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We investigate the problem of relativistic corrections to the Hamiltonian of two nucleons interacting
with each other and with an external electromagnetic field. We find, in addition to well-known
corrections to the kinetic energy and to the Foldy-Wouthuysen reduction, a correction to the potential
energy. This effect depends on the way in which the nonrelativistic limit of the dynamical variables is
taken. The correction vanishes in the c.m. system, but leads to a nonzero correction to the
electromagnetic Hamiltonian, We define the current and charge densities, verify the conservation of
current, and verify the low-energy theorem for bremsstrahlung.

1. INTRODUCTION

The problem of combining the electromagnetic
interaction and the strong interaction is an old
and difficult one in theoretical physics. It is par-
ticularly important in nuclear physics, where
electromagnetic transitions have been a primary
source of information about nucl. ei since the very
beginning of the subject. In the simplest nuclear
problem, the two-nucleon system, electromag-
netic processes have been studied in connection
with Coulomb effects in NN elastic scattering, the
photodisintegration of the deuteron, and NN
1remsstrahlung.

In general these problems have been treated
nonrelativistically in the sense that the nucleons
are nonrelativistic, and the strong interaction is
represented by a potential used with the Schro-
dinger equation. In this paper we discuss the way
in which the electromagnetic-plus-nuclear-inter-
action problem may be treated relativistically.
One approach is to use field theory, but difficulties
arise because of the incomplete nature of a field
theory of strong interactions. A second approach,
which is the one we investigate here, considers
di~ect interactions, not mediated by a field. One
tries to determine a Hamiltonian which, along
with the other generators of the transformations
of the Lorentz group, obeys the commutation re-
lations of that group. These generators are all
functions of the particle dynamical variables, and
the Hamiltonian is then used in a many-particle
relativistic Schrodinger equation. ' This group
approach has been developed by Bakamjian and
Thomas, ' who first described the treatment of a
system of interacting particles, and also obtained
the center-of-mass and internal dynamical vari-
ables including first-order relativistic correc-
tions. '

The problem of relativistic effects for a system
of particles interacting with an external electro-

magnetic field has been discussed by numerous
authors. ~ We refer particularly to the work of
Osborn, ' who first obtained the exact form for
relativistic center-of-mass and internal dynami-
cal variables for a two-body system, and to the
work of Close and Copley' who generalized these
expressions to a system with an arbitrary number
of particles. The latter authors also investigate
the first-order corrections to the electromagnetic
interaction, and, among other things, derive the
correction term to the Foldy-Wouthuysen (FW)
reduction c s

In this paper we combine the strong interaction
and the electromagnetic interaction and obtain the
form of the complete Hamiltonian correct to first
order in c ', for a two-nucleon system. This in-
cludes relativistic corrections to the kinetic ener-
gy and the potential energy, electromagnetic cor-
rections derived from these, and the correction
to the FW reduction. Thus the Hamiltonian satis-
fies the fundamental condition of Lorentz covari-
ance (to order c 2). A second fundamental condi-
tion which ought to be satisfied is current conser-
vation. %e define the current and charge densi-
ties, and verify that the current is conserved.

This first-order relativistic treatment is appro-
priate for applications to nuclear physics. Roughly
speaking, an energy up to 200 MeV is possible for
excited nucleons in nuclei. Furthermore, elastic
NN scattering data up to 300 MeV are used in de-
termining two-nucleon potential models, and NN
bremsstrahlung experiments have been done at
energies up to 200 MeV. For a 200-MeV nucleon,
P'/m'-0. 4, so that first-order corrections may
well be important, although an exact relativistic
treatment should not be necessary.

In one sense it may be said that any existing NN
Hamiltonian is relativistic, in that it is fitted to
the experimental (therefore, relativistic) data,
through the nonrelativistic Schrodinger equation.
Thus one may regard this procedure (Hamiltonian-
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plus-Schrodinger equation) as simply a model for
extrapolating off the energy shell, .and the model
may then be used consistently to calculate some
off -shell phenomenon —three-nucleon scattering,
for example. On the other hand, such a model has
a definite form, H = p'/2m + a function local in r
space at large distances, and this form is physi-
cally unrealistic at high energies. At least the
nonlocal part should contain the kinetic energy
correction term, -(p')'/8m'. To obtain a more
physically meaningful model, one should write a
Hamiltooian with a relativistically correct form,
and fit free parameters in it to the data, obtaining
thereby a new potential.

In Sec. 2 we discuss the relativistic correction
to the nuclear interaction, including spin depen-
dence, and taking account of parity, time rever-
sal, and rotational invariance. In order to derive
the corrections to the potential properly one must
be careful to use a consistent definition for the
nonrelativistic limit of the variables. Our assump-
tion here is that the individual particle dynamical
variables (such as momenta p, and p, ) are indepen-
dent of e, while the center-of-mass and internal
variables are functions of c. An alternative ter-
minology is used in Refs. 4-6, although these
papers do not discuss the correction terms we are
interested in. This matter is discussed further in
Sec. 2 and in detail in Appendix A.

