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It has been noted recently that a local spin-orbit nucleon-nucleon interaction, if taken ser-
iously in the framework of nonrelativistic quantum mechanics, is generally inconsistent with
the asymptotic saturation property of nuclear binding energies. This has motivated the con-
jecture that nuclear aggregates bound essentially by the spin-orbit interaction exist. The
present paper constitutes an attempt to subject this conjecture to scrutiny, to the extent pos-
sible without abandoning the firm ground of well-understood, and mathematically sound,
many-nucleon nonrelativistic theory, with “realistic” interactions mediated by potentials.

I. INTRODUCTION

Recently the old issue! of nuclear saturation has
been revived, and rigorous constraints that nu-
clear forces must satisfy to be consistent with the
asymptotic saturation property of nuclear binding
energies have been exhibited.? These conditions
are sufficiently flexible to be applicable, and to
yield significant results, also in the case of “real-
istic” potentials. Remarkably, they imply that
several, indeed most, of the currently employed
models of the nuclear interaction are questionable
as regards their compatibility, in the framework
of nonrelativistic quantum theory, with the asymp-
totic property of saturation of nuclear binding en-
ergies. A general discussion of the actual impact
of these findings on the present status of the theo=-
ry of finite nuclei and of nuclear matter can be
found elsewhere.®* Here we limit ourselves to re-
call that one implication of the necessary condi-
tions for saturation is that local spin-orbit forces
- are incompatible with saturation, unless the cen-
tral part of the nuclear interaction contains strong-
ly singular repulsive cores, or repulsive velocity-
dependent terms, to prevent the occurrence of
collapse.2® 2 2¢)

This is due to the nonpositive-definiteness of
the spin-orbit operator T-§ implying that, irre-
spective of the sign of the potential V() the spin-
orbit part Vls(r)_ﬁ - § of the Hamiltonian can always
yield a negative (attractive) contribution to the po-
tential energy; and, moreover, a contribution that
can become dominant over all others, for suffi-
ciently large values of the orbital momentum.

This observation has motivated the conjecture,
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that nuclear aggregates might exist, bound mainly
by the spin-orbit part of the nuclear interaction.*
The purpose and scope of this paper is to subject
this conjecture to scrutiny, to the extent possible
without abandoning the firm ground of well-under-
stood, and mathematically sound, many-nucleon
nonrelativistic theory, with “realistic” interac-
tions mediated by pair potentials.

After the conjecture described above was put
forward, a considerable research effort was in-
vested into the attempt to test it by Yu. A. Simonov,
E. L. Surkov, and one of the authors of this paper
(FC) (to the extent allowed by geography; the first
two authors live in Moscow, the last in Rome).
The analysis focused on nuclear matter. A num-
ber of results were obtained, whose general trend
was consistent with those reported in this paper.
No result was, however, considered sufficiently
conclusive to warrant publication.® More recently,
by shifting the focus of the analysis from nuclear
matter to finite (or semifinite; see below) nuclear
configurations, the two authors of this paper were
able to obtain more conclusive (or less inconclu-
sive) results. These are the findings that are pre-
sented and discussed in this paper.®

It should also be mentioned that the conjectured
existence of collapsed nuclei has been recently dis-
cussed by Bodmer,” whose motivation also origi-
nated, at least in part, from the above mentioned
results concerning saturation.? The analysis of
Bodmer is very interesting, but it focuses on phe-
nomenological aspects, little attention being in-
stead devoted to the investigation of specific dy-
namical mechanisms that might be responsible for
the actual occurrence of collapsed nuclei. A sound
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justification for this point of view is provided by
the remark that the internal structure in collapsed
configurations is presumably characterized by dy-
namics about which very little is known, there be-
ing no reason to expect that it resembles that gov-
erning the internal structure of ordinary nuclei
(about which we know a lot, even though we are
as yet far from a complete understanding). Of
course the main difference is that, while the non-
relativistic many-nucleon problem provides a suf-
ficient basis for at least a gross understanding of
the internal structure of ordinary nuclei, collapsed
nuclear structures require presumably a fully re-
lativistic treatment. And yet, attempts at a quan-
titative understanding, based on our present knowl-
edge of nuclear theory, are in order, since only
such analyses can hope to provide some informa-
tion on the likelihood that collapsed nuclear struc-
tures exist, and on their possible properties (that
might be quite different from those of ordinary nu-
clear structures; see below). Moreover, such in-
vestigations have the potential to yield information
on the nuclear interaction itself; a model of it that
was reliably shown to imply the existence of col-
lapsed nuclear structures should be questioned un-
less the predicted structures are actually found in
nature, or their absence is adequately explained.
Thus the point of view adopted in this paper is to
stick to the known framework provided by the non-
relativistic many-nucleon problem with “realistic”
pair potentials, employing moreover variational
techniques that, because of the extremum property
of the Ritz principle for the computation of ground-
state energies, can yield unambiguous answers
(within the stated theoretical framework). The ac-
tual physical significance of these rigorous results
requires then a discussion; at this point opinions
may differ, but a solid, and easily understood,
background will have been provided.

