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Projection of good angular momentum states has been performed for the deformed self-
consistent solutions of even Ti, Cr, and Fe isotopes for the central Yukawa and Kuo-Brown
interactions. The results from the two interactions are generally similar though striking
dissimilarity in the level spacings is also observed in quite a few cases. The percentage
composition of the different angular momentum states in a given deformed solution has been
also calculated and compared for both the interactions. The energy spectra, when compared
with the known experimental results, are found to agree qualitatively.

I. rNTRODUcTION

In a recent paper by the authors, ' results of self-
consistent Hartree-Fock (HF) and Hartree-Fock-
Bogoliubov (HFB) calculations have been reported
for even Ti, Cr, and Fe isotopes with an axis of
symmetry. These calculations were carried out
assuming a 40CR spherical core Rnd the extracore
nucleons were allowed to interact via two-body
central Yukawa and renormalized Kuo-Brown2 in-
teractions. Qn the one hand, this study provided
useful information on the shapes of the nuclei to-
gether with the effect of the pairing term of the
Hamiltonian on the structure of the wave function
and the binding energy. On the other hand, a com-
parative study of the microscopic, as well as mac-
roscopic properties of self-consistent solutions
for a given isotope, was natux'ally possible for two
entirely different nuclear interactions.

It is well known that the deformed intx'insic wave
function corresponding to an axially symmetric
shape can be expressed as a superposition of good
angular momentum states, and this fact following
the pioneering work of Peierls and Yoccoz' can be
utilized in projecting from the HF wave function
the components of good angular momentum states.
The spectra obtained from this technique can be
directly compared with the observed energy levels.
Many such calculations for Ip and 2s-id-shell nu-
clei4 ' have been x'eported in the literature. How-

ever, the mathematical fox'malism is found to be
inadequate when pairing correlations between the
nucleons are present. The framework for angular
momentum projections from deformed BCS or
HFB wave functions has been laid out by Gnishi
and Yoshida. ' Using the procedure of Ref. 7 some
calculations have been recently reported. ' In spite
of the usefulness of this formalism, ' its applica-
bility is limited in some practical cases due to the

corresponding to the various two-nucleon states
axe the same as those used in Ref. 1 and are also
given below:

&30, = -46.9 MeV, V,s = -34.4 MeV,

= 19.4 MeV, V „=40.9 Me V .
In Eq. (I) S and T denote the multiplicities of the

spin and isospin. The range of the interaction, p,
is taken to be equal to the Compton wavelength of
the pion. The harmonic-oscillator wave functions
used to evaluate the two-body matrix elements for

assumption of partial unoccupation probability in
all single-quasiparticle states that make their ap-
pearance in the calculation. The necessary modi-
fication to the Onishi-Yoshida formalism has been
made by Beck, Mang, and Ring, ' who obtained ex-
pressions devoid of any such singularity. In the
present wox'k we have used the results of Ref. 9
with suitable modifications.

It may be mentioned that in this paper, for any
given isotope, the states with good angular mo-
mentum J, are projected from the intrinsic de-
formed wave function obtRined from the self-con-

. sistent HF or HFB calculations reported in Ref. 1,
though in principle the projection should precede
variation to obtain good angulax' momentum states
with the lowest possible energies.

In Sec. II we give a brief description of the math-
ematical details used in Befs. 7 and 9 as adopted
for our present calculation. The results of the
calculations are presented in Sec. III. The calcu-
1Rtlons hRve been carrfl. ed out fox' the centx'Rl

Yukawa and Kuo-Brown (referred to as HJ inter-
action in the text, since it is based on the Hamada
Johnston po'tential) interactions. The strengths of
the central Yukawa (CY) interaction,
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the CY interaction correspond to the oscillator
range parameter b =1.96X10 "cm, in agreement
with the value used by Kuo and Brown. The Kuo-
Brown matrix elements used in the calculation are
those calculated specifically for the Of 1p -shell.
Section IV contains summary and conclusions.

II. MATHEMATICAL FORMALISM

As mentioned above, the intrinsic wave function
corresponding to a deformed shape of the nucleus
can be written as

may be obtained from

J d (8)H(8)d(cos 8)
EJ=

1 d'(8)N(8)d(cos8)

where

If(8) =&c Iffl 4(8)& &4-=IHe *e'Tl ~&,

N(8) =(C I e(8)&-=(C I
e-*'"I4».