In Sec. 3 we discuss the electromagnetic part of
the interaction. In Sec. 4 we verify the conserva-
tion of the current derived from our Hamiltonian.
In Sec. 5 we discuss the low-energy theorem. It
is known that when the current is conserved the
amplitude for bremsstrahlung of soft photons de-
pends only on the on-shell two-body t matrix, and
in this section we indicate how this theorem is
allowed to hold in the presence of a potential mod-
el with relativistic terms. In Appendix A we de-
fine our dynamical variables, and give an alterna-
tive proof of the correction to the FW reduction.
Appendix 8 derives some identities useful in the
proof of current conservation.

2. NUCLEAR INTERACTION

ith nucleon, co„by
M'=u, ++2+ V. (2.2)

Letting m& be the mass of the ith nucleon and q
be the relative momentum in the c.m. frame, we
can write ~, as

(u —(m '+ q')"' (2.3)

If we assume the interaction to be parity and time-
reversal invariant, then the potential has the fol-
lowing general form:

v= v, (r, q, /)+ v, (r, q, /)s,' s,'

+ V,(r, q, /)T s,'+ V,(r, q, /)T s,'

+ V, (r, q, /)1 ~ s,'1 ~ s,'

+ V,(r, q, /)r s,'r s,'

+ V„(r, q, /)q s,'q s,', (2.4)

II=m+Ho+ VN,

where

(2.6)

mJ+m2p (2.6a)

p2 p2 2 ~2 ~2p p q q
2m Sm' 2m, 2m,

where 1 = r xq. The explicit relativistic expres-
sions for the internal va.riables q, r, sf, and s,'
were obtained by Osborn. ' The expressions to
order c ' are given in Appendix A. Fong and
Sucher' have proved that if the Hamiltonian of the
system has the form given by Eq. (2.1) and if V,

(i = 1, . . . , 7) of Eq. (2.4) vanish sufficiently rapidly
for large r, then the associated 8 matrix is co-
variant. An alternative proof can also be given by
using the method introduced by Weinberg" and
generalized by Kazes. "'"

Having given the form of the Hamiltonian for the
relativistic two-nucleon interaction, the next
problem is to obtain the relativistic corrections to
the nonrelativistic Hamiltonian. We first expand
Eq. (2.1) in powers of m,. ', to obtain

We consider the interaction of two nucleons
through a potential V such that the total Hamil-
tonian of the system can be written in the form of
Bakamjian and Thomas'

2m 2m~ 2m2 Sm, Bm2

(2.6b)

H = Z =- (~"+ P')'~'. (2.1)
p2 V

V~= V — +'' ' .2m2 (2.6c)

Here P =p, +p, is the total momentum operator of
the system, p, is the momentum operator for the
ith nucleon, and the operator M' is given in terms
of the potential V, and the energy operator of the

Now H, and V [through Eq. (2.4)j are functions of
the relativistic variables r, q, s,', s,', and 1 and
these must be expanded about the nonrelativistic vari-
ables. Dealing with g first, we write q=q "+6q
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from Eqs. (A2) and (AS) of Appendix A and find

P (P) 1 1
2m 8m' 2m, 2m,

1 eV;

ev&
+ rc

BV;
+qc

we expand

V, (r, q, l ) = V, (r ",q, l )

2m, 2m, 2m' 8m, 8m,

(2 'l)

~V;l, +l, (2.12)

or in the c.m. frame, with P =0,

q
NR2

+ 2 + q 5q

The derivatives are evaluated at r=r, q=q
and l=l . Similar expressions are given for the
spin factors, s,' s,', 1 s,', etc., and we obtain
the form

(2.is)

Substituting Eq. (2.13) into Eq. (2.6c), we get

8m, ' em, ' (2.8)
VN Vg + Var

NR

where

(2.14)

Ho= Ti+ T

where

(2.9)

(pg')'
(2.9a)

This is of course the expected result.
Now returning to V„of Eq. (2.6c), it is ex-

pressed in terms of the relativistic variables r,
q, s,', s2, and l. The nonrelativistic limits of
these variables are given in Eq. (A2) of Appendix
A. If we further define

1 NR rNRxqNR (2.10)

then we may define the corrections 51, r„q„
and lc by

1 =1 NR+ el,
r=rNR+r

C &

q=qNR+q„

l= lNR+l

(2.11)

Only the terms in m ' in these corrections are
kept. Now, for each of the potentials in Eq. (2.4)

The first term gives the kinetic energy operator
used in the Schrodinger equation, and the second
term is the relativistic correction to the kinetic
energy operator. This correction'ordinarily has
not been used in determination of phenomenologi-
cal potentials.

For future reference we note that, if we express
q", P, and 5q in terms of the individual particle
momenta again [Eqs. (A2) amd (A3)], Eq. (2.7)
becomes

p'
2m2

p 2
= v —,v" +o(m-').

2m' (2.is)

The first term of Eq. (2.14), V~, is identified as
a realistic phenomenological potential fixed by
low-energy scattering data and the Schrodinger
equation. The second term, V~, is proportional
to the total momentum, P, in each term. Refer-
ring to Eq. (A3), we see that 5r, 5q, and 5s& van-
ish when P =0. It follows that r„q„and l, also
vanish with P, and hence, according to Eq. (2.12)
so does V, and the entire V~. Thus the correc-
tion to the potential vanishes in the c.m. system.
In other words, if an analysis of scattering is
performed in the c.m. system, and a potential is
to be determined, only the relativistic correction
to the kinetic energy need be included in order for
the determination of the potential to be relativisti-
cally correct.