In the following section a general outline and dis-
cussion of the approach is given. In Sec. III the re-
sults are derived, reported, and discussed.

II. DESCRIPTION OF THE APPROACH
EMPLOYED

Our aim is to set up a variational computation
for the ground-state energy of a many-nucleon
system, under the assumption that the nucleon-
nucleon interaction be mediated by local “realis-
tic” “soft-core” potentials. The requirement that
the interaction be “realistic” also implies that it
contain spin-orbit forces, on which our attention
shall be mainly focused. The restriction to “soft-
core” potentials is introduced so as to be able to
use variational techniques based on uncorrelated
single-particle wave functions, this being an es-
sential condition for the feasibility of exact varia-
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tional computations. Let us immediately empha-
size, however, that by “soft-core” potentials we
merely indicate potentials that are integrable at
short distance (namely, less singular than 3 as
7-0), even though they may contain strongly re-
pulsive cores; indeed, the requirement of “real-
ism,” together with the requirement that these po-
tentials be consistent with saturation (apart from
the presence of spin-orbit forces; see below), im-
plies that some mechanism yielding sizable repul-
sion at short range and/or at high internucleon
momenta be present.

The recent results on saturation mentioned above?
imply that the presence of a spin-orbit local inter-
action is inconsistent with saturation (assuming no
velocity-dependent force to be present; see below);
a collapsed configuration, with large internucleon
angular momenta, becomes energetically favored,
due to the dominating contribution to the binding
energy originating from the spin-orbit part of the
interaction. In such a configuration, the binding
energy per nucleon grows monotonically with the
number of nucleons and the mean nuclear density.
The main question to be asked in this connection
is2®@: At what nucleon number, and/or at what nu-
clear density, does the collapsing regime take
over? And, more specifically, does this phenome-
non initiate before, or after, the borderline density
beyond which a nonrelativistic treatment of the nu-
cleons becomes altogether inappropriate?

It is clearly the answer to this question that in-
dicates whether the actual existence of nuclear
configurations bound mainly by the spin-orbit part
of the nucleon-nucleon interaction should be con-
sidered likely or unlikely. Thus the task is to try
and compute variationally the binding energy per
nucleon in a configuration appropriate to display
the collapse mechanism just described. As men-
tioned above, the first attempts to do this for nu-
clear matter met with considerable difficulties;
it is not easy to devise a wave function describing
such a system, that is sufficiently simple for com-
putation, and yet that does yield a nonvanishing
spin-orbit contribution, indeed one that has the
correct dominating behavior at high density. In
fact such a configuration not only must be, in
some sense, “unbalanced” in spin, but it must
also be characterized by density fluctuations, with
a size commensurate with the range of the spin-
orbit potentials; otherwise the expectation value
of the spin-orbit interaction, that is the quantity
entering the Ritz principle, averages to zero (this
need not be true for the exchange contribution,
that is, however, damped at high density, and is
therefore unable to sustain the collapse mecha-
nism).

The results reported in this paper are instead
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based on the consideration of a finite (or semi-
finite; see below) nuclear aggregate. In this case
a very simple approach is able to display expli-
citly the collapse mechanism, and can therefore
provide the basis for the estimate that is our goal.
To be sure, the wave function that we employ is
certainly far from having the flexibility and com-
plication that would be necessary to perform an
accurate computation of the ground-state energy
of the system. It is, however, sufficiently rea-
sonable to yield more than just a proof of the oc-
currence of collapse, that requires only the identi-
fication of the different exponents of the nucleon
number A characterizing, in a hypothetical col-
lapsed configuration, the asymptotic behaviors of
the contributions to the binding energy originating
from the different terms in the many-nucleon
Hamiltonian: kinetic energy, central and tensor
interactions, spin-orbit interaction.2® 2© Indeed
this wave function makes it possible to obtain an
estimate of the relative magnitude of the different
contributions to the binding energy in a collapsed
aggregate of A nucleons, due to the various terms
of the Hamiltonian that have just been enumerated.
To describe our approach, let us begin by a qual-
itative analysis based on a very simple model.
Consider a “nucleus” composed of A nucleons and
having a size d of the order of the range of nuclear
forces; for definiteness, let us assume it can be
described by a Slater determinant of single-par-
ticle wave functions, using for convenience cylin-
drical coordinates p, z, and ¢, with the 2z axis
parallel to the direction of spin quantization. Then,
indicating by %}, n;, and #{, the corresponding quan-
tum numbers, and assuming that n,, n,, and n,
are the maximal values of the moduli of these quan-
tum numbers that enter in the Slater determinant,
we have

