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A nonperturbative derivation of the Brueckner approximation to the ground-state energy of
nuclear matter (with standard choice of hole and particle energies) is given within the frame-
work of the method of correlated basis functions. The structure of the factor-cluster (FIY)
expansion of the expectation value of the Hamiltonian with respect to a trial function incor-
porating short-range correlations in a general fashion, is analyzed for a uniform extended
medium of fermions. With a special choice of correlated wave function, the Brueckner ap-
proximation is extracted from the FIY expansion by selective summation of two-body combin-
ation terms to all orders in the smallness parameter K associated, in this case, with both
Brueckner-Bethe-Goldstone and FIY energy expansions. A reexamination of the numerical
comparison of conventional Brueckner and Jastrow methods carried out earlier for two sim-
ple models of nuclear matter leads to the conclusion that it is inadvisable, at least in a
Jastrow calculation satisfying the average Pauli condition, to incorporate the O(K) contribu-
tion of the analog of the dispersion correction of reaction-matrix theory without at the same
time including the O(K) contribution of the analog of the Bethe-Faddeev term. For the uni-
form extended medium for the Jastrow choice of wave function, there is a formal cancella-
tion of these two three-body contributions, the scale of this cancellation being governed by
the size of ~. In the numerical example considered, x is about 0.22 and the cancellation goes
something like +14 MeV-15 MeV=-1 MeV. These findings, when juxtaposed with the stan-
dard Brueckner results for the simple models in question, suggest that a departure from the
standard prescription of hole and particle energies in reaction-matrix theory may be neces-
sary when z is sizeable —as in liquid He and the high-density neutron gas, as well as equi-
librium nuclear matter described with some potentials.

I. INTRODUCTION

The most thoroughly explored device for evalu-
ating the ground-state energy of a normal system
of A strongly interacting fermions is the Brueck-
ner-Bethe-Goldstone (BBG) expansion. The first
two terms of this expansion, the one-hole-line
term plus the two-hole-line term, comprise the
famous Brueckner reaction-matrix approxima-
tion, ' which has been energetically applied to
nuclear matter and finite nuclei. Formation of
the third term involves Bethe-Faddeev summa-
tion3' ~ of an infinite series of three-hole-line
diagrams. Extensive literature dealing with the
forrnal and numerical aspects of the BBQ scheme
is available. ' "

The last few years ha.ve seen a marked revival
of interest in the search, initiated by de-Shalit and

eisskopf ' and Dabrowski" and carried on by
Moszkowski, " for connections between the BBG
theory, which is built upon perturbation theory
with respect to dynamically uncorrelated basis
functions, and other many-body theories which

start with dynamically correlated basis functions
(CBF).
. These latter methods are called, generically,
CBF methods. As a first step one considers the
expectation value of the Hamiltonian with respect
to the basis function which has the best chance of
describing the ground state. The simplest example
is the familiar Jastrow variational approach;
another well-known example is the unitary-model-
operator scheme. Obviously we have in mind
"true" rather than "model" CBF theories, to use
the terminology of Prange and Klein' and Bran-
dow. ' Extensive discussions of formal and prac-
tical aspects of CBF methods belonging to this
class are to be found in Befs. 15-24.

It was established by Day that the BBG expan-
sion can be related directly to the simple Jastrow
example of CBF if a certain "classical" approxi-
mation is made. " At about the same time, Wong"
extended the numerical comparison of reaction-
matrix and Jastrow methods begun by Hackman,
Chakkalakal, and Clark (BCC)" and pointed out
the absence of an explicit dispersion contribution
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to the Jastrow pair approximation to the energy.
By introducing (adding in one place and subtracting
in another) an auxiliary single-particle potential,
he was able to generate the Brueckner reaction-
matrix approximation from the Iwamoto-Ya-.
mada"" (IY}cluster expansion of the energy
expectation value with respect to a trial wave
function containing state-dependent correla-
tions. " Other workers have arrived at the same
result by essentially the same technique, and
have gone on to consider the connection between
the cluster-expanded CBF expectation value (the
"extended Jastrow scheme") and BBG scheme in
higher orders. ' ' "

Wong's result was given more consistent inter-
pretation in an earlier contribution by the present
authors. " Here we shall look further into the
formal and numerical aspects of the CBF-BBG
connection at the two-body level.