On the other hand, if one considers interaction
with an electromagnetic field, the term V„must
be taken into account even though it vanishes in
the c.m. frame. The minimal coupling p; -p;
-e,A(r, ) must be applied to the momenta in V~,
and one obtains, as discussed in the next section,
an additional electromagnetic term.

A term similar to V„, but not precisely the
same, has been found by Shirokov, on the basis
of invariance properties of the S matrix.

We stress that the term V, appears only because
the internal variables on which the potential de-
pends [in Eq. (2.4)] are relativistic; we obtain
corrections proportional to 5r, 5q, and Os'. If
q and r were considered to be independent of c
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3. ELECTROMAGNETIC INTERACTION

If the two nucleons interact with an external
electromagnetic field (4, X), the total Hamiltonian
may be written

HER=HO+ V~+HI . (3.1)

(see Appendix A for further discussion), there
would not be any term V, . The term -(P~/2m')VKN",

in Eq. (2.15) would remain however, as a correc-
tion to the potential.

For completeness we mention that there is a
relativistic correction to the Coulomb interaction,
occurring in the proton-proton case. This has
been derived by Close and Osborn, 4 and the reader
is referred to this paper for details.

For an A-particle system, the analysis is very
similar but the corrections to the potentials do not
vanish. Therefore, they must be included in the
A-particle problem.

p,. —IT,. =-
p~

—e, A (r, ) . (3.3)

Here e& is the charge of the j th nucleon. If the
kinetic energy operator is written as a function of
momentum, T,. = T(p~), then Hz"&(A) is obtained

Here II, is the kinetic energy operator for the nu-
cleons, given by Eg. (2.9). V„ is the two-nucleon
interaction potential, including the relativistic
correction, given by Eg. (2.14). HI is the total
electromagnetic interaction Hamiltonian which we
decompose into six parts:

H, (4, A, E) =H~r'(A)+Hir2(A)+H, "~(C,X, f)
+H»(C, X, f)+H, (X, f)+H,"(X).

(3.2)

Here 4, A, and E are the scalar potential, vector
potential, and electric field intensity, respectively.
HI~(j =1, 2) are obtained from T, , the kinetic en-
ergy operators by the standard gauge-invariant
substitution,

from the difference,

H~r~ (A) = T (II,.)'—T(p~)

2

[p& X(r&)+X(r&) p&] + ~ X2(r&)

+
8

'
~ (p&' [p& ~ A(r&)+A(r&) p&] + [p& X(r&)+A(r,.) ~ p&]p&2}

8m, '
2', (p& A(r&)p& X(rJ) + p& X(r&)X(r&) p& +X(r&) p~ p~ X(r&)

8m~

+ A(r&) p& A(r,. ) p&+ p&'A'(r&) + A~(r&)p&']

3
+ 3 (X'(r&)[p,. X(r&}+X(r&) p&] +[p& X(r&)+A(r,.) p,.]A2(r&)]

8m~

e4
X4(r )+ ~ ~ .8m' (3.4)

H~», which are functions of 4, A, and E, have the
form

Hz"&(4, A, E) =e&4(r, ) — '
o& V,. x A (r&)

2K' e+eg [»»(» )»»(» )
8m~2

-o~ p~xf(r~)+2e, .o,. X(r, ) x f(r,.) ] .

(3.5)

Here a& is the anomalous magnetic moment for the
jth nucleon (K = 1.79 for the proton, -1.91 for the
neutron). It shoul'd be emphasized that H&~& to-
gether with H~» are just the results obtained from
the FW transformation" of the Dirac equation for

the jth nucleon in the electromagnetic field. The
separation of III& from III"& is for convenience in
the discussion of current conservation in the next
section. Since the sum of the two FW reductions
does not give the complete electromagnetic Hamil-
tonian, an additional term must be added. This
term is called II~, the correction to the FW re-
duction. ' It is derived in Appendix A, and it has
the form

2

H, (A, E) = ——,
' Q e,. [ 0,' ~ E(r, )+E(r,.}~ .V~ ] .

(3.6)

g,' are given by Eqs. (A8a) and (A8b) of Appendix

A, with the gauge-invariant substitution.
Finally, since the potential VK of Eg. (2.14) has



2048 M. K. X.r. OU AND M. l. SOBZr.

momentum dependence, the electromagnetic
Hamiltonian due to V~ can be obtained from it by
the minimal substitution. Writing V„as V„(p„p,),
we obtain

(4.6a)

H,"(A) = V.(&„ll. ) —V.(p„p,) . (3.7) [p~5'(r, -x)+5'(r,. —x)p, ]

The detailed expression for Hz is not particularly
interesting, and will be omitted.