A=cnynn,, (2.1)
and

_ 2

T:Er;;%(cln,,2+c2nﬁ+c3n;). (2.2)

Here A is the total number of nucleons, T the ex-
pectation value of the kinetic energy of the nucleus,
and the C’s used here and below indicate some nu-
merical constants.
Evaluating the mean value of the potential energy

associated with local potentials one also gets

Ec, r=C¢, rnp’nn,’=Ce, p A%, (2.3)
and

Eps=Crsn,2n,n,’=CpsA%,. (2.4)

Here clearly'EC' rand E ¢ are, respectively, the
contributions to the expectation value of the total
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energy of the system of the central plus tensor,
and of the spin-orbit, parts of the local interac-
tion; and we clearly assume that the potentials
are integrable, so that the constants C,, , and C,¢
are finite. These formulas refer of course only
to the leading terms as the quantum numbers »,,
74, N,, and therefore the total number of nucleons
A, becomes large. The constant C, g can be dif-
ferent from zero only if the filling of the Slater
determinant is asymmetrical in the quantum num-
ber n,; it is also clear that it can be made nega-
tive by correlating appropriately the filling in the
quantum number #{, with the spin orientation of
the nucleons.

The consequence of these estimates, that could
be backed by quantitative computations in the vari-
ational framework [see Ref. 2(e) and below], is,
of course, that the presence of local spin-orbit
forces implies collapse, since clearly A and n,,
can grow so that the (negative!) term E, g domi-
nate over all the others, implying unlimited
growth with A of the binding energy per nucleon.
The behavior at large A of the different contribu-
tions to the binding energy per particle implied by
these formulas is summarized in Table I.

Clearly the first two cases are the more likely
candidates to describe the collapse caused by spin-
orbit forces; and roughly speaking, the behavior
in the first line is more appropriate to a situation
where the main task of the spin-orbit force is to
overcome the kinetic-energy contribution, where-
as the behavior in the second line is more appro-
priate to a situation where the main task of the
spin-orbit force is to overcome the contribution
of the static part of the interaction (central and
tensor), that is presumably repulsive in the col-
lapsed state, due to the mainly repulsive charac-
ter at short range of the central part of the nu-
clear force.

All the results reported in this paper have been
obtained with a trial many-nucleon wave function
of the type outlined above, and filling the Slater
determinant consistently with the behavior of the
second line of Table I. The principal motivation
for this is simplicity. For the same reason, for
the z variable we have used plane waves, with the
assumption that in the z direction the aggregate
under consideration have an infinite extension

TABLE I. Behavior at large A of the different contri-
butions to the binding energy per particle.

7, ng ng T/A  Ec,rp/A Epg/A
A1/3 A1/3 Al/3 AZ/B A A4/3

1 Al Al A A A372

1 1 A A? A A?
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(with one qualification, see below); then of course
the role of n, is taken over by the Fermi momen-
tum in the z direction, hereafter denoted by p.
The single-nucleon wave functions employed are

¥(r)= L™Y2 exp(ikz) 6(L - 2) 6(2)(2m) V2 exp(inie)
x (21/2/d*)p expl-p*/(2d%)] o . (2.5)

Here a, indicates the spin-isospin part of the wave
function (@, corresponds to spin-up proton, a, to
spin-down proton, «, to spin-up neutron, a, to
spin-down neutron), k=2mn,/L, and the limit of
large L is understood. The Slater determinant is
filled choosing wave functions with 0<|«|<p and with
n,=0, Sy, 285,...,(M -1)s,, where sy=+1or s,
= ~1; so that M characterizes the number of angu-
lar momentum states and M -1 is the maximum
value of the angular momentum. Note that only
nonnegative, or nonpositive, values of n; are in-
cluded, depending on the spin-isospin state (even
M could depend on it, but for simplicity we take it
independent of A). The length d characterizes the
radial size of the “nucleus,” in the plane orthogo-
nal to z. The presence of the factor p implies the
vanishing of the density for p=0; this factor is in-
troduced, again for simplicity, in place of the fac-
tor p"iﬂ that would be appropriate to oscillator wave
functions (omission altogether of p would yield a
logarithmically divergent kinetic energy contribu-
tion).