(8)

IC'»& = Zaf I~»& (2)

where K is the angular momentum projection
quantum number about the axis of symmetry and
is zero for an even-even axially symmetric nu-
cleus. Rotating this wave function through an an-
gle Q [Q is an abbreviation for the three Euler
angles: Q-=(o. , P=8, y)], we obtain

Numerical calculations of the integrals in Eq. (8)
have been performed by a number of workers. 4 '
However, none of the methods employed in Refs.
4-6 can be applied in the HFB deformed wave
functions where the single-quasiparticle states
are in general only partially occupied.

In the deformed BCS or HFB" state with axial
symmetry

I c scs &
= Q (v'" + v'"c'" c.'-'" ) la&, (11)

where R(Q) and D»~» denote the rotation operator
and rotation matrix as defined in Rose." If we
now define a projection operator

where

c'" =pe'"a C'" =Q c'"a, , (12)

Following Bayman, "one can write Eq. (11) as

Pjj» =
( 2) J)D jj»(Q)R(Q)dQ,

z (2J+1)

such that

(4)
lcscs &=N, exp(-,'Q f sa a, )lo), (13)

az I~»»& =P»» I~»& (5)

then on making use of Eq. (4.21) from Rose, '0 for
K=O, one obtains

a~'=
2 t d00(8)(4le ' zl4&sin8d8. (6)

(2Z+ 1

0

Taking the shell-model Hamiltonian,

y&TZ
m tTg ~CTzf+8 ~ UjTz cjn~a js s ~s, ~n t

and

(14)

H= p(el & lp&a„as+ —,
' Q (cjpl V„ly6&a atsasaz,

ae cay/

(7)

the energy of a state with angular momentum J

In Eq. (11) the summation is taken over all the
single-particle states (i.e., I j m„& and

I j„m )).
Following Onishi and Yoshida' it can be shown

that

N(8) =N, N,'(det[1 M+(8)])'",

1 I' 1 1
+4 Q(o'plI' ly6&QI 1,~(8) f s 1 M(8) fPs

asyp p
I + Ij fX

(16)

(17)
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m„,(e) =-gf '.„(8)f„. (18) I"'„„(8)=-,' g{c»7.pT;I V„ly7,57..)p', (8), (26b)
8~, 6

As pointed out earlier, the matrices f and M(8)
become singular in the HF limit. In order to
avoid the situation, following Beck, Mang, and
B1ng,' one can 1ntroduce the quas1part1cle opera-
tor

&» =Z(»8»»as +vs»as)
8

where the chal ge indices have been suppressed,
the summation over P includes the time reversed
states and u and V are given by

~'„;( 8) = ,' g(n~, P~, I v„ly~. 5~,&y„",(8). (26c)
y6

In the limit 8-0, E(8)-H(8), and N(8)-1. Having
obtained the values of H(8) and N(8) for different
values of 8, one can obtain E~ and a,.' by making
use of Eqs. (6) and (6), respectively. The rotated
BCS wave function which is needed in the evalua-
tion of H(8) and N(8) is given by

(2ob) a'( )8=e ""a-'e"" (26)

f=cU 'Vc,

f (8) =.(8)U '(8) V-(8).(-8), —
(21)

{22)

The above equations enable one to write Eq. (14)
and N, N,' in Eq. (15) as

On employing Eq. (19) in Eq. (28) and introducing
a complete set of eigenfunctions, it is found that

A»'( 8) = Q gu(e)]„a~a+ [v( e) ]8,. a,], (29

»»(8) =H(e)u and V(8) =H(8)V. (so)

U»U»(e) =[det U det U(e)]'". (22)
~, m&0

Employing Eq. (22) it can be seen that

N (8) = (det[c(e) c]det[»»(e)»»+ v(e)V] )'"
=-[dere(e)] '"

K(8) = u(8)»»+ v(e)v.

On employing the antisymmetric property of
f '(8) it is easy to show that

p(8) =„,=v(e)z-'(8)v,M(8)
(25a)

y(8)=1 ~ 8
f'(e) =use '(8)v(e),

1
(25b)

&»(8) = - f =-vz-'(8)n(e) .1
(25c)

Z(e) = = g ~'„p'.„(8)+gTr "[r(e)p(e)],
H(e)

a7'g 72

(26a)

The matrices y(8) and g(8) are antisymmetric and
K '(8) is the transpose of K '(8). In terms of p(8),
y(8), and X(8), we can write H(8) after introducing
the isospin quantum numbers and ultimately E(8)

The matrix A(8) is the familiar d „(8)matrix as
given in Ref. 10.