In Sec. II we present the fundamentals of the
extended Jastrow scheme. The factor-cluster
formalism' ' ' is used to develop the expecta-
tion value of the nuclear Hamiltonian with respect
to a general correlated trial wave function O' =E4.
Here 4 is an independent-particle-model ground-
state wave function which would be adequate for
an initial description of the system in the absence
of strong short-range interactions (in our case the
ground-state wave function of the Fermi gas) and
E is a symmetric correlation operator satisfying
the cluster property. This cluster procedure ef-
fects an automatic decomposition of the expecta-
tion value into linked one-body, two-body, . . . ,
n-body, . . . , A. -body parts. We then establish,
for the uniform infinite system, a further de-
composition of the n(~2)-body part of this ex-
pansion [the so-called factorized Iwamoto- Yamada
(FIY) expansion" "] into two-body, three-body,
. . . , n-body combination terms. "'" The m-body
combination term, 2 &m &n, contains only matrix
elements referring to m or fewer-body subsys-
tems. (The n-body combination term is called
the "proper" n-body part. ) An explicit classi-
fication of the contributions to one-, two-, three-,
and four-body parts, or clusters, is provided.

As a first step in the general program of ex-
pressing BBG theory in CBF (more specifically,
FIY) language, a certain class of two-body com-
bination terms contributing to two-body, three-
body, . . . clusters wiQ be singled out for closer
study. Upon taking the two-body correlation oper-
ator of the CBF scheme to coincide with the wave
operator of the Brueckner reaction-matrix approxi-
mation (at least in the Fermi-sea subspace of two-
body states), we shall, in Sec. III, demonstrate
two theorems which accomplish an embedding of
the Brueckner approximation (with standard choice

of propagator renormalization} into the FIY clus-
ter expansions of Sec. II and amount to a non-
perturbative derivation of this approximation which
gives it a variational interpretation. Especially,
we shall see how Wong's connection can be ob-
tained without recourse to the introduction of an
auxiliary single-particle potential into the cluster
formalism. The two-body combination terms which
are singled out from the three-body, four-body,
. . . clusters comprise the dispersion correction
of the Brueckner approximation. ' ' '2 ' 3 They
may be considered as arising from a "dispersion
effect" even when the two-body correlation oper-
ator is not specialized to the Brueckner choice,
thus allowing one to make a "dispersion correc-
tion" to a simple two-body Jastrow calculation.

Some observations on the structural or diagram-
matic relations between higher-order FIY and
BBG (or perturbation-theoretic} terms are col-
lected in Sec. IV.

In Sec. V we reconsider, in the light of the for-
mal relations uncovered in Secs. II and III, the
numerical comparison of conventional Brueckner
and Jastrow methods carried out for a simplified
model of nuclear matter by BCC ' and subsequent-
ly examined by Wong. " It is found quite unwise
to supplement the two-body Jastrow result by a
dispersion correction, without incorporating the
remaining three-body contributions, because of
a near cancellation of the two-body combination
term of the three-body cluster by its proper three-
body part. There remains a substantial discrep-
ancy between Brueckner and Jastrow results for
the simple central potentials assumed. This dis-
crepancy must be due to the large values of the
wound parameter ~ ("smallness parameter" of
BBG theory) associated with these potentials. It
is suggested that in circumstances where e be-
comes sizeable (in high-density nuclear and neu-
tron matter, hypernuclear matter, and liquid 3He;
in studies of off-shell effects in nuclear matter),
a more careful examination of the three-body
Bethe-Faddeev term of the BBG expansion is in
order.