In conclusion, the many-nucleon wave function is
constructed as a Slater determinant of single-nu-
cleon wave functions, separable in cylindrical coor-
dinates. The filling of the determinant is accom-
plished using in the radial coordinate, only one
wave function; in the z coordinate, a continuum of
plane waves; and in the ¢ coordinate, the first
M -1 eigenfunctions of L,, all corresponding to
rotation in one and the same sense. This same
filling is realized for each spin-isospin state (so
as to yield balanced nuclear matter), but with the
possibility that the sense of rotation be different
for particles in different spin-isospin states, so
as to introduce in the many-nucleon wave function
the correlation between spin and orbital momen-
tum that is required to yield a nonvanishing expec-
tation value for the spin-orbit interaction. The
possibility is, moreover, kept open to include, in
the single-particle states that fill the Slater deter-
minant, only some of the four spin-isospin nucleon
states, as described in detail below. In any case,
because the z and ¢ parts of the nucleon wave func-
tions have constant moduli, the density variation
is only associated with the radial wave functions,
and since there is always only one of these, all the
“nuclei” that we consider have one and the same
simple shape, that of a long tube with cylindrical

symmetry around the z direction, the density pro-
file in the radial plane being proportional to
p?exp(—p?/d?). Clearly this choice, motivated by
the sake of simplicity, is certainly very far from
being the optimal one. It is, nonetheless, suitable,
in the variational framework, to yield estimates
that are reliable, indeed rigorous, in the sense of
allowing conclusions valid a fortiori (of course,
within the nonrelativistic approach we are using).

III. RESULTS

The results that we now report have been ob-
tained by a variational computation, using as
trial wave function that described in the previous
section. The computational technique is standard,
and needs no detailed reporting. It should, how-
ever, be emphasized that the results reported be-
low have been obtained neglecting the exchange
contribution to the expectation value of the poten-
tial energy. The motivation for doing this is the
quest for maximal simplicity. A valid justifica-
tion is provided by the remark that, at the high

densities that we shall consider, the exchange

contribution amounts only to a small correction,
and therefore it certainly cannot affect the re-
sults qualitatively; indeed even its quantitative
impact is presumably quite marginal.

The formulas yielded by the variational compu-
tation are

E/A=T/A+E /A, (3.1)
with
T I [+ (b = $ M+ )/, (3.2)
é 2m
Eot R B+ Er +Beou+ Fyo) (3.32)
=3 Mpdw+(M - 1) W], (3.3b)
W=We+Wp+We - (3.4)

Here the symbols either have already been de-
fined or are such that their significance is self-
explanatory. The expressions W., Wz, Wcou,
and W, related, respectively, to the contribu-
tions of central, tensor, Coulomb, and spin-orbit
forces, depend on the spin-isospin composition
of the “nucleus”; that of W s depends also on the
signs s,. Four representative cases have been
considered: the balanced case [(B) equal number
of nucleons in the four spin-isospin states]; the
case with equal numbers of protons and neutrons,
all with spin, say, up (NP); the case of neutrons,
one half of them with spin up and one half with
spin down (NN); and the case of neutrons all with
spin, say, up (N). It turns out that in all these
cases there is a unique choice of the signs s, that
maximizes the spin-orbit contribution (apart from
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the over-all sign, that can always be chosen so
as to yield an attractive contribution); this choice
is also indicated in the following formulas:

B:

We=%OWE+3Wg+3WE+wg), (3.5a)
Wr=0, (3.5b)
Weow=2Wq, (3.5¢)
Wis=3Wis+Wis, (3.5d)
S$1=83= =83 = =843 (3.5€)
NP:
We=3W5 +W¢', (3.6a)
Wr=3W7 +W7, (3.6b)
Weon =Wo, (3.6¢c)
Wis=3Wis+Wis, (3.64)
S,=S3; (3.6¢e)

simple integrals over the corresponding potentials:

NN:
We=3Wg +W¢', (3.7a)
Wr=Weou =0, (3.0, c)
Wis=2W3, (3.7d)
S3==S4; (3.7e)
N:
We=2Ww%, (3.82)
Wp=2W%, (3.8b)
Weou=0, (3.8¢)
Wis=2W3% . (3.84d)

Here of course the superscripts refer to the spin
and isospin of the nucleon pair (triplet or singlet),
and the quantities W27, ¢ depend only on d (if the

exchange contribution is neglected) and consist of

W81=(161r)-1fm dtt*vg(td J'1 dx[2+% 141 - x?)*] exp[ -5 12(1 - x?)], (3.9)

Wi =(167)"1 Jm dtt2vi(td) fl dx(3x2 = 1)[2+ 5141 - x®)?] exp[ -5 ¢3(1 - x?)], (3.10)
w0 1

Wfs:(mﬂ)-lf dttzm(td)f dx k141 = x?)? exp[ -1 12(1 - #3)] . (3.11)

As for the Coulomb potential, its contribution di-
verges logarithmically with L, since (for finite
L) it reads

2

W°=—2%-d—[ln<%) _0.74]; (3.12)
this is of course due to the long range of the Cou-
lomb potential and to the shape of the “nucleus”
being considered. The results reported below are,
however, essentially insensitive to the Coulomb
contribution for any large, but finite, value of the
ratio L/d. The figures given below have been ob-
tained setting W, =e2/(2nd), corresponding to
L=5.7d.