III. NUMERICAL RESULTS

A. Procedure for the Calculation

Calculation of E~ and a,.' is made possible from
a given intrinsic deformed wave function with the
help of Eqs. (6) and (6) of the previous section.
It is evident from the structure of integrals in
Eqs. (6) and (6) that they are in general not analy-
tically integrable. The numerical procedure of
16-point Gaussian quadrature, with points dis-
tributed in the integration range from P(-=8) =0 to
»» and symmetric about »»/2, is therefore employed
in evaluating them. In a few cases the results
were checked with the 32-point quadrature and

were not found to be different except in the J=8
state. The computer time was also saved by
realizing that for axiaDy symmetric even-even
nuclei ~

N{P) =N(w- P), H(P) =H(~ P)-
Since sinp and d M~(p) are symmetrical about

—,»», N(p) and H(p) were calculated only for those
8 points of the 16-point quadrature which fall
between 0 and —,

' w. In the beginning of the calcula-
tions, however, the computer program was
checked for symmetry by calculating N(p) and

H(p) for all the 16 points.
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TABLE I. Values ofN(p) =(e~e s ~[8) andH'(p) =(8~He S ~~4)/(4 [H~ 8) for 48Ti, IDCr, and 18Fe prolate HFB
solutions along with the oblate solution for Fe, all corresponding to the CY interaction. Since N(p) and H' {p) are sym-
metrical about 90', only the values between 0 and 90' are given.

P in degrees
@Fe (Prolate)
N (P) H' (P)

"Fe (OMate)
&(P) H'(P)

0.9511
4.9904

12.0951
22,0129
34.3888
48.7757
64.6580
81.4514

0.998 420
0.955 526
0.765 490
0.415 114
0.124 250
0.031616
0.027 559
0.017053

0.998 590
0.957124
0.772 648
0.428 086
0.133883
0.036 096
0.031525
0.019927

0.997 886
0.946 540
0.724 867
0.346486
0.077 879
0.006 710
0.000 266
0.000165

0.99S 121
0.947 221
0.727 220
0.350 299
0.080 265
0.007 262
0.000 350
0.000 204

0.998 956
0.966 403
0.817 994
0,518 531
0.211575
0.053 163
0.010 371
0.003 098

0.999053
0.966 520
0.818186
0.518 779
0.211 720
0.053 197
0.010 393
0.003 124

0.998 741
0.962 634
Q,SQQ 454
0.487 274
0.192 500
0.055 543
0.019 103
0.011601

0.998 854
0.962 761
Q.SQQ 588
0.487 152
0.191829
0.054 772
0.018 595
0.011238

8. Apphcability of the Pmjection Technique

Tables I and II show the values of N(P = 8) and—

H(p =- (I) as a function of p (in degrees) for "Ti,
"Cr, and "Fe for the CY and HJ interactions,
respectively. For "Fe the results for both pro-
late, as mell as oblate shapes, are given. In
order to see the behavior of H(P) in comparison
with N(P}, the values of H(P) given in the tables
have been divided by the self-consistent energy
(Csc, ) H~ Csc), and will be referred to as H'(P).

A comparison of H'(P) thus obtained with N(P)
shoms that for a given P, these values are very
similar. Homever, their dissimilarity is reflected
in a pronounced way if we consider H'(P}/N(P},
i.e., E(P} of Eq. (26a} divided by (Cscs ~H(4scs).
The quantity E'(P) thus obtained is plotted as a
function of P for all the isotopes mentioned above
in Figs. 1 and 2 for the CY and HJ interactions.
Since the curves are symmetrical about ~ m, only
the values betmeen 0 and 90' are plotted. As mill
be seen later in this section, for a given isotope,
the difference in the energy spectrum for the CY
and HJ interactions arise mainly due to the struc-
ture of these curves. For the present, homever,
the saliant features of these curves mill be dis-
cussed.

From the figures it is clear that these curves
for E'(p) can be classified into three groups.
Those for which E'(P) ~ 1 fall in the first group
and the curves for "Ti and "Cr belong to this
group. The projected energy fox the J=0 state
(E~.o) for a wave function having this charac-
teristic is found to be considerably belom the self-
collsistell't 81181gy minlmuII1 (4scs jHi 4 ac s) Tllls
is so because for 8=0, do~,

'= 1, and Eq. (8) re-
du ee sto j H'(P) d(co sP }

j N(p)d(cosp)

Since H'(p} and N(p) both decrease with increase
in p with N(p} decreasing somewhat faster than
H'(p), it follows that I;H'(p)d(cosp)/f; N(p)d(cosp)
& ly giving Eg-Q «+Bgs Since both the energies
are negative, the J=0 state mill lie belom the self-
consistent energy minimum. For higher J states,
tile VRI'lRt1011 of dos(p) witll p decl'eRses the nuII181'R-

tor in Eq. (8) more than the denominator resulting
in the higher J values lying above the J=O state
Thus for E'(P) ~ 1, the projection technique is
expected to give meamngful results.