II. STRUCTURAL ANALYSIS OF CONTRIBUTIONS
TO THE FIY EXPANSION-

A SUMMARY

We begin with the "extended Jastrow" ansatz'9'3~
for the trial ground-state ket of the A-nucleon
system,

where ~4) is the totally antisymmetric ground-
state ket of a suitable independent-nucleon model
and E is a symmetrical operator designed to
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(e (II ie)
(4 f4)

(II.3)

of the ground-state energy with respect to the
trial ket ~4') can be evaluated by means of a linked-
cluster expansion, in particular the FIY expan-
sion" "'" in which the terms are arranged ac-
cording to the number of occupied orbitals —"hole
orbitals" —involved:

E =E, +(n.E), +(~E), + ~ ~ ~ +(n.E)„. (II.4)

The term E, is the ground-state energy of the
input independent-nucleon model and the index
n on (b,E)„counts hole orbitals. The nuclear
Hamiltonian H is herein assumed to have the usual
form

H =T+V=Q t(i)+ Q v(ij),
I~i &/~A

with t(i) the kinetic-energy operator for nucleon i
and v(i j) the interaction operator for nucleons i,j.

Specializing to uniform, extended nuclear mat-
ter, the model ket ~C) is taken to be the unit-
normalized ground-state ket of a Fermi gas of
A nucleons. With this choice, the term E, in (11.4)
is the kinetic energy of the Fermi-gas ground
state, T

~
4') =E, ~4), and the term (&E)„, 2 & n &A.,

is the n-body cluster contribution to the energy
shift as described in Refs. 19 and 32. In passing
to the many-body limit, we may drop all contri-
butions to E which are of order unity or less com-
pared to A. All surviving contributions to a given
(&E)„can be expressed in terms of matrix ele-
ments of induced or effective two-, three-, four-,
. . . , n-body potentials w, (12), w, (123), m~(1234),
. . . , w„(1 n); this produces a very natural
separation of each cluster addend into structural-
ly distinct parts. Such a classification was car-
ried out in detail for the two- and three-body
terms in Ref. 19. Here we shall merely collect

introduce short-range correlations. The correla-
tion operator I", which we presume to be defined
for an arbitrary number n of particles, 1 & n &A,

is required to possess the cluster property. By
the cluster property is meant a sufficiently rapid
factorization according to

E(1".l m ."n) E-(l" l)E(rn "n)

as the particle set fl ~ /f is moved far from the
particle set fm ~ ~ nj. We take E(1)=1 for sim-
plicity, it being understood that we have already
made the best choice of single-nucleon orbitals.
Special examples fulfilling the stated require-
ments are the ordinary Jastrow ansatz"' "and
the unitary-model-operator ansatz.

The expectation value

the earlier results along with the results of a
corresponding analysis of (n.E)4. A more elabo-
rate discussion of the structure of the FIY expan-
sion, and therewith of the more familiar IY expan-
sion"' "' "' "'" in which the terms are arranged
according to the number of independent hole or-
bitals involved, will be given in another paper.

The two-body term (b,E), represents a simple
pair approximation; it may be written

(t E), =g(ij(~, (ij). ,

w, (12)=
2 E~(12)[t(1)+ t(2), E(12)]

+ —,
' E (12)v(12)E(12) + adj . (II.7)

(t E)' = Q ( tk~,
~

tk).

(n,E)~" = —P q, ,(i k (w, I i k), . (II.10)

Here we have defined

n;, -=(ij I
E'(»)E(») —1

I
i j). , (II.11)

which may be recognized as the departure of the
norm of the correlated two-body ket E(12)

~
i j),

from unity. The induced or effective three-body
potential is a straightforward extension of the two-
body expression (II.7) to the case of three

Some notational conventions must be explained
at this point. %e will always use the letters i, j,
k, l in labeling the unit-normalized one-body kets
of which (4') is built. Thus (i), ~j), (k), )l)
represent "occupied" or "hole" orbitals, in the
present instance Fermi-sea orbitals. The letters
P, q will be used to tag arbitrary one-body kets
of the assumed independent-nucleon model. The
subscript a, when attached to an independent-
nucleon ket ~Pq ), turns that ket into a unit-
normalized, antisymmetrized multibody ket con-
structed from the one-body kets ~P), ~q), ~ ~ ~ .
When attached to a matrix element (P'q' ~ ~

~
oper-

ator ~Pq ), the subscript a turns that matrix
element into the matrix element computed with

respect to the bra (~P'q' ),)~ and the ket
~Pq ), . A sum over i, j, k, or l will mean a
sum over all occupied, i.e., Fermi-sea, orbitals.