Except for this approximation in the evaluation
of Wq and for the systematic neglect of exchange
contributions, the expression for E/A given above
provides a rigorous, if presumably not very strin-
gent, upper bound to the ground-state energy of
the system under consideration; p,d, and M can
be regarded as variational parameters. Of course
unrestricted increase of M and p makes the (nega-
tive) attractive contribution of spin-orbit forces
dominant, displaying the collapse. The quantita-
tive answer that we now pursue is: When does the

r
collapsing regime take over?
The structure of Egs. (3.1)—(3.3) is so simple,
to allow analytic minimization over p. The value
of p corresponding to the minimum is denoted by p,:

g3 M=M= DWys—W
=2 d T w/ emd?)

We consider hereafter only values of M that are
sufficiently large to make p, positive (recall that
W s is negative). We then get for the potential
and kinetic energies the expressions

(3.13)

E W+ - 0w,
pot — _3pr2 LS
) L R Y/ O ma (3.14)
T 5% 0 1oy 1Ep .
A 2mdd) (M —5M+3)—2 A (3.15)

A “realistic” local nuclear interaction containing
static and spin-orbit components must now be
sought, to be inserted in these equations. It should
should not contain hard cores, to prevent the di-
vergence of the integrals of Egs. (3.9)-(3.11); and
yet its central part should contain enough short-
range repulsion to prevent the collapse from oc-
curring independently of spin-orbit forces. Not
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FIG. 1. Various contributions [see Egs. (3.1)—(3.13)] to
the variational computation of the binding energy per
particle in a “nucleus” of the kind described in the text,
for the Eikemeier-Hackenbroich potential of Ref. 8.

many such potentials are available.? One of these
is the more recent Eikemeier-Hackenbroich model,®
that has moreover the advantage that, because the
shape of all potential is Gaussian, both of the in-
tegrations in Eqgs. (3.9)~(3.11) can be performed
analytically, yielding explicit, and very simple,
expressions. Rather than displaying these formu-
las here, we report directly the final results for
the different contributions to the expectation value
of the many-nucleon Hamiltonian, obtained choos-
ing for p the value p, of Eq. (3.13). These results
are plotted, as a function of d, in Figs. 1(a) and
1(b), for two representative choices of the spin-
isospin configuration (N and NP), and for the mini-
mal values of M (8 and 9, respectively) that are
sufficiently large to display the possible dominance
of the spin-orbit contribution over all others. Al-
though we have obtained results for other cases,
it appears that these two examples are sufficient
to characterize the sort of results one gets, by
this approach, for the Eikemeier-Hackenbroich
potential. Note that in each figure, besides the
contribution to the total energy per particle aris-
ing out of each term of the many-nucleon Hamil-
tonian, we have also graphed the function

Kl /2

%’i: [m2+2m—£] ' -m,
where m is the nucleon mass (in MeV). This is
clearly the relativistic kinetic energy of a nucleon,
whose momentum ¢ (in MeV) is related to the non-
relativistic kinetic energy T/A by the (nonrelativis-
tic) formula T/A =g%/(2m). Therefore the differ-
ence of Tg/A from T/A may serve as an indicator
of the extent by which the nonrelativistic frame-
work is inapplicable; and a comparison of Ty/A,
rather than T/A, with the potential energy contri-
butions, might provide some hint of how the situa-
tion would be modified in a relativistic treatment
(although this would of course also affect the po-
tential energy contribution).

Before summarizing the remarks suggested by
these graphs, it should be emphasized that these
results have been obtained by a variational com-
putation with the many-body trial wave function
described above, that has no provision for two-
body correlations. Thus the repulsive cores of
the central potentials produce large positive con-
tributions, that constitute certainly an overesti-
mate relative to what would obtain in a more real-
istic, although much less simple, computation, in
which two-body correlations were taken into some
account, To be sure, in such more refined compu-
tations the contribution of the spin-orbit potential
might also be reduced, since this also originates
largely at short range; but the reduction would
presumably be much less significant than for the

(3.186)
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repulsive part of the central potential, since the
contribution of the spin-orbit force is already
damped at short range even in the computation
without correlations, as it is apparent comparing
Eq. (3.11) with Eq. (3.9). Moreover, as indicated
above, even in the absence of two-body correla-
tions there certainly are several improvements
that might be introduced in the many-nucleon wave
function, and these would certainly imply the pos-
sibility to obtain somewhat more binding for the
same Kinetic energy. It is not expected, however,
that such improvements modify the picture dras-
tically.

