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The total and differential cross sections for x — Q elastic scattering in the 3-3 resonance
region are calculated using the first-order optical potential derived from the multiple-scat-
tering theory of Kerrnan, McManus, and Thaler. In order to include the 3-3 resonance and

generate a reasonable off-shell behavior of the m-nucleon transition matrix, a separable mod-
el is used to construct the z-nucleon transition matrix. The optical potential also includes a
proper transformation of the x-nucleon transition matrix from the x-nucleon to the ~-nucleus
c.m. frames. The results are compared with recent m -~60 elastic-scattering data and with

earlier m — C calculations.

I. INTRODUCTION

With the advent of meson factories, there will
be an increase in the study of nuclear structure
using the 7t meson as a probe. The basic m-nu-

cleon interaction has relatively well-determined
phase shifts that show the interaction to be reso-
nant and dominated by the 4= —,', T = —,

' channel over
a fairly wide energy range. In order to extract
detailed information about nuclear structure, a
reliable method of calculation should be estab-

lished, in which the resonant features and the
general dependence of the m-nucleon interaction
are correctly incorporated.

In an earlier paper, ' we studied first-order m-

nucleus optical potentials defined in the multiple-
scattering theory of Kerman, McManus, and Tha-
ler'; several models for the off-shell m-nucleon
transition matrices were used. The m-nucleon
collision matrices employed in the Kisslinger and
Laplacian (or local) optical models were seen to
diverge with increasing off-shell momenta, where-



1804 PHA TAK, TA BAK IN, AND LANDA U

as a separable potential model for the mN interac-
tion did display a reasonable fall off. Hence it
was concluded that the off-shell effects, and the
3-3 resonance, were reasonably well incorporated
into the m-nucleus optical potential by adopting the
separable m-nucleon interaction constructed by
Landau and Tabakin. ' Clearly, improved models
of the m-nucleon interaction could be invoked, but
our numerical studies indicated that the w-nucleus
cross sections are not sensitive to the detailed
structure of the off-shell m-nucleon transition ma-
trices as long as some appropriate off-shell fall-
off is included. Another important feature of our
earlier work is the inclusion of a proper transfor-
mation of the m-nucleon transition matrix from the
m-nucleon c.m. frame to the g-nucleus e.m. frame.

The first-order optical potential, which was con-
structed from the separable m-nucleon interaction,
was applied earlier to w -"C elastic scattering.
That study provided insight into the basic features
of m -"C data. For example, the downward shift
in the peak of the total cross sectiori, the variation
of the diffractive structure in the differential cross
section with energy, and the shift in the zero of the
real part of the forward-scattering amplitude were
examined and discussed in detail. Furthermore,
we concluded that the downward shift in the peak
of the total cross section is not an exotic effect,
but is mainly due to a broadening of the imaginary
part of the forward-scattering amplitude, caused
by multiple scattering and nuclear size.

In this work, we apply the first-order optical
potential of Ref. 1 to m -"0 elastic scattering.
(There have been several other calculations for
m -"0 elastic scattering using an optical-potential
approach~ ' or Glauber theory. ') The "0 calcula-
tion provides additional insight into the detailed
mechanism of m-nucleus collisions. Also, we
hope to determine the dependence of m-nucleus
elastic scattering on the number of nucleons.
Although higher-order effects such as w absorp-
tion by a pair of nucleons, interaction of the N*
isobar with nucleons in the nucleus, and two-nu-
cleon correlation effects are not yet included, the
main features of the data seem to be already ac-
counted for by the first-order optical potential.
However, to extract detailed information about
nuclear structure, these effects should ultimately
be included.

In Sec. II, the definition of the first-order opti-
cal potential is briefly reviewed (for details, see
Ref. I), and in Sec. III, the results of our v -"0
calculation are presented and discussed. A com-
parison of the m -"0 calculation with recent data'
suggests that the general features of the total and
differential cross sections are obtained using the
first-order optical potential. Also, a comparison

of this m -"0 calculation with our earlier n -"C
calculation indicates that the results of these two
calculations are systematically related.