The three-body term (b,E), is composed of a
proper three-body part (b,E)~'~ and a two-body
combination part or term~' '~ (b.E)@~:

(t E), =(~E)',"+(t E)&'&,

where
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particles,

w, (123) = —,
' Et(123)[t (3), E(123)]+ —,

' Ft(123)v(12)E(123)——,
'
w, (12) +cycl. + adj . (II.12)

(IL 13)

where

By means of the same procedure as used in Ref. 19, (4E), can be classified into two a-nd three-body
combination parts (AE)," and (AE)~' and a proper four-body part (b,E)~~:

(t».E), =(SE)~ +(b,E),' +(t»E)',

(6 E) (44)= Q (ijkl[w, ~ij kl), (II.14)

(gE)(3) (gE)($)(z) + (~E)(3)(2)

with

(AE)( )(" =-—' Q q;,„(i l )w, )i l&, ,
ijk1

(aE),' (' = -2 g ));z(i k l (w, )
i k l &, .

i jkJ

The new ingredients are

));,» =
& tjk ~(E (123)E(123)—[Et(12)E(12)+cycl. ] +2j ~i jk),

and the diagonal Fermi sea m-atrix elements of the effective four-body potential w4(1234) defined by

(II.15)

(II.16)

(rr. 17)

(II.18)

w ~(1234) +w ~s(1234) = —,
' Et(1234)[t (1) + t (2) + t (3) + t (4), F(1234)]+—', [Ft(1234), t (1)+ t (2) + t (3) + t (4)]E(1234)

+ Ft(1234)[v(12) + v(13) +v(14) + v(23) +v(24) +v(34)] E(1234)

—[w3(123) +w~(124) +w3(134) +w3(234)] —[wa(12) +w2(13) +w2(14) +w2(23) +w2(24) +w2(34)],

w~ (1234) =[E (12)E(12)—1]w2(34)+[Et(13)E(13)—1]w (24)+[Et(14)F(]4)—I]w (23)

+[E (23)E(23) —1]w,(14)+[E (24)E(24) —l]w, (13)+[Et(34)E(34)—1]w,(12).
The two-body combination part begins in this order to assume a richer structure,

(gE)(2) (i) E)(2)(l) + (gE)(2)(2) + (gE)(2) s

(11.19)

(II.20)

with

(~E)(:)")= Z n;, n;.[&illw. Itl&. +&j llw. Ij l& ],
i jkl

(t E)(») =-,' g ~,,~„&ik [w, ~ik&. ,
ijkl

(i),E)() = —' Q (ij (Ft(12)E{12)—1(kl&, (kl fw, /tj). .

(rr. 21)

(rr. 22)

(11.23)

It is easy to detect that (II.23) is a reducible
four-body part in the sense that it involves only
three independent hole orbitals or "hole lines";
it therefore contributes to the three-body term
of the IY expansion in independent hole lines. The
rest of the IY three-body term is, of course,
given by (b,E)s.

A "smallness parameter" E for the IY or inde-
pendent-hole-line ezpansion28, t . 38, xs may be de-
fined in terms of a suitable average, with respect
to Fermi sea orbitals, of the quantity g;j. It is
convenient to average over the Fermi sea, and

define

=1(=-~ Z )I;g
ij

(II.24)

v;,
-=&tj ~

[1-E'(12)1[1-F(12)]
~

t j&. , (II.25)

the norm of a sort of two-body defect ket re-
presenting the distortion of the two-body ket
E(12)~i j&, due to correlations, along with its

It is useful to define, in addition to q;, of (II.15),
a quantity
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Fermi-sea average AK, "'2O the ground-state energy is given by'

