
PHYSICAL REVIE W C VOLUME 7, NUMBER 5 MAY 1973
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Three methods for the normalization of shell-model nuclei to liquid-drop-model nuclei are described
and evaluated. The first, the familiar Strutinsky method, is sensitive to the number of levels above the
Fermi level used and is not readily applicable to a single-particle model using a finite potential well.

The second method involves the smoothing of the single-particle energies by means of an arbitrary
function fitted in the least-squares sense. The third method involves the assumption that the need for
the normalization lies in the inadequacy of the volume-correction term used in the calculation of the
single-particle energies. Using an arbitrary function fitted by least squares, the best volume-correction
function is found that causes the shell-madel ground-state energies to be normalized to the
liquid-drop-model energies. This method involves only the levels up to the Fermi level and consequently
is readily applicable to a finite potential well.

INTRODUCTION

It had very early been recognized that merely
adding up the single-particle energies, adding a
Coulomb energy term, and jor adding a pairing
correction would not give an adequate representa-
tion of the equilibrium deformation of a nucleus
nor reproduce the fission barrier at all. Following
a suggestion by Swiatecki, ' Strutinsky' introduced
a procedure for normalization of the shell-model
energies to those calculated from the liquid-drop
model. In this way, not only were the equilibrium
deformations well reproduced, but the fission bar-
riers were also reasonably reproduced. The meth-
od has since become widely used. ' Several authors4
have noted that, although the method works well
when using a single-particle model with an infinite
potential well, e.g. the Nilsson potential, it does
not work when using a single-particle model with

a finite potential well, e.g. the Woods-Saxon po-
tential. Ross and Bhaduri' and Bunatian, Kolomietz,
and Strutinsky' have suggested modifications of the
original method that improve the results when us-
ing finite-depth potentials.

After reviewing the Strutinsky method and another
method based on a similar principle, this paper
introduces a normalization procedure based on a
different principle which is not subject to the short-
comings cited above. All of the methods are ap-
plicable to a variety of nuclear shapes. However,
only quadrupole deformations are treated in this
paper.

STRUTINSKY METHOD

The general principle of the Strutinsky normaliza-
tion involves a smoothing of the single-particle en-
ergies in such a way that the general character of
the single-particle model is preserved while the

oscillations are removed. The differences of the
nuclear ground-state energies calculated from the
smoothed and from the original single-particle en-
ergies are then used as a correction to the ground-
state energies calculated from the liquid-drop mod-
el. Strutinsky chose to smooth the single-particle
level densities rather than the energies themselves.
The details of the Strutinsky method have been dis-
cussed in many publications. Bolsterli et al.' and
Moretto' have given solutions in closed form. It
is sufficient for our purposes here to note that the
smoothing was performed by means of an averaging
procedure using a broad Gaussian multiplied by a
sixth-order Hermitian polynomial. An alternative
form was suggested by Moretto. '

From the shape-of the corrected ground-state
energies versus deformation, information can be
obtained on the ground-state energy at the equilib-
rium deformation, the equilibrium deformation,
the deformation energy, the energies and deforma-
tions of secondary minima, fission barriers, etc.
If absolute ground-state energies are not of inter-
est then it is only necessary to consider that part
of the liquid-drop energy that is shape-dependent:
the Coulomb energy and the surface energy. Pair-
ing can also be introduced into the calculations.
The equilibrium deformations obtained vary only

a little with the pairing parameter used and vary
only a little with the results using no pairing.
Figure 1 gives the calculated deformations at en-

ergy minima using three pairing parameters, and

Fig. 2 using no pairing. For many nuclides more
than one energy minimum is found. These figures
and other similar figures contain all of the minima
found without designation of the position of the
ground state. These calculations and all of the
rest described in this paper were carried out for
191 nuclides of interest to us in connection with

level-density calculations. '
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FIG. 1. Deformations at energy minima from the
Strutinsky method with pairing. CI, GA =2.0; 6, GA
=2.5; x, GX'~'=3 0

There are certain precautions that are important
to note. ' The results are very sensitive to how
well the Fermi energy, A., has been determined
(convergence is slow near closed shells), and the
results are very sensitive to the number of levels
above the Fermi energy used in the calculations.
The latter comes about since the averaging is
carried out over a large number of levels. It is
the virtual neglect of levels above the Fermi ener-
gy that causes the Strutinsky method to be inap-
plicable to nuclear models with finite-potential
wells. The use of a sufficient number of levels in
the continuum and a modified averaging procedure
renders an improvement. ""

METHOD II -ALTERNATE SMOOTHING
PROCEDURE

Bolsterli et a/. ,
' in describing the general prin-

ciples of the normalization procedure has suggested
smoothing the single-particle energies. This meth-
od was examined in several different ways. By
means of the method of least squares, polynomials
were determined to fit the single-particle energy
versus the log of the single-particle number. The
degeneracy is taken into account by counting each
single-particle energy twice. Two third-degree
polynomials

log(N) = a+ be +ce'+ de'
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FIG. 3. Fit of single-particle energies as polynomial
functions. Step function, ¹ilsson-model single-particle
energies; solid line, energy as a cubic function of log
of the single-particle number; dashed line, log of the
single-particle number as the cubic function of energy.

e =P+q[log(N)]+ r[log(N)]'+ s[log(N)]' (2)

were found to fit very well (Fig. 3); there was no
significant improvement when using polynomials
of higher degree. Equation (2) is simpler to use
for the determination of the energies of the smoothed
single-particle levels and consequently for the
ground-state energies of the nuclides. The differ-
ences of the smoothed and unsmoothed energies
were used as corrections for the energies of the
liquid-drop model as before. The results using
Eq. (l) are not significantly different from those
using Eq. (2); nor are these results much different
from the results using a seventh-degree polynomial
of the form of Eq. (2). The minimum energy defor-
mations for the last two, calculated without pairing,
are given in Figs. 4 and 5, respectively. Agree-
ment with the calculations using the Strutinsky
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FIG. 2. Deformations at energy minima from the
Strutinsky method without pairing.