.2—~ A(r, )5'(r,. —x)

4. CURRENT CONSERVATION

)
5K~(4), A, E)

5O(x)

Since the Hamiltonians Hz & (A) and HI (A) do not
depend on the scalar potential 4(r), they make no
contribution to the charge density. Therefore,
p(x) contains only three terms,

(4.1)

The charge and current densities corresponding
to the electromagnetic Hamiltonian given in the
last section will be derived here. The relativistic
correction to order c ' will be included in these
densities. Current conservation to this order can
be proved by using these densities and some use-
ful relations derived in Appendix B.

For the electromagnetic interaction Hamiltonian
Hz defined by Eq. (3.2), the charge density is de-
fined as

—
8

-'-, (p, '[p~5'(r, -x) +5'(r, -x)p, ]

+ [p, 5'(r, -x) + 5'(r, —x)p, ]p,
' }+ ~

5HI' d 5Hj'

V. 5'( — )—
2m

2K& 8+ ej
4m'

2K/ 8+ ej
8m ' dt

o, x—
p~ 5'(r,. —I) —5'(r, X)o, x —p,

+ 2e~cr, x A(r, )5'(r~ —x)],
nHI' d 6H~'

(4.6b)

(4.7a)

(4.7b)

(4.8a)
p(x) =p'(x)+p'(x)+p (x),

where

5HI
p (x)

(4.2)

5A(x)

2
+-,' ge,. [g~ ~ f(r~)+f(r~). gi]

2

+ —,
' Q 8,(n,' f+f. '9~)

—o~ ~
[p& x V~5'(r& —x)] + o~ [ (d',.5'(r~ -x) xp~]

v
OH'J

5A(x)

5 V„(ii„II,)
5A(x)

(4.8b)

(4.9a)

(4.9b)

+28,o& [A(r&)x. V&5'(r&-x)]},

5HI
p ( ) 5@(~)

=-,' 2, e, (n,' ~ [V, 5'(r, -x)]

+[V, 5'(r, —x)] ~ g,'] .

(4.3)

(4.4)

We omit the detailed form of the currents J and
Jv

We next show that the charge density and cur-
rent density defined above satisfy the current con-
servation equation. The proof is very general
since we use the general relations derived in Ap-
pendix B. First, using Eqs. (B19)and (B20), we
rewrite Eq. (4.2) a.s

The current density corresponding to H, is defined
as

dp(x) dp'(x) dp'(x) dp (x)
dt dt dt dt

5HI d 5HI
5X(x) dh 5f(x)

g Tl + gT2 +gPl+ gP2+ g +J V

(4.5a)

(4.5b)

5III ~ d BID
dt IIE(x) * dt IIR(x) )

eei2
dt 5E (x) dt
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Applying Eqs. (4.7a) and (4.8a), and Eqs. (816}
and (BIVb) of Appendix 8, this becomes

= -V ~ (J"'+J»+ J )dt
2-i H,"&+Hj'2+H„L e~5'(r~ -x)

d 2
+ —pe, 6'(r, -x) .

dt (4.11)

If we combine Eq. (4.6a) with Eq. (812) of Appen-
dix 8, and also combine Eq. (4.9a}with Eq. (813)
of Appendix 8, we get

Comment on Exchange Wrrents

It has been tacitly assumed in Secs. 2 and 3 that
the potential used does not contain exchange
forces. If such forces exist, some modifications
in defining the current and charge densities aris-
ing from the potential are needed. If we impose
current conservation, we find that additional
terms in the current density are implied. Specifi-
cally, using the Hamiltonian of Eqs. (3.1) and (3.2),
current conservation leads to

6Hz d 5Hf &
~ J — g o g ~-

5A ' dP 5E /

-V„~ ST& = i [ T, +H~T&, e, '6(r, -x)], (4.12) =-i V„+H", Q e&5'(r&-x) (4.i9)
2

-V„' J =i H~+ V», Q e~5 (r)-x) ~ (4.13)

-V, ~ (J z+J '+J )
2

=i T, + T2+ V»+Hp+H~~2+Hlv, Q e~6 (r~ -x)

Since T, and HIT' commute with 6'(r, -x), and T,
and HzT2 commute with 5'(r, -x), we have

~ (JT1+JT2)g
2

=i T, + T, +H~&+H~', Q eq5'(r~ -x)
j=l

(4,14)

and

If we further define
2

V, ~ J, = V, J"+i H„Q e, 6'(r~ —x) (4.20)

we obtain
2

V„' J2=-i V», Q eg5 (rg-x) (4.21)

This result is very similar to that obtained by
Heller. " Here relativistic effects to order c '
are included. The expression for V„~ ~J2 is unique,
but of course J2 itself is not. The fact that the ex-
change current is not uniquely defined by current
conservation is well known.

=i HT-H~»-H~»-H„Q 5e'(r, -x) .
gal

(4.15)

We have used Eq. (3.1}in obtaining the last step.
If we further combine Eq. (4.11)with Eq. (4.15},
and use X defined by Eq. (4.5b), we get

dp(x) =-V J —i HT, Q e, 6 (r~-x)dt /=1

d "2
+—Q e, (6r, -x)

dt (4.16)

(4.18)

which is the current conservation equation. Thus
the charge and current densities derived from the
electromagnetic Hamiltonian in Eq. (3.2), which
includes relativistic effects to order c ', satisfy
current conservation to the same order.