It should also be emphasized that, in the cases
NP and N, the trial wave function that we consider
has all the particles rotating in the same sense
[for the case N, this is obviously implied by the
way we construct the many-nucleon wave function,
since in this case there is only one type of nucle-
ons; for the case NP, it follows from Eq. (3.6e)].
This fact implies that the relative orbital momen-
ta of no nucleon pair can exceed the maximal val-
ue M -1 of the orbital momentum of each nucleon.
One might moreover wonder whether, for such a
configuration, the kinetic energy associated with
the rotational degrees of freedom should not be
partly attributed to an over-all rotation of the sys-
tem. We have not tried to subtract such a contri-
bution; this may result in an additional overesti-
mate of the (internal) ground-state energy of the
system.

The data of Figs. 1(a) and 1(b) are clearly only
indicative, for the reason indicated above. They
point, however, rather clearly towards two con-
siderations: (i) The values of the maximal angu-
lar momenta that must be involved in order for
the collapsing regime to take over must be very
large, although not exceendingly so; (ii) the col-
lapsing regime takes over only at densities that
are very much higher than those of ordinary nu-
clei, and in particular such that the mean kinetic
energy per nucleon is way into the relativistic
region.

The second remark indicates that the results
obtained must be viewed with considerable skepti-
cism; the more so, since also the potential energy
contribution arises largely from parts of the inter-
action at such short ranges to put into question
the very applicability of nonrelativistic concepts
such as that of two-body local potentials. Never-
theless, were one to take the Eikemeier-Hacken-
broich potential very seriously as a reliable mod-
el of the nucleon-nucleon interaction, these re-
sults would perhaps justify a more detailed analy-
sis, especially since the requirement we are put-
ting on the spin-orbit part of the interaction - to
overcompensate for both the kinetic and the pot-

tential energy in a variational computation with

no provision to suppress the large (and rather
unphysical) contribution coming from the repul-
sive cores - is really an overly strong condition
(also in view of the “upper bound” property of

the computation, and of the very simple choice
made for the many-nucleon trial wave function).
Anyway, this would be largely a matter of opinion,
the data being there for everybody to exercise
their own judgment.

But we have considered a matter of higher pri-
ority to try the same approach with other poten-
tials, and in particular with one-boson-exchange
potentials (OBEP’s). In fact, a basic assumption
underlying all these considerations is, that the
extrapolation of the validity of a given model of
the nuclear interaction to a different regime, in-
volving large angular momenta and very large
linear momenta, can provide the basis for a semi-
quantitative assessment of the likelihood that such
a different regime be actually realizable. And
there might be some justification in considering
such an extrapolation less arbitrary with a model
of the nuclear interaction, such as the OBEP,
that has some theoretical justification, rather
than with purely phenomenological models. More-
over a closer look at the way the OBEP is derived
from field theory might provide some hint as to
how it should be modified in order to represent
less inadequately situations involving large mo-
menta, that are already in the relativistic domain.

The OBEP’s that we have considered are some
of those originated from Green’s school.® An
important feature of these OBEP’s is the pres-
ence, in the central part of the interaction, of
velocity-dependent contributions, that can be
written in the form 5[ PV(») + V(#)p?], where p
indicates the relative momentum of the nucleon
pair. These contributions originate from the
exchange of vector and scalar bosons, namely,
the same bosons that contribute to the spin-orbit
part of the interaction; moreover, these inter-
actions should be viewed much on the same foot-
ing as the spin-orbit forces since both originate
as relativistic, or recoil, corrections, to the
static part of the interaction (indeed both disap-
pear in the limit of infinite nucleon mass). A
crucial question, to which we shall return below,
is whether contributions of this type, that clearly
grow with the momenta, should be taken serious~
ly even at large, relativistic, momenta. The
answer is clearly negative. But for the time being
we shall do just this.

Computations have been performed using ex-
actly the same approach described above. The
additional presence of velocity-dependent forces
implies, however, a modification of Egqs. (3.3),
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that now read

2]

0 1 - - 7l v 7
P t=K(Ec +ET +EC0ul +ELS +EV) (3.173)

S

=3 Mpd[W +(M = 1)Wyg +(M = 1)(2M - 1)W,,

+(M = 1PW,,, +P*BW,], (3.17b)

where again all the quantities W depend only on d
(‘and on the spin-isospin configuration of the “nu-
cleus” under consideration).