K=-
A

(II.26) E~ =E + g (sg IG(e, +e&)lij&, =E +—' p u;,

The point is that ~ is the analog of the (super-
ficial) "smallness parameter" of the BBG ex-
pansion. ' '

It must be emphasized that the IY expansion is
not a strict Taylor-series expansion in (, since
the various contributions to the cluster develop-
ment are in general of too complicated structure
to allow integrals like q;, , not to mention aver-
ages over them like )jA, to be factored out.
More properly, ( assumes the role of an order-
ing parameter, the two-hole-line term being O($'),
the three-independent-hole-line term, O($'),
the n-independent-hole-line term, O($" '), . . . .
One has here merely a device for classifying con-
tributions and defining successive cluster approxi-
mants to the energy. Whether or not the $-classi-
fication scheme provides a good rule for grouping
cluster terms rests on the convergence obtained
with it in numerical application to the given physi-
cal problem.

Further caution is in order in regarding g as a
smallness parameter: unlike K, it is not in gen-
eral a positive-definite quantity. However, we
shall be primarily interested in special cases in
which the correlation factor E(12) satisfies the
"average Pauli condition, " meaning

(III.1)

with the reaction operator C taken "on the energy
shell" and e; = i; + u;. The one-body potential u(i )
appearing in the propagator of G is supposed to be
specified in the conventional manner, (p I ul q)

+P~Pc~

P inside Fermi sea,

p outside .

(III.2)

Accordingly, the hole potential is to be deter-
mined self-consistently from on-energy-shell
diagonal reaction-matrix elements with respect
to Fermi-sea orbitals, a prescription urged and
motivated by Bethe, Brandow, and Petschek' and
others"' "which is almost universally accepted. '
The best choice of particle potential is more a
subject of debate ''4'" 4'

To relate this scheme to the CBF method in its
extended-Jastrow guise, we make the identifica-
tion already asserted in Refs. 26, 29, 30, and 32,

(11.2V)

Then the smallness parameter g collapses to the
wound parameter K.

III. EMBEDDING OF THE BRUECKNER
APPROXIMATION INTO THE FIY FORMALISM-

TWO THEOREMS

In the Brueckner reaction-matrix approxima-
tion, the two-body approximation of BBG theory,

Thus we specialize the general state-dependent
two-body correlation operator E(12) of the ex-
tended Jastrow formalism in such a way that it
gives precisely the Bethe-Goldstone ket when
operating on the pair ket I ij&, .

It is now elementary to express the hole poten-
tial energies u; and the Brueckner ground-state
energy E~ in the language of the FLY cluster for-
malism.

Application of the Pauli principle for virtual excitations in the medium, viz.

(Pq I
1 —E(12) I ij&, = 0, one or both of P, q inside Fermi sea,

and of the familiar Bethe-Goldstone equation, satisfied by E(12)Ii j)„produces"
u; =Q (ij IEt(12)v(12)E(12)Iij), +P (ij IE~(12)[i(1)+t (2)+u(1)+u(2) —e; —e&]E(12) I

i j&, ,

(III.4)

(III.5)

or, adopting the notation of (II.V),

ui =2 &ij lu'2lij&. +2 &ij IE (12)[u(1)+u(2)-u —u&]E(12)l'j&. (Irr. 6)

Thus we see that the Brueckner energy may be expressed as

z, =z, +(~z), +(n v)„
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in which (t),E)2 and (hU), have just the form of ordinary two-body cluster terms (simple pair form},

(«).= Z (ii I~. Iij&. ,
f &j

(b. U), = P (ij jF~(12)[u(1)+u(2) —u; —u, ]F(12)fi j), .