Since
2 2

Q eq5'(rq —x) =i HT, Q eq6'(r) —x}dt
i j=1 j=1

(4.1&}

we obtain, finally,

5. LOVf-ENERGY THEOREM

The low-energy theorem for bremsstrahlung in
a potential model has been derived in previous
papers, ""for the case of nonrelativistic parti-
cles. Since the theorem follows from general
principles it must be valid for relativistic parti-
cles." The verification of this point from our
Hamiltonian is somewhat complicated in the case
of the terms like H)& and Hz~. Here we illustrate
the validity of the theorem for the relativistic
corrections to the kinetic energy. The method is
similar to Ref. 18.

For simplicity we use the Coulomb gauge
(C =0, V ~ A =0) and assume only particle 1 is
charged. Then we are interested in the term

=Ne '""p, e 1-,(2p,'-2K p, +g*)
1

(5.la)

4m, '(2p, '+2K p, +K') p, ee 'K'x

(5.1b)

where N = -e,/2m», vX, K is the photon momen-
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turn and 8 is the photon polarization vector. Ex-
pression (5.1a) is used for the amplitude repre-
senting photon emission after the strong interac-
tion, and expression (5.1b) for the amplitude rep-
resenting photon emission before the strong inter-
action. The K2 terms will be dropped because
they do not enter the low-energy theorem. The
second kind of electromagnetic interaction is the
Hamiltonian arising out of the potential given by
Eq. (2.14). It is given by

(Kla,"I o) =-m, ~e v,[ v„, e-""]. (5.2)

The Green's function, without relativistic effects,
ls

where

4~ 2

x&5;+K,p, lt(z)lp, p

+&p', pelt(z')lP, -K,P.&

2p&' —2p&'K+ K'
4m, ' (5.8)

(5.9a)

GNR(ENR) (ENR Z
NR y NR+ te)-r (5.8)

Here, E~ is the nonrelativistic total energy of
the system, and T,. are the nonrelativistic ki-
netic energy operators defined as

~ 2
P~

2m'

With relativistic effects, the T~ are modified to
~ 2 (p~ 2)2' =2". -8.' ~

and the Green's function becomes

(5.4)

(5.5}

(5.6)

t (E)= V2r + VrrGO(E)t (E) . (5.7)

The external scattering term can be written in
terms of Hi~, G, and t as

G.(z) =(Z- r, —Z;+te)-'.
E is the relativistic total energy of the system.
Now, using the potential V„given by Eq. (2.14},
and the Green's function given by Eg. (5.6), the
t matrix is determined by the Lippmann-Schwin-
ger equation,

K 2~p~+ K2
(5.9b)

t=t(v, u, a, , a~), (5.10)

and then expand them in powers of K, we obtain

e ~ Ms ——(on-shell terms)

+6 '
Pr 1 —

2 (Pr +Pr ' K)

+ g p, 1—,(p, '-p, K) +O(K).86. 2m~

(5.11)

If we parametrize the t matrix elements in terms
of the following scalar variables: the average of
the initial and final kinetic energies in the c.m.
system v, the square of the momentum transfer u,
and the amount that the initial (final) state is off
the energy shell t, (t2&}; i.e.,

The on-shell terms which are not of interest to us here are very similar to the results obtained in Ref. 18.
The internal scattering amplitude consists of M~ and M~

A A AM~+e' Ma

(5.14)

where

me M, =(p,', p,' I
t(z')G, (z')(Kla,'2 I o) G,(z)t(z)l p„p,),

(5.13)
&e ~ M =(p, p I [ 1+ t(z')G (E')](Klff

I 0)[ l + G (E)t(z)] I p, p ) .
It is easy to show that

~ ~ M =-m, c v &p,', p,' I t(z')G, (z')[ q, G,-'(E) —G,-'(E )q, ] G, (z)t(z)l p„p,&,

q e-& K~rr

%e now follow Ref. 18: Apply the operator identity

e v (p,', p,' I t(z')G. (E')[ q.G. '(E) —G. '(E')q.] G.(E)t(z) I p„p,)
=~ ' v &p', p,' I t(z')q. q.t(z)l p„p.)-
-e V &pl, pal [1+t(z')G.(Z')][ V, q.][l+G.(Z)t(Z)] Ip„p.)

(5.15)



RELATIVISTIC CORRECTIONS. . .

to Eq. (5.14); use the relation

c M~+ me M, =O,

where

(5.16)

We obtain finally

e M, = -m, e Vr & p,', p,
'

~
t(E') Q, —Q, t (E) ~ p„p, & + O(K}

=-me ~.(&P,', p.'I f')Ip, -K, p.& -&p,'+K, p. l f(~}lp„l.&]+O(1~).

Parametrizing Mz and expanding then in powers of K, as we did for M~, leads to

e Mz ——(on-shell terms)

Bt
pl 1

2 2 (pl pl
mg

(5.1 I)

(5.18)

—g ~ p,
'

g — ~I2+p~l ~ K + 0 K . (5.19)

Combining Eqs. (5.11) and (5.19), we obtain the
total bremsstrahlung amplitude. The off-shell
derivatives are cancelled precisely. Thus the
first two terms of the total amplitude are indepen-
dent of off-energy shell effects, completing the
proof of the low-energy theorem.