II. FIRST-ORDER OPTICAL POTENTIAL

The m-nucleus transition matrix, T = [A/(A —I)]A',
is obtained from the optical-potential operator U

by solving the integral equation,

Io
E-K —H~+ iE

with A. denoting the nucleon number, K„ the kinetic-
energy operator for the 7t meson, and II„ the nu-
clear Hamiltonian. By virtue of Po (the projection
operator onto the ground state of the nucleus), no
intermediate nuclear excited states are present
in Eq. (I). Effects of the excited states are in-
cluded instead in the exact optical potential U,
which is defined by another integral equation,

with U = (A —l) r(E). Here 7 (E) is the transition
matrix for the scattering of a m meson from a nu-
cleon bound in the nucleus. In terms of the basic
pion-nucleon interaction (v), r(E) can be written
as,

7 (E) = v+ v . 7 (E) .9
E-K —IIg+ ze

(It is assumed here that the v-X interaction can
be adequately represented by a potential v.)

Using the multiple-scattering and impulse ap-
proximations, ' the first-order optical potential
is obtained;

U= U'=(A —l)~(E)

(multiple scattering approximation)

= (A —l)t((u)

(impulse approximation),

where t(&u) is the free pion-nucleon transition
matrix evaluated at some appropriate energy vari-
able &.

In order to solve Etl. (l), we need the many-body
matrix elements of U': (k', 0(U (k, 0). Here (k)
represents the state of a meson with momentum
k and isospin m„and (0) denotes the nuclear
ground state. For a spin-zero nucleus the first-
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order optical potential can be written as,

(k'0I &'lko& = g (A- I)(k'olt. (~)O„lko)
0!=p, 1

(p —q p) dp

where F„(p', p) = (0 lp ~,5(p,'. —p') 0„5(p, —p) I 0)
and Op 1 Oy i ~ v. Here q=k'-k and k, p denote
the initial-pion and struck-nucleon momenta, re-
spectively.

Since the nucleus is large compared to the m-

nucleon interaction range, F in Eq. (5) varies
more rapidly, as a function of nucleon momentum

p, than does the T matrix element. We can thus
approximate the integral be evaluating t at some
average value of momentum p = pp and factoring it
outside of the integral:

(k'0
I

U' lko) = g (A —I)(k', po- q I t„(~)lk, p.)p

(6)

where the form factor p„(q) =—fF„(p-q, p) dp is
related to the Fourier transform of the densities
of neutrons and protons within the nucleus. To
fully define t„ in (6), we now choose ~ to be the
on-energy- shell m-nucleon collision energy &
= (k,'+m, ')'"+ (p,'+m„')'" =E,(k,) +E„(p,). Here
k, is the on-shell pion momentum in the m-nucleus
c.m. and p, =-ko/A is the momentum of a nucleon
"frozen" in a nucleus of momentum -k, .

Various comments should be made about Eq. (6).
First of all, the factorization approximation (as-
suming t to be a slowly varying function of p} is
perhaps not a good enough approximation in the
resonance region. Therefore we have corrected
approximately for the effect of nucleon motion by
averaging the on-shell 7t-nucleon transition matrix
over the nucleon motion. Secondly, to solve Eq. (1),
the off-shell matrix elements (k' e k) of t„should
be known. A separable m-nucleon interaction
which exactly fits the on-shell scattering data has
been used to calculate these off-shell matrix ele-
ments. We feel that this separable model accounts
for the 3-3 resonance and is a physically reason-
able way to generate off-shell matrix elements.