(III.8)

(IH.9)

These last two formulas fit precisely into the
schemes devised in Ref. 32 for inclusion of dis-
persion effects, i.e., for the inclusion of effects
of an external potential, within the extended Jas-
trow framework. Appealing to that analysis [es-
pecially to "Example (c)"], we arrive at the theo-
rem:

(i) The Brueckner aPProximation Es to the
ground-state energy can be viewed as the tseo-
body cluster approx~nation to the e~Pectation
value (4 fHs f4)/(4'

f 4) of the Hamiltonian Hs =T
+ V+U —U0, 'Nhere U- U0 is an auxiliary external

potential defined by

U=g u(t), Uje) = U, fe». (III.10)

Obviously a complete knowledge of the correlated
ket j4) =F

f
4) is not called for; all that is needed

is a specification of the mode of action of F(12)
on the two-body Fermi-sea kets fij), in accord-
ance with (III.3).

We now establish a second theorem which com-
prises a revealing amplification of the first, and
allows us to dispense with the artifice of an ex-
ternal potential. Exploiting (IIL2), Eq. (III.6)
may be cast into the form

u, =P (i j f~2 jij).—Q q;, ( +uu, ). (III.11)

With se, and g;& fixed, this provides an integral
equation for u;. We presume there is no non-
trivial solution of the homogeneous equation. Then,
iterating (III.11) and inserting the resultant ex-
pansion into (III.1), we come to

Es=E, + ~~ (ij j(v2 fi j).

—Q )),,( i k f(v, f
i k). + Q q, ,q, „[(i E f(o, f

i l.),
sjk s jkl

+(jl fu), fjl),]+ ~

Comparison of this expression with (H. 6), (II.10),
and (II.21) yields

E =E +(t)E) +(nE)') +(nE)""+ . (III.13)

Although an explicit demonstration has not been
given, there is every reason to believe that the
higher-order terms represented by dots in (IH. 13)
are also present, as two-body combination terms
of fifth and higher order, in the cluster expansion

(II.4). Therefore we assert:
(ii) The Brueckner aPProximation Es to the

ground-state energy can be viewed as a selective
summation of t(vo-body combination terms of the
cluster exPansion of the exPectation value (4 jHjC)/
(@j4) of the given Hamiltonian.

The selected cluster contributions of theorem
(ii), when of three-body order or higher, will be
referred to as dispersion contributions, since
their sum reproduces precisely the dispersion
correction contained in the Brueckner approxima-
tion based on the conventional choice (III.2) of one-
body potential.

The variational interpretation of the Brueckner
approximation can be carried to a deeper level
within the FIY scheme by following Scheer and
Schutte": the Euler-Lagrange equation obtained
by varying the expression E2+(t2E)2+(t) U), with
respect to F(12), subject to the Pauli condition
(III.4) as Lagrangian constraint, is just the Bethe-
Goldstone equation. Thus one may achieve a
variational underpinning of the choice (III.3) of the
two-body correlation factor.

In the concluding section the numerical study
of BCC" will be carefully reexamined in the light
of the formal connections between Brueckner and
extended Jastrow methods which have been ex-
plicated above. To set the scene, we shall at this
point extend the terminology "dispersion contribu-
tions of conventional type" to the higher-order
(three- or more-hole-orbital) two-body combina-
tion terms

[(gE)(2)] (n E)(2)

[(n E)(2) ] (n E )(2) (1)

[(~E)' ].="., "
isolated in theorem (ii), irrespective of the choice
of F(12). These contributions have a simple struc-
ture and can readily be incorporated into an FIY
evaluation of the energy for arbitrary F(12). One
can capture the complete "dispersion correction"
for given F(12) by solving the integral equation
(III.11) and substituting into E, +—,'Q, u;. But this
may not actually be required in practice, if the
parameter f $ j is sufficiently small. Truncation
of the expansion Q"„=2[(&E)(2)]~[with [(b,E),2)]„
= (t),E)2) at the term O($), or at most the term
O(P), may be adequate. Furthermore, if the ma-
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P(«)'"] =(«), —2$(&E), + =(1+25) '(«), ,
tf =2

(III.15)

even when
~ $~ is not particularly small (but still

less than —,'). In Sec. V we shall apply these for-
mulas for the Jastrow ansatz, E(12) =f(r»), in

the special context of the test models of nuclear
matter considered in Ref. 27.