Note added in Proof: A recent report prior to
publication by Richard H. Thompson and Leon
Heller discusses the exchange current in the case
of a one-pion exchange potential which is isospin
dependent but not momentum dependent. If V„has
the form V~+7, ~ ~7, V~, then the exchange current
obeys

i„f,= -je(j, x7,), [6'(r, -x) —6'(r, -x)]
as originally derived by Osborn and Foldy. ' 47e
observe that this expression follows from our Eq.
(4.21) if we replace e& by —,

' (1+v&,)e.
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APPENDIX A

We discuss relativistic and nonrelativistic defi-
nitions of the center-of-mass and internal dynami-
cal variables, and also derive the correction terms
to the FW reduction. For greater clarity we mill
not set c=i here, but rather keep c in our equa-
tions. The nonrelativistic limit is then t."-~, and
the relativistic corrections are terms in c '.

Osborn' has defined the relativistic center-of-
mass and internal variables for a two-particle
system with spin. He has shown that if one starts
from the individual particle dynamical variables
(p„p„r„r„s„s,), one can define the c.m.
variables (P, R, 5) and, via the Gartenhaus-

q =qm+5q

PNR~ gP

p pNR (A1)

R=R + 5R,
~sf fNR+ gf

Schwartz transformation, the internal variables
(q, r, s,', s,'}. In defining the nonrelativistic limit
of these variables some care must be taken. Both
sets of variables, the individual particle variables
on one hand and the c.m. plus internal variables on
the other, are relativistic. Thus we can take a
nonrelativistic limit for either set. But, because
of the relation that exists between the two sets, we
cannot take the nonrelativistic limit for both. If
we do we will find a contradictory term of order
c '. In this paper we let the set of individual par-
ticle dynamical variables be independent of c.
Then the expressions for the internal and c.m.
variables are functions of c, and taking c-~, we

obtain unambiguous definitions of R~, q~, and
r~, the nonrelativistic variables. There are no
such things as p,. and r~ in our definitions. An

alternative definition is used in Refs. 4-6, where
R, q, and r are treated as independent of c, while

p,. and r& are functions of c. In that case non-
relativistic variables p& and r,-

' are defined.
Either definition can be considered correct. But
one must use the definitions consistently, since
they differ by terms of order c '.

For the convenience of the reader and for use
in Sec. 2, we summarize these various kinematic
relations. In terms of single-particle momenta

p&, coordinates r&, masses m&, and spins s, ,
the internal and c.m. variables are
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where the nonrelativistic quantities are variables

m, p, -m, p,
q.

P+ ~NR

~NRI' = rg —I'2

P =pg+p2, (A2)

~NR
p = P —q2 m

RNR m2 ~NR

R myry + m2r2
m

with m = m, + m, . The relativistic corrections are,
to order c ',

~NR 2'=
2m, m, mc' -2m, q 'P P

~NR P+ ———
q +H.c.2mc 2m m m.

~NR ~m NR
r2 =R

m

We now derive the correction to the FW reduc-
tion. These terms have been derived previously
by Krajcik and Foldy' by a different method, and
by Close and Copley. ' Our derivation is similar
in form to Ref. 6, but there is an important dif-
ference, resulting from our different definition of
the nonrelativistic limit.

For an electromagnetic transition from state i
to f, the amplitude is

M&, = d»Rd~rgP(R, r)H, (r„r,)(,(R, r), (A6)

m2 ™z~NR~NR2r q4mc' m, m,

P ~ ~NR ~rNR ~ P+rNR q +r qm +Hc
m m

NR
)&

~S Sss

(A 3)

(A6)

since the generalization to a vector potential can
be done as in Ref. 6. Combining Egs. (Al) and
(A4) we have

where H, is the electromagnetic Hamiltonian.
For simplicity the spin factors in the wave func-
tion are suppressed, since the treatment of spin
is the same as in Ref. 6. We take a scalar poten-
tial only,

H, (r„r,) = g e, @(r,),

6s~=—,(q~x P)x s, .
2mgmc

Inverting Eqs. (A2), we obtain the single-particle

ri= R+ r +g, ,

.-,=(»- .-).;. (A' t)

with

5R+™1 m

(r—
4 2 1

1
+ (rm'c'

a-.
)

~ ~NR
my m2 NR P q

mg m2 m

)
-(t)~ ~m ~ m, -) m, (- I ~) (8, ~H) (A8a)

5R ™5r

~r -r j
m

, '.,. ).-, —.-.)»(', —;., »).». —, (».—- ).(' -' ). (A8b)
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Eq. (A5) now becomes

Mz, = d'Rd'r gP(R, r) e,@~R+~r +e,4 R-~r g, (R, r)
J

-~(d'Rd'egg(R, r) —'e, j;.E(R+ ' r)+E(R+~r) ~ 1l,

+2e g 'E R- 'r +E R-~r ' '02 ] R)r (A9)

where E = -VC is the electric field. This amplitude may be compared with the nonrelativistic limit of Mz, ,