Also, another point that should be stressed is
the transformation of the transition matrix from
the m-nucleon c.m. frame to the m-nucleus c.m.
frame. It is best to solve Eq. (1) in the v-nucleus
c.m. frame, whereas the phase-shift for the m-

nucleon scattering, and hence the on-shell w-nu-

cleon transition matrices, are tabulated in the
m-nucleon c.m. frame. The various models for
the off-shell behavior give the transition matrix
in the m-nucleon c.m. frame; this matrix must be

properly transformed to the z-nucleus c.m. frame.
The result of this transformation is a mixing of
different n-nucleon partial waves, which in our
previous work' was shown to be of great impor-
tance. The transition matrices in the m-nucleon
and the m-nucleus c.m. frames are related by
(k', p, —qlt((o) lk, p )=y(«'lt(~) I«), where we have
chosen p, = -k,/A (frozen nucleon in the nucleus).
Here Cv, &', and I( are determined using the Lo-
rentz transformation from the m-nucleon c.m. sys-
tem to the 71-nucleus c.m. system. ' The factor y
ls

E.(«)E.(«')E„(«)E„(«')
E~(k)E,(k ')E«(k/A) EN(k '/A)

where E, and E~ are energies of the m meson and
the nucleon, respectively. (Note that we have as-
sumed that the nucleon is frozen in the nucleus,
both before and after collision. )

In addition to the factor y, the angle between k
and k' is not the same as the angle between & and

Using the invariance of the four-momentum
transfer, we have

« ~ «'=E, («)E„(«')—E,(k)E,(k')+k k'.
An important effect of this relation is that any
partial wave of the m-nucleon transition matrix
contributes to the lower partial waves of the m-

nucleon transition matrix as seen in the n-nucleus
c.m. frame.

Having discussed these transformations, let us
return to Eq. (6). For isospin-zero nuclei like
"O and "C, the form factors for neutrons and

protons can be considered to be the same (which

is a good approximation for light nuclei, since ef-
fects of Coulomb force would be small. ) In this
case, the first-order optical potential becomes

=(A- 1)p(k'-k)

x (k ', po - q I 3 4/2(~) + —.
'

to,o (~) Ik, po)

where t„, and t,~, are the isospin —,
' and —,

' m-nu-

cleon transition matrices, respectively. (In this
paper we do not include the n-nucleon D and F
waves, which we had included in our earlier m -"C
calculation. ' The contribution of the m-nucleon D
and F waves to the m -"C cross sections was found
to be very small in the 3-3 resonance region. } The
nucleon form factor p(k' —k) used in our calcula-
tion is of the form,

p(q)=ll —,'nq'a, '(2+—3n) ']
x exp(-q's, „'/4), where n = (A - 4)/6 .
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The parameters a,„and a, are selected from the
analysis of electron-'60 elastic scattering' to be
a,h=1.70 fm, and a, =1.76 fm; this removes the
finite proton size. Thus, after a partial wave de-
composition of U' and T', the Lippmann-Schwinger
equation (1) becomes a one-dimensional integral
equation,

T,'(k', k; E(ko))

= U, (k', k; (u(ko))

„,U, (k ', k ";&I)(k,)) T,'(k ",k; E(kI)) )
E(k,) —E(k")+ie

(8)

Equation (8) is solved numerically using a matrix-
inversion technique developed by Haftel and Tabak-
in, now modified to deal with complex potentials.

The m-nucleus scattering amplitude is obtained
from the on-shell m-nucleus collision matrix as

f, (coso)=-( Ixg())+))A

&& TI'(ko, ko; E(ko))PI(cos9),

E„(k)E„(k)
E„(k)+ E„(k)'

E, and E„being energies of the m-meson and the
nucleus, respectively.

In terms of this m-nucleus scattering amplitude,
the differential and total cross sections are,

The relation between the "0 and "C results can
be understood by noting that the optical potential
is quite absorptive in the resonance region. Thus
the nucleus can be considered to be almost black,
and consequently the total cross section will be
proportional to the square of the nuclear radius.
For a constant nuclear density A O=A'" and there-
fore g„, will be proportional to A'". In addition,
for a perfectly black nucleus, o „,will be indepen-
dent of energy. Although the calculated total cross
sections do vary with energy, o, , for m -"0 and
m -"C do, to a good approximation, scale ac-
cording to a simple black-disk rule (Fig. 1):