The second group for which E'(P) =1 can be
divided into tmo categories on the basis of the

TABLE II. Values ofN(P)=(8[e S ~[8) anBd'(P) =(8[He 'S~~[8)/(8)H[4) for 4Ti, 5 Cr, and IBFe prolate HFB
solutions along with the oblate solution for Fe for the KBRME for the HJ interaction. Since N(p) and H'(p) are sym-
metrical about 90', only the valves between 0 and 90 are given.

P in degrees

0.9511
4.9904

12.0951
22.0129
34.3888
48.7757
64.6580
81.4514

0.997 830
0.942 583
0.703 955
0.302 100
0.045 762
0.002 509
0.002 229
0.001 065

0.997 825
0.945 802
0.719353
0.327 731
0.058 507
0.003 VOV

0.003 717
0.001659

0.997 497
0,933434
0.666 606
0.259 548
0.036 673
0.001 332
0.000 013
0.000 003

0.997 506
0.934 490
0.671 212
0.265 733
0.038 942
0.001 503
0.000 015
0.000 003

0.998 441
0.951 611
0.747 035
0.384 563
0.103451
0.013571
0.001 232
0.000 205

0.998 509
0.952 386
0.750 467
0.390 378
0.107 204
0.014 486
0.001346
0.000 225

0.998 274
0.954 653
0.762 443
0.412 612
0.124 216
0.020 284
0,002 60V

0.000 611

0.998 355
0.954 787
0.762 744
0.412.893
0.124 138
0.020130
0.002 550
0.000590
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FIG. 1. Plot of E'(P) vs P for 4 Ti Cr, and Fe

isotopes using the CY interaction. 0.5
IO 20 30 40 50 60 70 80 90

P (dep)

FIG. 2. Plot of E'(P) vs P for 4 Ti, 5 Cr, and 5 Fe
isotopes using the HJ interaction.
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FIG. 3. Comparison of experimental (EXP) I, see C. Lederer, J. Hollander, and I. Perlman, TaMe of Isotopes (Wiley,
New York, 1967)l and calculated spectra of even Ti isotopes for the CY and HJ interactions.
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FIG. 4. Comparison of experimental (EXP) I.see C. Lederer, J. Hollander, and I. Perlman, Table of Isotopes {Wiley,
New York, 1967)l and calculated spectra of even Cr isotopes for the CY and HJ interactions.
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FIG. 5. Comparison of experimental (EXP) [see C. Lederer, J. Hollander, and I. Perlman, Table of Isotopes {VFiley,
New York, 1967)l and calculated spectra of even Fe isotopes for the CY and HJ interactions.
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TABLE III. Calculated self-consistent energy (E= (4 (H ( C)), ground-state energy with respect to E, i.e., (Ez 0
—E),

and the percentage distribution of the angular momentum (a& ) in the deformed intrinsic states of even Ti, Cr, and Fe
isotopes for the CY interaction. All the energies are given in MeV. The numbers in the parentheses correspond to the
spherical BCS solution,

Isotope
&elEle) Percentage ofay in the wave function 4

J'=0 J =2 J =4 J =6 J'=8

44Ti
48Ti
48Ti
50Ti

HF(P)
HFB(P)
HFB(P)
HF(P)

-28.140
-48.740
-68.430
-87.110

(-S7.49)

-2.178
-2.959
-3.649
-2.142

5.883
7.513
9,824

15.018

24.339
28.219
30.390
28.581

29,627
30.842
30.826
28.469

22.956
20.812
19.881
21.549

11.955
9.037
6.631
4.192

48Cr
50Cr
»Cr

HFB(P)
HFB(P)
HF(P)

-59.580
-82,160

-102.980
(-103.88)

-1.150
-0.981
-1.428

5.839 24.510
6.868 27.746

14.207 42.920

29.319 22.180
30.602 20.631
31,129 9.202

11.886
9.717
2.077

HFB(P)
HFB(P)
HF(P)