IV. STRUCTURAL CORRESPONDENCES

BETWEEN FIY AND BBG CONTRIBUTIONS

With the choice (III.3) of two-body correlation
operator (which we adopt throughout this section)
the matrix element q;;, first appearing in (b E),',
can be rewritten as

q;; =(ij J [1 —F (12)][1—E(12)] f
i j), . (IV.1)

Evidently, it describes the excitation of a pair
from Fermi-sea orbitals i, j to orbitals outside
the Fermi sea, with subsequent deexcitation to
the original pair state. The factor 1 —E(12}cre-
ates a two-particle-two-hole state; the factor1-I (12) destroys it. The matrix element
( kf~w, ~ik), in (AE),"~ describes the (effective)
interaction, at an intermediate stage, of the hole
in i with a vacuum particle in the Fermi-sea or-
bital k. In such terms, adequately generalized,
a structural correspondence of certain of the con-
tributions to the FIY expansion of Sec. II with
contributions to the BBG theory or to the general
reaction-matrix expansion or to the ordinary linked
perturbation expansion (these being convention-
ally represented by Goldstone or Brandow dia-
grams' ' ' ' ' ")may be set up.

Obviously (AE)„being in pure pair form and

describing the interaction of two vacuum particles
in Fermi-sea orbitals i, j through the irreducible
effective two-body interaction w, (12), has the same
structure as a first-order perturbation correction,
or as the lowest-order reaction-matrix contribu-
tion to the BBQ energy shift. From the above it
is now clear that (b.E),'~ has the same structure
as the hole-bubble contribution (including all ex-
changes) of third order in the Goldstone perturba-
tion expansion or in the general G-matrix expan-
sion. ' The proper three-body part, (aE}p', cor-
responds structurally to the three-hole-line Bethe-
Faddeev sum of BBG theory, ' describing, as it

trix elements g;; remain near enough to their
Fermi-sea average, g/A, then the approximation

(III.14)

should be sensible. If so, then the "dispersion
correction" may be simply but effectively ab-
sorbed by summing a geometric series,

does, the interaction of three vacuum particles in
Fermi-sea orbitals i jk, through the (in general
irreducible) effective three-body interaction
w, (123)." To go further, the reducible portion
(b,E)'P of the four-body FIY cluster has a struc-
ture identical to that of the hole-hoJl. e contribu-
tion to the three-independent-hole-line portion
of the BBG energy. ' In the same spirit, (&E)~,""'
may be likened to the four-hole-line "saturation-
potential" contribution to the BBQ energy, dis-
cussed by Brandow. ' ' " The quantity (&E)",~~'~

has the structure of the BBG diagram (type A3)
of Fig. 8 of Ref. 33, modified by a hole-bubble
insertion (corresponding to (i I ~w, ~

f I), or
(j I jw, ~j l), ) into one or another of the propagat-
ing hole lines. The quantity (b,E),'~h is like the
aforementioned third-order hole-bubble contribu-
tion, except that the hole in orbital i interacts
simultaneously with tseo vacuum particles in orbi-
tals k and l via the irreducible effective tAxee-
body interaction w, . To interpret (AE)43~~'~ in BBG
language, we insist that F(123) be defined so that
the operator in curly brackets in (11.18) creates
and subsequently destroys a three-particle-three-
hole state (Pauli condition generalized to three
particles). Then (d E)~,'~~" has the structure of the
Bethe-Faddeev sum, but with a hole-bubble at-
tached to one of the hole lines at a level where
three particles are still excited. Finally, (AE)', '4
corresponds structurally to the four-body analog
of the Bethe-Faddeev sum. " It is clear that a
diagrammatic representation of the contributions
to the FIY expansion may be set up which closely
resembles those devised by Goldstone"" for ordin-
ary linked perturbation theory and for the general
G-matrix expansion, but it is also clear that ad-
ditional graphical ingredients, similar in nature
to Brandow's or Day's compact-cluster boxes, ' ' "
would have to be introduced. An important distinc-
tion between the FIY and the G-matrix expansion
should be noticed: in the former there is (owing
to the absence of energy denominators) nowhere
any direct reference to off-energy-shell quanti-
ties, all such complications being buried in the
E(1 n) and the w„(l ~ n). Some may regard
this feature as an advantage, albeit only a formal
one. [In practice, one has to construct the
E(1 n) and the w„(1 n) starting from the
interaction v(12), and this process will in general
take one off the energy shell. ]