(OIOI)x — l6O (R16O/B12C) X (g)OI) — )2

= (16/12)' "x (o„)),
In addition to the above mentioned relation be-

tween @to„both m -"0 and m -"C calculations
show that o „,peaks about 65 MeV below the cor-
responding 3-3 resonance peak. In order to under-
stand the origin of the shift, we have plotted the
imaginary part of the forward-scattering amplitude
[Imf(0)] vs TI;b (Fig. 2). The Imf(0) has a very
broad peak at about 210 MeV, quite close to the
3-3 resonance energy. The broadening is due to
the nuclear size and the multiple scattering of
pions from nucleons in the nucleus. Since o„,
=(4~)/kImf(0), the peak of oI.I will always be at

IOOO

—(cosG) =
I f» (cos0) I

'; 800—
Xy

v„) =—Imf» (cos8 =1).4g

III. DISCUSSION AND RESULTS

A. Total Cross Sections and Forward-
Scattering Amplitude

600—
E

b

400—

I
X I

I
I

I

l2vr-C
Consider the total cross sections first. In Fig.

1 the total cross-sections (v„)) for )I -"0 scatter-
ing at different )I-meson kinetic energies (T~») are
plotted. For comparison, o, , for m -"C is also
plotted. We see that the two curves are very
similar. Both calculations show a downward shift
in the total cross section peak from the correspond-
ing 3-3 resonance peak (-180 MeV). The amount
of shift (-65 MeV) is approximately the same for
both calculations (a„) peaks at 112 MeV for "0
and at 120 MeV for "C).

200—
x x x (I)- ) x (',6)'

tot ~--~2C

I I I I I I I I I I I I I I I

100 200 500
T" (Mev)

FIG. 1. The total cross section for 7( -~~O scattering
(continuous line) and for 71 -~2C scattering (dashed line)
as a function of 7t-meson kinetic energy. The crosses
are obtained by multiplying (a )~- 12c by (16/12)~3
(see text). Data are obtained from Ref. 11.
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an energy lower than the energy at which Imf (0)
peaks (because of the I/O factor}. Furthermore,
since the peak of Imf (0) is very broad, the shift
in the peak of o„, from the 3-3 resonance energy
is large. Thus„most of the downward shift in the
maximum of o „,is a result of muLtiple scattering
and nuclear size. It is not an exotic phenomenon.

To a lesser extent, "however, the shift does
depend upon details of the m-nucleon interaction,
such as its off-shell behavior. For example, the
degree of shift seems proportional to the "non-
locality" of the w-nucleus optical potential (which
is related to the mN off-shell behavior); the local
Laplacian potential gives the least shift, the "rea-
sonably" nonlocal separable-based potential gives
somewhat more of a shift, whereas the very non-
local Kisslinger model predicts a considerably
greater shift. '

There is a striking difference between the total
cross section data for "0 and our optical-model
results. The available data" do not show any
shift in the peak of o„,from the resonance energy.
This discrepancy between our results and the pres-
ent data must be resolved. Perhaps after precise
information about m -"O scattering becomes
available from the experiments planned at meson
factories, and after further development of the
theory, this difference will be resolved. Our re-
sults indicate a clear downward shift.

In Fig. 2 we have also plotted Imf(0} for the
m -"C calculation. Again, the carbon and oxygen
results are similar in nature, with both having a
broad maximum near 210 MeV. Also, when Imf(0)

for w -"C is scaled by (16/12)'", we get Imf(0)
for m -"0, to a good approximation.

Let us consider the real part of the forward-
scattering amplitude. Figure 3 displays Ref(0)
for m -"0 and for m -~C scattering. Both curves
show that the zero of Ref(0) is below the 3-3 reso-
nance energy [Ref,~(0) =0 at 195 MeV]. The
amount of shift is about the same for both curves
(39 MeV for "0 case and 35 MeV for "C case).
The slopes of the two curves [where Ref(0) =0]
are -0.049 fm/MeV for the "0 case and -0.041 fm/
MeV for the ~C case. Recent m-carbon elastic scat-
tering experiments have indicated a downward
shift in the zero of Ref(0) from the 3-3 resonance
energy. It would be interesting to see if the @-

oxygen elastic scattering experiments now in prog-
ress" will show such a shift in the zero of Ref(0).
In contrast to the optical-model predictions, we
note that the Glauber theory calculations do not
have a shift in the zero of Ref(0) from the reso-
nance energy —this represents an important dif-
ference between the two approaches.