-124.120
-94.630

-118.830
(-119.66)

-1.409
-1.076
-1,041

6.351 26.228 30,260 21,580 10,686
11.299 40.220 32.484 12.945 2.731
22.792 56.436 18.852 1.846 0.096

HFB(P)
HFB(P)

HFB(O)

-141.540
-162.260

9,121 33.556
11,490 39.007

31.384
31.047

17.028
13.660

6.524
3.910

behavior of N(P). For a deformed intrinsic shape
N(P) decreases with increase of P from 0 to ,'n. —

It can be seen from Eq. (()) that in such a case,
the projected spectrum will be degenerate with
the self-consistent energy minimum, with each
angular momentum state J having different compo-
sition mixture g~ in the deformed wave function.
In the strict sense such a case was not confronted
in the present calculation though "Fe (prolate) for

the CY interaction (Fig. I) comes quite close i'o it.
In the second category of this group fall those iso-
topes which have a spherical shape. For such
cases, E'(p) and N(p) are always unity, and the

projected energy E~, will be identically the same
as the spherical BCS energy minimum. The com-
position of g~' will be unity for the J=O state and

zero for all the other states.
Isotopes for which E'(P) ~ I fall into the third

TABL& IV. Calculated self-consistent energy (E=(C ~E)e)), ground-state energy with respect to E, i.e., (Ez 0
—E),

and the percentage distribution of angular momentum (nz ) in'the deformed intrinsic states of even Ti, Cr, and Fe iso-
topes for the KBQME for the HJ interaction. All the energies are given in MeV.

T~e of
wave function

(e]E/c) Percentage of a +2 in the vrave function 4
4=0 J =2 4=4 J =6 J=S

44T ~

48Ti
48Ti
50Ti

-28.600
-50.760
-70.630
-89.430

2+312
1.736

-2.404
-1.587

6.040
6.299
8.185
9.562

24.844 29.876
25.826 29.901
31.341 31.993
34.394 32.089

22.736
21,687
19,103
17.043

11.628
10.982
7.214
5.584

48C r
50Cr
5'Cr
"Cr
52Fe
54Fe
58Fe
58Fe

-63.250
-86.&60

-109.090
-128.760

-1.708
-1,528
-2.078
-2.605

2 / 171
-1,883
-1.753
-2,747

5.634
5.370
5.369
6.546

3.880
4,510
5.257
7.724

23.785
22.832
22,853
26,813

17.284
19.664
22,420
30.152

28.834
28,154
28.228
30.343

23.743
25.730
27.848
31.07V

- 22 321
22.936
22.503
21,184

22.378
22.548
22.461
19,318

12.379
13.000
12.991
10.315

16,26V
14.936
13.252
8.346
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group .For such cases the numerator in Eq. (8)
for J=O will always be less than the denominator
and therefore EJ 0& EBCS. The projected spectra
will therefore be characterized with the J=O state
lying above the self-consistent energy minimum
and the higher 8 states lying below the 4=0 state
Such a spectrum is physically unacceptable. The
only deformed solutions of this type which con-
fronted in the present calculation correspond to
"Fe (oblate) for both the interactions. In these
cases the results were verified by checking the
degeneracy of the rotated solution by calculating
its self-consistent energy,

C. Projected Energy Spectra

The projected spectra of the even Ti, Cr, and
Fe isotopes corresponding to the prolate-deformed
intrinsic shapes are compared with the known ex-
perimental results in Figs. 3-5, and the percent-
age distribution of the angular momentum in the
deformed intrinsic states are listed in Tables III
and IV. In Figs. 3-5, the positions of the higher
angular momentum states are drawn relative to
the ground state J=O' for each isotope and the
ground-state energies corresponding to the J=O'
state (E~ 0) for the various isotopes are shown
in Table V, and compared with experiment. Since
for "Ti, "Cr, and "Fe, the CY interaction gave
spherical BCS solutions, the energy levels for this
interaction are obtained from a somewhat less
bound (as compared to the spherical BCS solution)
HF wave functions having prolate deformation.
It can, however, be seen that for these isotopes

the ground-state energy EJ, is larger than the
corresponding spherical BCS energy shown in
Table III. In the following, an element-by-element
discussion of the results is presented.