The terms W,,, W,,, and W, originate, of course,
from the velocity-dependent part of the interaction
and are positive (otherwise not only would collapse
occur, but the Hamiltonian would have no ground
state, even for finite A).!° Their presence guaran-
tees that no collapse can occur,*® since for large
M and p these positive contributions to the total
energy become the leading ones. The question
we must ask is whether, for some range of values
of M and p, the negative contribution of the spin-
orbit potential can play a dominant role, in spite
of the presence of these additional positive contri-
butions. The answer is rather unambiguously a
negative one.

The OBEP’s of Ref. 9 always yield positive re-
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sults, in a computation of the type we are con-
sidering. We are not interested, however, in
these absolute figures, but rather in a comparison
of the attractive contribution of spin-orbit forces
relative to the repulsive contribution of the kinetic
energy and of velocity-dependent forces; or rath-
er, relative to the extra repulsive contribution
from these sources, associated with the asym-
metric type of filling in n; that is required in
order to have a nonvanishing spin-orbit contri-
bution.

A few representative results corresponding to
some typical choices of the spin-isospin filling
and of the values of M and d are reported in Ta-
ble II. In each case we report first the results
yielded by the present approach (again analytic
minimization in b is possible and p, is the value
of p corresponding to the minimum) and in the
second line the results yielded, for the same
value of p,, by a symmetrical filling in angular
momentum, i.e., the results that obtain if the
Slater determinant is constructed using the M
single-particle wave functions withn},= -(M - 1)/2,
~(M~=1)/2+1, +++(M -1)/2 (M odd), instead of
those corresponding to n; =0, S5, 25, **+ (M =1)s,,

TABLE II. Various contributions to the variational computation of the binding energy per particle in a “nucleus” of
the kind considered in this paper. For an explanation of the significance of all the figures reported, see the text.

Spin-isospin d p, E /A E;/A Egx/A E,/A E.,/A E/A T/A E/A

Potential configuration M (fm) (fm'l) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV) (MeV)
UG1 B 3 0.9 1.18 -13.5 0 -0.7 7.3 1.6 -5.3 70.7 65.3
1.18 -13.5 0 0 6.2 1.6 -5.7 45.1 39.4

1.25 -14.3 0 0 6.6 1.7 -6.0 45.4 39.4

UG1 NP 3 0.9 0.81 -5.2 0.3 -0.5 2.4 0.6 -2.4 69.4 67.0
0.81 -5.2 0.3 0 2.0 0.6 -2.2 43.8 41.6

0.78 -4.9 0.3 0 2.0 0.5 -2.1 43.7 41.5

UG1 NN 3 0.9 1.79 -17.9 0 -0.8 6.7 0 -12.1 73.8 61.7
1.79 -17.9 0 0 5.8 0 -12.2 48.2 36.0

1.80 -18.1 0 0 5.8 0 -12.2 48.2 36.0

UG1 N 3 0.9 1.66 -11.3 -0.9 -0.8 3.1 0 -9.9 73.0 63.1
1.66 -11.3 -0.9 0 2.7 0 -9.6 47.4 37.8

1.61 -11.0 -0.9 0 2.5 0 -9.3 47.1 37.8

UG2 NP 5 0.9 1.88 -35.2 1.1 -3.9 21.7 2.2 -14.1 185.3 171.2
1.88 -35.2 1.1 0 18.6 2.2 -16.2 82.9 66.7

2.11 -39.3 1.3 0 17.7 2.4 -17.9 84.5 66.5

UG2 NP 7 0.9 0.14 -3.6 0.1 -0.6 3.8 0.2 -0.1 358.3 358.2
0.14 -3.6 0.1 0 2.4 0.2 -0.9 128.0 127.1

1.46 —38.1 1.2 0 26.0 2.3 -8.6 131,7 123.1

UG2 NP 3 0.9 1.90 —21.3 0.7 -1.2 6.9 1.3 -13.6 74.5 60.9
1.90 -21.3 0.7 0 6.0 1.3 -13.3 48.9 35.6

1.87 -20.9 0.7 0 5.7 1.3 -13.1 48,7 35.6

UG2 NP 3 0.6 2.45 —-59.6 1.5 -8.8 39.5 1.7 -25.6 164.0 138.4
2.45 —59.6 1.5 0 31.7 1.7 —-24.6 106.3 81.7

2.39 -58.0 1.5 0 30.7 1.6 -24.1 105.8 81.7
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with s, =+1 or —1. This yields a nucleus having
exactly the same shape, and therefore with ex-
actly the same contribution from central and ten-
sor forces, whereas the contribution of spin-orbit
forces is now missing, and the contributions of
the kinetic energy and of velocity-dependent forces
are somewhat reduced {specifically, the kinetic
energy is reduced by the amount [%2/(2md?)]