B. Differential Cross Sections

In Fig. 4 we have plotted the elastic differential
cross section vs the angle of scattering at various
energies, The experimental results are from Ref.
7. The theoretical predictions using the optical
model agree surprisingly well with the data,

10 X~
X

X

o 0

0)
K

x
I

I

~--"c
2

(rmftoj) ~ (,p)inc ~a

IOO 200

T (MeV)

J & I ~ & I

300 400 I I I I I I I I I I I I I I

IOO 200
T" (Mev)

300

PIG. 2. The imaginary part of the forward-scattering
amplitude vs the m-meson kinetic energy. The contin-
uous curve is for vr —6Q and the dashed curve is for
m -~2C. The crosses are obtained by multiplying

f. Imf (0)j~- 12' by (16/12)~3.
1

FIG, 3. The real part of the forward-scattering ampli-
tude vs the x-meson kinetic energy. The continuous curve
is for the n' - 0 case and the dashed curve is for the
x -~2C case.
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especially considering that this is the lowest-
order theory with no adjustable parameters. The
position of the first minimum is given to within
3 by our calculation, whereas for "C (Fig. 5),
the calculated first minimum is about 6o lower
than the experimenta1. one in the resonance region.
We found that the inclusion of Coulomb scattering,
or the use of different optical models, does tend
to change the height of the minima and maxima in
the cross sections, but not their position which is
related to the nuclear shape. The discrepancy in
the position of the first minimum for carbon thus
seems related to the deformation of "C in its
ground state. To get better results for "C, one
should probably use a form factor which accounts
for the deformation of "C.

The theoretical cross sections in Fig. 4 are
calculated with our optical potential in which a
separable mN interaction is used. The cross sec-
tions calculated for "0 depend on the different

optical models in much the same way as found in
our "C calculation; the Laplacian and Kisslinger
models predict progressively less large-angle
scattering, with the separable and Laplacian mod-
els rather close for 9 & 99 .

Although the oxygen results seem rather good,
there are some minor differences with the data
worthy of comment. One of them concerns the
location of maximum diffractive structure. Ex-
perimental differential cross sections appear to
have their maximum diffractive structure at T,"b

=170 MeV, whereas the calculated (dQ/do) is
most diffractive at 7',"= I60 MeV. This difference
(and other differences such as disagreement
around the second maximum) may be accounted
for by higher-order corrections to the first-order
optical potential. We feel that, rather than ad-
justing parameters of the first-order optical po-
tential to fit the data, one should try to explain
these small deviations by higher-order correc-
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FIG. 4. The differential cross sections for the m -~~0
calculation at T~~ =160, 170, 220, 230, and 240 MeV.
Data are obtained from Ref. 7,

FIG. 5. The differential cross sections for z -~2C cal-
culation at T"b =120, 150, 180„200, 230, 260, and 280
MeV. Data are obtained from F. Binon eta/. , Nucl. Phys.
317, 168 (1970).
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tions. In this way one can perhaps learn about
details of nuclear structure such as nuclear cor-
relations and differences in neutron and proton
densities. "

To sum up, the first-order optical potential
based on multiple-scattering theory and a separ-
able mN interaction has been used to calculate
m

-' 0 total and differential cross sections in the
3-3 resonance region. The peaks in the calculated
0 „,for both nuclei exhibit a downward shift from
the resonance energy. Most of the shift is ex-

plained on the basis of a broadening of Imf(0) due

to multiple scattering, and nuclear size. Further-
more, the Ref(0) is shown to have a zero at an
energy (-39 MeV) lower than the 3-3 resonance
energy. The calculated total cross sections for
m -"0 and m -"C are related by a simple A.' '
law, caused by the strong absorptive nature of
the optical potential. Finally, the calculated dif-
ferential cross sections for oxygen are compared
with the recent experiment of Bercaw et al. ; the
agreement is quite good.

~Work supported in part by the National Science
Foundation.
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