Ti IsotoPes

It is evident from Fig. 3 that for "Ti there is
very good agreement between the projected spec-
tra for both the interactions though the agreement
with the known 2' and 4' levels is only qualitative.
A comparison of the projected spectrum from the
H J interaction with the shell-model calculation of
Bhatt and McGroryis shows quite good agreement
for the 6' and 8' levels, but the 2' level is some-
what more bound in the present calculation. It
should be pointed out that the shell-model calcula-
tion had been performed by taking the same single-
particle energies for both neutrons and protons
while they are, as in Ref. 1, taken to be different
in this work. Consequently, the validity of such
a comparison may be questioned. However, it
should be emphasized that as long as the relative
differences in the single-particle energies for
neutron and proton are not drastically different,
a projection calculation using the same single-
particle energies for both particles will not give
significantly different results. A discussion on
the Z& K=28 even isotopes is given later in this
section.

Cx Isotojes

The calculated and observed spectra of even Cr
isotopes are shown in Fig. 4. To the knowledge

TABLE V. Comparison of the ground-state energy EJ 0 for the CY interaction and KBRME for the HJ interaction
with the experimental binding energy relative to the 40Ca core. The Coulomb correction due to the extracore protons
is made according to the prescription described in Ref, l. The energies are given in MeV.

Isotope

CY
EJ 0 with Coulomb

correction

KBRME
EJ 0 with Coulomb

@J=0 correction

Experimental
binding

energy with
respect to
40Ca core

44T;
"Ti
48Ti
50T;

48Cr
50C r
"Cr
'4Cr

52Fe
'4Fe
58Fe
58 Fe

-30.32
-51,70
-72.08
-89.25

-60.73
-83.14

-104,41
-125.53

-95.71
-119.87
-143.30
-162,35

-29.66
-51.04
-71.43
-88.61

-58.09
-80.54

-101.84
-122.99

-89.83
-114,07
—137.57
-156.68

-30.91
-52.50
-73.03
-91,02

-64.96
-88.49

-111.17
131.37

-102.48
-127.40
-149.86
-171.44

-30.52
-51.84
-72.38
-90.38

-62.32
-85.89

-108,60
-128.83

-96.60
-121.60
-144,13
-165.77

-33.53
-56.13
-76.64
-95.73

-69.66
-92.99

-114.29
-131.95

-105.63
-129.69
-150.20
-167.89
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of the authors there are no excited states known
for "Cr. It is worth pointing out that for "Cr the
experimental levels obey the relationship

neutrons, the percentage composition of the J=0
state increases but decreases for the J=8 state.

E~ = Eo+Aj(j+'1) + B[j(j+ 1)], (33)
E. Ground-State Energy in the J=O State

where A and B determined from a least-square
fit are found to be A =0.134 MeV, and B=-0.0014
MeV. The projected spectrum for the HJ interac-
tion, though only in qualitative agreement with
experiments, has a purely rotational structure
with A. =0.043 MeV and B=0.0. For "Cr, and ~Cr
as well, the HJ interaction gives spectra which
exhibit quite a bit of rotational character, but
this trend is not observed experimentally. For
"Cr better agreement is obtained with the CY
interaction. Shell-model calculations by Barman
Boy, Baj, and Bustgi, "and Bustgi et al."assum-
ing a "Ca core and employing the H J interaction
also give improved agreement for this isotope
than obtained here.

Fe IsotoPes

The calculated and experimental spectra of even
Fe isotopes are shown in Fig. 5. It is seen that
the projected spectra of "Fe, ~Fe, and "Fe for
the HJ interaction, show rotational structure,
favoring the same value of the parameter A in
Eq. (33) for "Fe and '4Fe as the one for "Cr, but
A=0.0475 MeV for "Fe. The projected spectra
of "Fe for the prolate HFB solutions differ dras-
tically for the two interactions which follow from
the criteria involving E'(P) discussed earlier.

D. Percentage Admixture of Good Angular

Momentum States in the

Deformed Wave Function

A comparison of the percentage admixture of
good angular momentum states can be made with
the help of Tables III and IV. For "Ti, both the
interactions show striking similarity in aJ'. How-
ever, this behavior changes slowly and becomes
significantly different for "Ti as for this isotope
the self-consistent solution for the CY interaction
is taken to be HF whereas for the H J interaction
it is deformed BCS.

For "Cr both the interactions give similar corn-
position of the different angular momentum states
in the deformed wave function. A similarity of
the wave functions for this isotope is also evident
from a comparison of the pickup strengths in vari-
ous single-particle states. ' However, for "Cr
the pickup strengths for both the interactions dif-
fer significantly even though the percentage ad-
mixture composition is strikingly similar.