My) =lim M~]
NR ~

gMtd ~%I( (pNR fNR) ~ @(RNR~~ fNR)

RNR ~ ~rNR RNR ~rNR

m
(A10)

Thus, because of the fact that R, r, R, and r~ are integrated over all space, we see that the C terms
in Eq. (A9) are precisely equal to M&;. We find therefore the relativistic correction given by

M~) = M~) + 6M~, + O(c ), (A11)

NR
6M~; ———, lim c (M~, -M~, )c~~

d'r, d'r, yP(r„r, ) Q e,. [q, E(r~)+E(r~). %~] g, (r„r,),
1

(A12)

(A13)

Here g& is the function obtained from P& by the substitution p&-p& ——A(r&), necessary to preserve
gauge invariance.

For completeness, we write Mz, in terms of the individual particle variables, using Eq. (A4),

where we have used Eq. (A4). This result implies that the correction to the Hamiltonian H, given by
Eq. (A6) can be written as

2

e, =-2-g e, [n,' ~ E(r, ) E+(r, ) q,'].
/=1

Mp, = d'r, d'r, gp(r„r, ) [e,C (r, )+ e,k(r, )]g, (r„r,) . (A14)

APPENDIX B

We here discuss some useful identities related to the electromagnetic Hamiltonian defined in Sec. 3.
These identities are used in Sec. 4.

(I) Let E(p) be a function of momentum operator p, and E(fI) be a function obtained from E(p) by the

gauge invariant substitution:

p-If =—p —eA(r) .

If we define

e, (A) =Z(iT) -F(p)
then we mant to show that

V. ~ ' =i[F(5), e6'(r -x)]
6A x

=f [Z(p)+e, (A), e63(r -x)] .

"(a2a)

(S2b)

~oaf. This result is true for a function with an arbitrary number of factors of the momentum operator.
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Let us first consider a function of the form"

E(p) = [6„,(r, a„a,) ~ pQ„,(r, a„o,)] [G„,(r, o„.o,) .pQ„,(r, a„o,)]
x ~ ~ x [G„„(r,o„o,) pQ„„(r,a„a,)]

= II [G„,.(r, o„a,) pq„,.(r, o„o,)]
i=1

and define Hf (A) by Eq. (81) with the function E(II) given by

E(II) = II [G„,(r, o„o,) ~ II Q„,(r, P„a,)] . (84)

The functional derivative of Hf with respect to A.(x) can be written as

=(-.) [6 ~'( —.)Q„,]II [6.. &Q..]
dA x i-2

~ g II[6„, iiq„, ) [6„.~(.--)q„.] II (c„, ITQ„,)
S=2 „i=1 g-s+1

+ II [6„,. IIQ„,][G„„5(r —x)Q„„]

Using the relation

i„5'(r -x) = -V„5'(r —x),

we obtain

5II
V, - =e 6„, [V„6 (r-x)]Q„, II [G„,~ IIQ„,]

i =2

j=s+1s=2
n-1

+ II(C„, IIQ„,)C„„[w„a'(r-x)]q„„

n-1 s-1 n

+ g II (6„& Iiq.;)G.. [&„~ (r-x)lq. , II (6„& llq. ,)

Now, we can use the identity

A, , C =[A„C]II A,

n-1 s-1
+g II A,. [A„c] II A,.
S=2 j =s+1

+II A;[A„, c].

Applying this identity, we obtain

z[E(II), e5 (r-x)] =f e [G„,' ITQ„„5'(r—x)] II (6„; 11 Q„;)

n-1 s-1 n

+ g II(c„,. Tiq„,)[6„, iTq„„c'(r-x)] II (6„,. ~ Pq„,)
s=2 i =1 q =s+1

n-1
+ II (G„~Q„,)[G„„ IIQ„„,5'(r —x)]

i =1

Since

[6„~IT q„, 5'(r -x) ] =[6„.p q„~ 5'(r -x)]

iG„„[F„-5(r 'x)] Q„, —

(89)

the right-hand side of Eq. (88) is exactly equal to
the right-hand side of Eq. (86), and the relation
given by Eq. (82a) follows at once. Eq. (82b) is
obtained from Eq. (82a) by making use of Eq. (81).
Various forms of E can be constructed, and all of
these can be shown to satisfy Eq. (82). For ex-
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ample, we can replace p by 1 = r && p and write

E'(1) = Q [G„',(r, o„o,) ~ I Q„', (r, o„a,)] . (Bio)

straightforward calculation gives

aII "~V„- ' =i [H~», e, 6'(r, - x)].
6A x

(SIVa)

+ (similar combinations) . (Bii)
Now, we apply this result to the electromagnetic
Hamiltonian defined in Sec. 3. H r & (A) and Hz (A)
are defined by Eqs. (3.4) and (3.7), respectively.
Applying the result given by Eq. (B2), we get

Ml~
V, =i [ Tq(p, )+Hlr~ (A), e~6''(r~ -x)],

6A (x)

(si2)

We conclude, therefore, the relation given by Eq.
(B2) is true for a, general function of the form

