(§" -9

(3.35)

XY@y, ) Vi @3 t) 2, (=D, [ 1T - a(R]+R) | Ry
1'm’
Yy m'(Q&z‘)Yt'm'(QT-a(F}F)))‘ti)‘;,-(‘l")v{i(azi-1) YT; mg(ﬂzzei_l)vti((ﬁzl)Yt{m;(ﬂﬁzf) .
(3.36)

Carrying out the angular integrations over @2,- and (_ﬁzi_l in Eq. (3.36) results in the requirements (because
of the orthonormality of the spherical harmonics)

m=m}, m'=m;. (3.37)

In order to completely collapse the sums we must also have [ =1’, m =m’ which in the limit @ -0 can be
obtained from the angular*t integration. We can use the assumption that although there could be off-diagon-
al contributions (I’# 1), (m’#m), on the average their effect will be small (note the off-diagonal terms are
down by an order « from the diagonal terms and have less sign correlation), and therefore keep only diag-
onal contributions. This results finally in the following form for the optical potential [under the stated as-
sumptions insert Eq. (3.36) in Eq. (2.39), a closed form expression for the two-particle amplitude is then
easily obtained, and the optical potential discussion proceeds as before]

U, q)=A [ digerRea-a)e )

y Z (2m o /m) N v¥ [ - a(E"+ﬁ)]v,m(B§ - ak))
+[0/(2n)°)2mo/B?) [ di| vyt - a(@+K)]%/(62 = 2 —ie)

(3.38)
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where v, ,(q) is defined in Eq. (2.17a). If the mi-
croscopic potential is a purely s-wave potential
(v, =0, I#0) the diagonal approximation leading to
Eq. (3.38) is exact. We regard Eqgs. (3.22), (3.29),
(3.35), and (3.38) the most important results for
determining the extension of the optical potential
possibly required to include target particles of
finite mass.

In concluding this section, we note there are at
least two distinct and important results. First
we see that it is possible to include the effect of
finite target particle mass and obtain an expres-
sion for the optical potential which reduces to that
given by FW in the limit of infinitely massive tar-
get particles (so no pathologies result from the in-
clusion of the finite mass).

Secondly, we see that it is possible to obtain a
closed form expression for the optical potential,
when m; is finite, making additional assumptions
about the angular integrations involved in the in-
termediate scatterings. An important considera-
tion in this context is whether or not one expects
the assumption of closure and the replacement of
Pk by (p-k)or keeping only the diagonal terms in
the intermediate partial wave sums to be valid in
a situation where taking into account the finite
mass of the target particle is important. Some
further discussion is included in the next section.
Two important effects that can (and should) be
checked given a nuclear model and a form for the
separable potential are the off-diagonal matrix
elements in Eq. (3.1) between the nuclear ground
state and the excited states »n, and the off-diagon-
al matrix elements (I+1’, m#m’) in Eq. (3.36).
One should be able to evaluate the effect on the
scattering wave function (after one or two itera-
tions) resulting from relaxing the closure and
(I=1", m =m’) restrictions. Such investigations
are planned as part of the application of this for-
mal discussion to pion-nucleus scattering.

IV. CONCLUSIONS AND DISCUSSION

In this paper we have considered the alterations
produced in a particular theory of the optical po-
tential® by extending the formalism to include a
many-particle target composed of finite-mass par-
ticles (constituents). Most of the approximations
adopted are the same as those used in Ref. 2.

They include:

(a) use of a nonrelativistic potential model;

(b) a nonlocal separable microscopic interaction
acting between the projectile and the target constit-
uents [see Egs. (2.3) and (2.13)];

(c) the assumption that the projectile energy is
high enough so that closure can be used on the tar-
get [see Eq. (3.4) and the discussion immediately
thereafter];

(d) use of a product of single-particle densities for
the nuclear ground-state matter distribution;
(e) the assumption that the intermediate scatter-
ings are mainly forward so that once the projec-
tile scatters from a given target particle ¢ and
then leaves it to scatter from another particle j,
it does not return to particle i;
(f) the number of iterations of the optical potential
required for a given degree of accuracy is small
compared to A, the number of constituents in the
target.

The main features introduced by the finite-mass
constituents are:
(a) The microscopic potential becomes nonlocal in
both the projectile and constituent coordinates;
(b) some 6 functions which correlate certain of
the coordinates must be included in the formalism.

These complications require a different ap-
proach than that used in Ref. 2, where it was pos-
sible to cast the problem in terms of finding the
ground-state expectation value of a particular
many-body scattering operator. The approach
used here was simply to iterate the many-parti-
cle integral equation for the wave function and
then substitute this infinite series into the expres-
sion for the elastic scattering amplitude. When
repeated scattering of the projectile from a given
target particle was considered (i.e., the two-par-
ticle ¢ matrix in the many-body environment) it
was found that one additional assumption was ap-
parently required in order to find a closed form
expression for the two-particle repeated scatter-
ing series. This additional approximation was re-
quired because certain partial wave sums did not
collapse into a single sum. [See Egs. (2.39) or
(3.36) and the discussion immediately following
each of these equations.] One assumption involves
assuming the (1#1’), (m#m’) off-diagonal contri-
bution of various integrals of the form

[ 706, 9,000, 007 (5, )a

are negligible compared to the diagonal terms.
This assumption can be tested in a given model.
Another possible assumption, that results in a
simple closed form expression for the optical po-
tential, involves replacing a certain angle depen-
dent function by its angle averaged expectation
value - in practice probably introducing a “small”
adjustable parameter into the theory.

We find that as the mass of the individual target
particles approaches infinity the optical potential
obtained by Foldy and Walecka is recovered. With
further limiting assumptions, this potential re-
duces to the familiar Glauber form.

In general, it is certainly possible that the as-
sumptions made in obtaining the closed form for



the optical potential are no more valid than as-
suming the individual target constituents have in-
finite mass. Hopefully, this can be tested in a giv-
en application.

There is a widespread belief that the field of
intermediate energy nuclear physics shows prom-
ise of yielding considerable additional understand-
ing concerning scattering mechanisms and the
structure of many-particle strongly interacting
systems. Part of this promise depends on one’s
understanding of the role of the optical potential
and its relation to the basic two-body data. The
advantage of the particular detailed potential mod-
el considered in this paper (and in part Ref. 2) is
that it provides an optical potential which is ex-
plicitly related to a choice of microscopic poten-
tial, the Fermi momentum, the finite mass of the
constituents, and if one wishes, the two-particle
scattering amplitude.

Thus by studying the validity of the several sim-
plifying assumptions and by comparing the elastic
scattering predicted by various limiting forms of
the optical potential, one should be able to more
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critically evaluate the sensitivity of the experi-
mental results to the features of strongly interact-
ing systems we hope to learn about.

From a more practical point of view, we have
already begun to study pion-nucleus elastic scat-
tering using this formalism. In addition, some
progress has been made in working in the c.m.
projectile many-body target system as opposed to
the lab system. This latter approach should be
particularly useful for studying the scattering of
two many-particle systems of comparable mass.
Of course further investigation to obtain tractable
forms for the optical potential under less restric-
tive conditions (for example, dropping the closure
approximation) continues.
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