From Table IV it is also seen that for the HJ
interaction with the increase in the number of

and

P a,'Ez
E] J ee0ga'

J &0

g a,'=(1 —a, =,').

(35)

(35)

On approximating E' by EJ „one can get an
upper limit for AE, i.e.

hE&(E~-0- E~,)(1—a~ 0 ) . (37)

An exact calculation employing Eq. (35) and
Tables III and IV shows that E' usually lies con-
siderably higher than the energy of the J=2 state.
Consequently (E~ 0- E') in Eq. (34) is quite large
as compared to ~E~=, —E~-, ~.

One can now apply these considerations to ~Fe
in Fig. 5. From this figure it is clear that with
respect to the HJ interaction the spectrum for the
CY interaction is much spread out. It is, there-
fore, expected that in comparison with the H J
spectrum E' for the CY spectrum will be much
higher than EJ,. However, from Tables III and
IV it is seen that the magnitude of hE for the HJ
interaction is larger than that for the CY inter-
action. This is so because the much larger per-
centage composition of aJ' in the J =0 state for
the CY interaction decreases the second term on

It is customary to compare the binding energy
of a nuclear system with the self-consistent ener-
gy minimum after applying a correction for the
Coulomb repulsion amongst the extracore protons.
However, for a deformed structure, energy of
the projected J=O state rather than the self-con-
sistent energy, should be used for comparison.
In the present calculation, a depression of the
4 =0 ground state relative to the respective self-
consistent energy minimum (E =(C ) H j4)) is given
in Tables III and IV and the comparison of the
ground-state energy in the J=O state with Coulomb
correction and experimental binding energies is
made in Table V. An attempt is made to under-
stand the behavior of this lowering of the J=O
state in terms of its percentage mixture together
with the structure of the projected spectrum. To
achieve this, for an axially symmetric system,
one can write for the depression in energy

aE=E~ 0-E=E~ o(1 —a~ 0) —E' Q a~
J &0

(34)

where
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the right side in Eq. (34) causing a reduction in

From Table V it is evident that for all the Ti, Cr,
and Fe isotopes, the calculated ground-state en-
ergies in the J=O' state, when corrected for the
Coulomb interaction, are quite close to the ex-
perimental numbers, for both the interactions.
The numbers for the HJ interaction are, however,
found to show slightly better agreement. As
pointed out in Ref. 1, this is not surprising, since
the T=1 force in the HJ interaction is somewhat
stronger than in the CY interaction. It may also
be pointed out that the agreement is improved for
both the interactions in the present case over that
obtained in Ref. 1, where the comparison was
made directly with the self-consistent energy
(C (H~4) rather than with E~ „which has some
additional binding ~, as described above.

F. Z (N = 28 Nuclei with the CY Interaction

It has been pointed out earlier that the self-
consistent HFB calculation with the CY interac-
tion yields spherical BCS shape for "Ti, "Cr,
and "Fe isotopes but their prolate HF minima lie
only slightly higher in energy; 0.3 MeV for ' Ti.,
0.9 MeV for "Cr, and 0.8 MeV for "Fe. It is,
therefore, quite pertinent to examine the J =0
state projected from these HF wave functions to
see if they fall below their BCS minima. From
Table III it is clear that this is true for all the
three isotopes. Since the projected spectra agree
well with experiments particularly for the 2' state,
it is therefore essential to calculate the other
properties for these isotopes to decide in favor
of one of the solutions. The 2' states calculated
employing spherical BCS solutions and random-
phase approximation also agree rather well with
experiments. " The pickup strengths for neutrons
and protons from the BCS and deformed HF wave
functions also hardly differ, "making a choice be-
tween the two solutions very different. A possible
way out is to examine the spin of the odd-proton
system. This can be easily accomplished if the
even Z & N=28 nucleus is regarded as a spherical
system and the unpaired particle is put in the low-
est partially occupied single-particle state. It is
found that, in agreement with a detailed calcula-
tion" the spherical BCS solutions explain the spins
of "V, "Mn, and "Co, but the deformed HF solu-
tions fail to do so.

IV. CONCLUSIONS

In the preceding section we have presented the
results of calculations of the even Ti, Cr, and
Fe isotopes in terms of the projection method.