+(p)=&.(r, o„o.)+ Q II(G.; pQ.;)
n"-1 i =1

n

+ Z II (G.'»'IC~)
n=l 4=1

Since Hlt'& commutes with 6'(r, -x) and Hz"& com-
mutes with 6'(r, —x), we can rewrite Eq. (B17a)
as

(S17b)

V„~ =p(x),
5I'

6E x

where

6Z(E(r-))
6e(x)

or

(Bi8a)

(B18b)

p o 2V„-, , =i H, ~, Q e, 6 (r, —x)

(IV) If E(E) is a function of electric field inten-
sity E, and if E has a form similar to Eq. (B11),
then we have

6H 2

=i[tv(A)+ V„(p„p,), Qe~6'(r, -x)] . d t' 6F d p(x)
dt ii6E(x) dt

(B18c)

(B13)

(II) In some cases, the electromagnetic interac-
tion Hamiltonian is not defined by Eq. (B1). The
relations given by Eqs. (B2a) and (B2b) are no
longer valid. However, if the electromagnetic
Hamiltonian is known as a function of II,

Hf (A) =f (II) (Bi4)

and the function f has a form similar to Eq. (B11),
then we have

M
V, . „' =i[j(il), e63(r-x)].

6A(x)
(B15)

6H
V„~ ' =i H, ,Q e,. 6'(r, —x)

6A(x)
(B16)

(III) If an electromagnetic Hamiltonian is a func-
tion of A and E [E=-&A/St —V„4(r)], then addi-
tional terms due to the E dependence can be ob-
ta,ined. An example of this case is Hz"& (j =1, 2)
defined by Eq. (3.5) of Sec. 3. The additional cur-
rent arising from the E dependence of Kl"& will be
discussed in next subsection of this Appendix. A

The proof is very similar to the one given in (I).
An example of this case is the Hamiltonian III de-
fined by Eq. (3.6) of Sec. 3. Applying (B15), we get

d p d ~III
dt * dt 5E(x) ) '

where

(B19)

5III
64(x)

'

A second example is to apply the relation (S18c}
to the Hamiltonian Hz" i (j = 1, 2) defined by Eq.
(3.5). We have

dp'(x) d 6Hr d
dt " dt 6E (x)

(sioa)

where
(B2o)

p~(x)=
( )

. (S20a)

The additional term, e,.d/dt6'(r& —x) in Eq. (B20)
is obtained from the term e& 4(r, ) of Eq. (3.5).

The proof is very straightforward and is omitted
here. We now consider the application of these
results to the electromagnetic Hamiltonian in Sec.
3. As shown in Sec. 4, p(x) is identified as the
charge density. The Hamiltonian Hl defined by
Eq. (3.6) is a function of E. Applying the relation
(B18c}, we get
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The Mossbauer effect following Coulomb excitation of the 43.8-keU state of ie~Dy was stud-
ied for several Dy compounds and Dy metal. At 85'K, using 3.3-MeV Q. particles, effects as
large as 3.5% were observed; a scintillation counter gave typical counting rates of 2000
counts/sec; 43.8-keV y rays made up about one third of the total count rate. The half-life
of this state predicts 2I'0=8 mrn/sec; the narrowest single line observed was 16 mm/sec.
Dy-metal spectra taken at various temperatures were interpreted assuming a normal hyper-
fine interaction plus a central peak due to relaxation effects. The extracted value of the nu-
clear magnetic-dipole moment for this level of (-0.134+ 0.005)pN agrees with the value cal-
culated using the Nilsson model. The extracted value of the ratio of the intrinsic quadrupole
moments of the ground and excited states of 1.12+ 0.27 agrees with the value of 1.0 predicted
by the Nilsson model. The extracted difference in the nuclear radius for the ground and ex-
cited states is 6R/R =(-1.2+0.6)&&10 . A radiation-damage induced isomer shift correspond-
ing to Dy4+ was observed in the DyF3 target at liquid-nitrogen temperature.

I. INTRODUCTION

In recent years the Mossbauer effect (ME) fol-
lowing Coulomb excitation (CE) has proved to be
a useful method of investigating nuclear transi-
tions which cannot be otherwise observed due to
a lack of an appropriate radioactive parent. One
candidate for the application of the CE technique
is "'Dy. Although the Mossbauer effect has been
pbserved in "'Dy for the 25.7-keV' ' and 74.6-
keV transitions using radioactive sources, this
is not the case for the 43.8-keV transition, since
this level is only sparsely populated in the decay
of ' 'Tb and ' 'Hp, and since the half-lives pf
these parent nuclei are short (see Fig. 1 and Ref.

7). In an earlier note' we reported the first ob-
servation of the Mossbauer effect following Cou-
lomb excitation (CEME) of that level; in the pres-
ent article we present more detailed ME studies
of this transition.

From CEME spectra of Dy-metal, DyNi2, and
DyF, absorbers versus DyF, targets, we have
been able to determine the magnetic-dipole and
electric-quadrupole moments of the 43.8-keV
state, together with the change in nuclear radius
between the excited and ground states. In addition
we have observed a radiation-damage (RD) isomer
shift in the target.

In reporting these studies we will first present
in Sec. II the general experimental considerations;