FIG. 4. Deformations at energy minima for method II;
energy as a cubic function of log of the single-particle
number.
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method is reasonable for medium and high masses
but not for low masses. Since the Strutinsky
smoothing is relatively local, certain oscillations
are still reproduced, while the global smoothing
procedure of Method II would eliminate them. This
may account for the differences of the two methods.
The oscillations apparently begin to reappear when
using a higher-degree polynomial.
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METHOD III —NORMALIZATION
BY ADJUSTMENT OF THE

VOLUME CORRECTION
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The calculation of the single-particle energies
involves the assumption of constant volume of the
nucleus versus deformation. The volume-conser-
vation term has been given in several forms, e.g."

FIG. 6. Deformations at energy minima for the vol-
ume-correction method with pairing. 0, GA =2.0;
6, GA2~3=2. 5; x, GA2~'=3 0

(u, (6) = ~,(1 —46'/3 —g 6') '"
and"

(dII(E) = (5II(1+ yC + ~f ),
where"

c = 6+ z6'+ 0(6') .

(3)

(4)

I

YOLUME CORRECTION

t 1

5TRUTIN SKY METHOD Q

These relationships are approximate and are rea-
sonable only for very small deformation. The
volume correction term in Eq. (3), for example,
approaches infinity for 6= &. Although a more ac-
curate volume-correction term can probably be
calculated from other considerations, it is conven-
ient for our purposes to introduce the constraint
that the volume-correction term must be of such
form that the ground-state energies of nuclides cal-
culated from the single-particle model must con-
form in general form to the ground-state energies
of nuclides calculated from the liquid-drop model.
This can be accomplished by equating the ground-
state energies versus deformation calculated from
the two models and by treating the shell-model
fluctuations versus deformation as "errors" in
the least-squares sense. This is iilustrated in
EIl. (6)

Z (6)/a(6) =X'+Z, f(6), (6)
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FIG. 5. Deformations at energy minima for method II;
energy as a seventh-degree polynomial of log of the sin-
gle-particle number.

FIG. 7. Ground-state energies versus deformation for
the three normalization methods. The energy intervals
indicated a,re 2 MeV.
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B(5) = 1+a5+ b5 +c5,
and we use the cubic form'~ of f, we get

E(5) = (K+ 1) + (K+ 1)a5+ [k+ (K+1)b]5'

+ t ha+ (K+ 1)c —m%1 5 + (h b- @8'a ) 5

+ (kc —m% b) 5 —(m% c)5 ~

(8)

The parameters, K, a, b, and e, can be determined
by a least-squares fit using only the first four
right-hand terms. The last three terms are then
calculated, used as a correction for the left side,
and the least-squares calculation is repeated. Con-
vergence is rapid.

Cubics were found to be adequate when fitting for
deformations from 6 = -0.5 to I5 = 0.5, but quartics
were necessary when extending the fit to 6 =1.
Care must be exercised that the number of defor-
mations entering into the calculation far exceeds
the power of the volume correction used. In these
calculations points were used for ~5 =0.1.

Minimum energy deformations calculated with
pairing appear in Fig. 6. Agreement with equilib-
rium deformations calculated using the Strutinsky
method is excellent. The calculated ground-state

where the E'(5) are the shell-model ground-state
energies calculated without the volume correction,
B is the volume correction, and the right side is
the liquid-drop-model energy. Only the shape
function, f(5), for the surface energy need by con-
sidered. The Coulomb energy which is also shape-
dependent is treated as an additive for both sides
of the equation, and the rest of the liquid-drop
energy is incorporated in the constant E and treated
as an unknown. E, is taken from Myers and
Swiatecki. '4 Other forms of the volume correction
can certainly be considered. It is convenient for
simplifying the algebra to consider the volume
correction as a dividing polynomial. From Eq. (6),
we get

E(5) =E'(5)/E, = (K'/E, )B(5)+f(5)B(5),

and if, for example, we assume that B is a cubic,

energies versus deformation are compared for the
three methods in Fig. 7. Differences from the other
methods can be noted for method II for light nu-
clides. Among the heavier nuclides the volume-
correction method gives oblate minima with lower
energies. Otherwise the curves are all very simi-
lar.

There are certain advantages of the adjusted
volume-correction method. The calculations are
not dependent on the number of single-particle
levels above the Fermi level used in the calculation,
nor are they sensitive to a formulation used to
represent the general trend of the single-particle
levels (e.g. the Hermitian polynomial in the Strutin-
sky method). Consequently there should be no dif-
ference in applicability to a shell model with an in-
finite potential well as illustrated here or to a
shell model with a finite potential well such as the
Woods-Saxon potential.

The adjusted volume correction method also has
the advantage that is is now possible to calculate
the energies of excited states versus deformation,
for once a usable volume correction is obtained,
the excitation energies are simply the differences
of the energies calculated for the excited state and
the ground state without regard to the volume cor-
rection divided by the volume correction, B. The
Strutinsky method may also be applied to excited
states. However, since either the volume correc-
tion is ignored or an incorrect one is used, and
since the volume correction is a multiplicative term
that does not disappear upon subtraction of the en-
ergy of the excitated state from that of the ground
state, an error is introduced. The magnitude of
this error is uncertain.
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