It may be pointed out that the projection procedure
described in Sec. II is equally useful for deformed
HF and deformed BCS solutions. In Sec. III, a
specific criterion for the applicability of the pro-
jection method is given. From the discussion of
the projected spectra in Sec. III, it is clear that
the agreement with experiments varies from
quantitative in some cases to qualitative in most
cases. It is also noticed from a comparison of
the projected spectra for the CY and HJ interac-
tions that they quite often differ. These differ-
ences may be attributed to the differences in the
two-body matrix elements of the two interactions.
For example a comparison of the matrix elements
of the form (jj~~ V„jjj„)~r in the j=-', and jr=-,'
states shows that for T=O and J=1, 3, 5, and 7,
they are more attractive for the CY interaction
as compared to the Kuo-Brown renormalized
matrix elements (KBHME); for T =1 and J=O
and 2, the KBRME are somewhat more attractive
whereas for J'=4 it is the CY interaction which is
more attractive. Similarly it is found that for
j=-,', the matrix elements for the HJ interaction
are more attractive for T=O and J=2, 4, and 6
in comparison with their counterparts for the CY
interaction, but for J=1, 3, 5, and 7 the matrix
elements are almost equal for both the interac-
tions. For T = 1, and J= 1 and 2, the CY interac-
tion is more repulsive. A similar comparison
for j=- and j& =-and j=—, and j& =

2 matrix ele-~ 1 ~ 7 3 7

ments and others accounts for most of the dif-
ferences in the spectra. The close agreement
in the level spectrum of 'Ti is essentially due
to the similarity of the two wave functions and
the effect of the differences in the interaction
show up only moderately in the higher states. For' Cr, the HJ interaction gives a purely rotational
spectrum but it is only in qualitative agreement
with experiment. The spectra with characteristic
rotational features were also obtained for many
Fe isotopes for the HJ interaction. The fact that
the projected spectra are sensitive to interactions
makes one hopeful of obtaining better results with
improved matrix elements calculated with realis-
tic nucleon- nucleon potentials.
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Level Structure of Ti for E„(3.5 MeV*
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The reactions 4 Ti(p, p'), 4 Ti(n, n'), Ti(3 C]., 3~C].'), and V(p+) have been employed to
measure excitation energies, lifetimes, and y-decay branching ratios for Ti levels with

E„&3.5 NeV. The results for excitation energies (in keV) and corresponding lifetimes (in

psec) are: 983.35+0.10, 6.0+1.3; 2295.5+0.15, 2.4+0.6; 2420.3+0.15, 0.035+0.007; 2997.4
+0.25, 0.160+0.032; 3223.5+0.20, 0.042+p ~g4, 3239.7+0.35, 0.044+~p'gpss, 3358.7+0.65, 0.350
*0.087; 3370.7+ 0.30, 0.018+ 0.007. Reduced electromagnetic-transition matrix elements have

also been derived from the data. No evidence is found for a doublet at an energy of 3.224 MeV.

The previous data on the 3.224-MeV level are reexainined in the light of the present results,
and the tentative assignment J~ =3' is consistent with all data. A tentative assignment of
J"=4+ is given to the level at 3.240 MeV. The present results are in reasonable agreement
with the predictions of a model in which the valence nucleons are confined to the f7/2 orbital.

I. INTRODUCTION

The first comprehensive attempt to explain the
properties of nuclei in the f„, shell was the calcu-
lation of McCullen, Bayman, and Zamick (MBZ).'
These authors considered a model in which the ex-
tracore nucleons were confined entirely to the f„,
shell, and level spectra were computed using ma-
trix elements for the residual two-body interaction
derived from the experimental spectrum of 4'Sc.
Many of the general features of the nuclei consid-
ered were well reproduced by the model, although
the number of experimental levels was generally
greater than the predicted number. MBZ also
pointed out an interesting feature of the wave func-
tions for a nucleus such as "Ti, which is its own

cross-conjugate: the wave functions are either
even or odd under the interchange of protons and

neutron holes. This property sometimes produces
two levels of the same spin which lie close togeth-
er in energy, and explains the close juxtaposition
of two 6' levels near 3.5-Me7 excitation energy in
48Ti

A further consequence of this odd-even property,
sometimes called the signature of the wave func-

tion, has been discussed by Lawson. ' The E2 tran-
sition matrix element connecting two such levels
is proportional to e~+ e„, where e~ and e„are the

proton and neutron effective charges; the plus sign
applies if the levels have opposite signature, and

the minus sign applies if the signatures are the

same. To a good approximation, e~ -e„should be

equal to e, the free proton charge, even in the

presence of core polarization effects. ' Thus, mea-
surement of E2 transition matrix elements between

levels of the same signature provides a sensitive