X (M -1)? relative to that of Eq. (3.2), and the po-
tential energy has the same expression (3.17b)
except for the vanishing of W,, and the replace-

ment of the coefficient (2M ~1) of Wy, by 3(M - 1)}.

In the third line the results obtained for sym-
metrical filling, but now with p, chosen so as to
minimize the total energy in this case, are re-
ported. They do not differ significantly from the
results of the second line. The results reported
in Table II are only a small subset of those that
were obtained, but they constitute a representa-
tive sample, the main features being preserved
also in the results not reported here.

The most important of these features is the
smallness of the spin-orbit contribution, as com-
pared to the increase in the kinetic energy. At
larger values of M this imbalance would dis-
appear, but then the spin-orbit contribution would
be overcome by the increase of the contribution
E, /A of the velocity-dependent part of the inter-
action (that, at the values of M considered here,
already balances the spin-orbit contribution).

As in the case discussed above, these results
have been obtained neglecting exchange terms;
this is of course less justified for values of p,,
and of the density (or equivalently, the kinetie
energy per particle), that are now not much larg-
er than the standard value appropriate to ordinary
nuclear matter (¢, ~1.4 fm™!, T/A ~24 MeV).

The very rough nature of the trial wave function
employed should also be recalled. Nevertheless,
if one believes that, for the purposes of our pres-
ent discussion, these OBEP’s provide a more sig-
nificant model of the nuclear interaction than a
purely phenomenological potential like the Eike-
meier-Hackenbroich one, then the results re-
ported here should be taken as an indication point-
ing towards the unlikelihood of the existence of
spin-orbit-bound nuclei. The situation would of
course change if, at large interparticle momenta,
the velocity-dependent potentials were damped

(a likely possibility), but the spin-orbit potential
was not damped (an unlikely possibility); and even
then quite large values of M (implying ultrarelativ-
istic values of the kinetic energy) would be re-

quired in order that the spin-orbit contribution
dominate the increase in kinetic energy due to
the unsymmetrical filling of the Slater determinant.
A more detailed analysis of this question would
require an analysis of the derivation of the OBEP’s
from field theory, that lies beyond our present
scope. Needless to say, such an investigation
could only be indicative, since at best it could
only point towards the need to formulate a fully
relativistic theory of the nuclear interaction, and
of the many-nucleon problem. The results re-
ported in this section, preliminary and incom-
plete as they are, do in fact lead to the conclusion
that a detailed understanding of the mechanism
of spin-orbit nuclear binding (including a final
assessment of its realizability) can be achieved
only in the framework of a fully relativistic theory.
They do, however, also motivate enough skepti-
cism regarding the likelihood that the mechanism
of spin-orbit binding be phenomenologically im-
portant, to discourage the immediate undertaking
of an aggressive research effort in this direction.
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The form factors for electroexcitation of the lowest T =2 levels in *Be (14.39 MeV, §7;
16.97 MeV, 37) have been measured for momentum transfers between 0.5 and 1.1 fm™1,
Results are also presented for levels of unknown TJ" at 16.63 and 17.48 MeV excitation.
Radiative widths have been extracted. The form factor of the 16.63-MeV state is compared
with simple-spherical and deformed shell-model form factors. The ground-state rms radius
and quadrupole moment have been deduced from the elastic scattering data.

I. INTRODUCTION

An interesting feature of °Be and a few other
light nuclei is the existence of several narrow
states (I's 100 keV) near 16 MeV excitation. For
example, in *Be there are T =3 states at 14.39 (37)
and 16.97 MeV (37), and states of unknown 7J " at
16.67, 17.28, and 17.48 MeV. These levels lie
well within the neutron continuum, but are either
bound or slightly unbound to proton emission. The

=3 levels have very narrow widths, less than 1
keV, which one expects since the isospin-conserv-
ing particle-decay channels are energetically un-

favored. The spins, isospins, and parities of the
other three levels are not known, so it is not clear
what mechanism is suppressing the neutron partial
widths for decay to the ground and excited states
of ®Be.

Few calculations have been made on the high-en-
ergy states of °Be. The most extensive work of
which we are aware is the intermediate-coupling
calculation of Barker® for the states based on the
1s*1p5 configuration. The interaction parameters
were chosen to fit the excitation energies of a
number of levels in °Be, including the 7J"=%$"
(2.43-MeV), 11~ (6.66-MeV), 33~ (14.39-MeV),