V. NUMERICAL COMPARISON OF BRUECKNER
AND ORDINARY JASTROW METHODS-

A REAPPRAISAL

The findings of Sec. III show the way to a fair
comparison of the Brueckner reaction-matrix
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E, +(bE), + g [(bE)'„"],
)i= 3

(V.2)

with the Brueckner energy E~ (Th. roughout this
section all energies are to be regarded as ener-
gies Pew Particle. ) Alternatively, one may com-
pare

approximation and the ordinary Jastrow method,
which obtains upon specialization of the FIY for-
malism via the ansatz

E(1 n) = g f(r;;), n=2, . . . , A . (V.l)
y~i &j~n

First of all one may compare

data. 4' In the potential designated IY, the singlet-
even-state OMY potential is assumed to act in
both singlet- and triplet-even states. " The extra-
core interaction in odd states is taken zero in
both examples.

In the Brueckner calculation, the recipe (III.2)
was adopted for the one-body potential u(i). In the
Jastrow calculation, the three parameters of the
analytic form

0, x&c,
f(~) =

I I —exp[- p, (r ,—c)]}(1+v exp[- p,,(r —c)]},

r&c,
E, +(bE), (V.3) (V.4)

with E& sans dispersion correction. To make the
Jastrow two-body correlation function f(r») re-
semble the Brueckner E(12) of (III.3) as closely
as possible, one is led to impose the average
Pauli condition (II.27) on this function. In prac-
tice, f(r) is determined by minimization of a
truncated cluster expansion for the Jastrow en-
ergy expectation value, subject to this and other
physically or mathematically motivated restric-
ions 27. 20. 4s

The proposed comparisons would, however,
only tell how well a state-independent Jastrow
correlation factor, so determined, can simulate
the Brueckner correlation factor of (III.3), as
measured by how well (V.2) reproduces the Brueck-
ner energy and (V.3) the Brueckner energy with-
out dispersion correction. We would have to know
the correct energy for the given potential with
sufficient accuracy, to say whether a calculation
with or without dispersion correction is prefer-
able. It is therefore obvious that a consideration
of higher-order effects (ai least the three-body
effects in both BBG and Jastrow approaches) is
necessary before one or the other conclusion can
be drawn for a given physical problem (symmetri-
cal nuclear matter, neutron gas, liquid 'He, . . . ).
This point was brought out forcefully in Ref. 32.

With this fact in mind, we shall reexamine the
numerical comparison of Brueckner and Jastrow
methods which was carried out some time ago by
BCC" for two simplified models of symmetrical
nuclear matter.

BCC performed standard Brueckner and Jastrow
calculations for two central test potentials de-
signed more or less to bracket the physical situ-
ation in nuclear matter. Both potentials have state-
independent hard cores" of radius c =0.6 fm. The
potential designated OMY has, in even states, a
spin-dependent exponential attraction outside the
hard core, with range and depth parameters ad-
justed so as to fit the low-energy two-nucleon

were determined by minimization of

E, +(bE), +(bE), +(bE)' " (V.5)

subject to the average Pauli condition and to cer-
tain desirable inequalities involving the cluster-
expanded Jastrow radial distribution function. "'"
We shall refer to the correlation function deter-
mined in this fashion as the Chakkalakal f. In
terms of the IY arrangement of cluster contribu-
tions to the energy expectation value, viz. ,

/+/+A+ ~ ~ ~ +$0 ~ ~ (v.6)

E, +(1+2m) '(b, E), (V.7)

subject to the average Pauli condition. In both f
determinations, higher-order cluster contributions
(past two-body) were allowed to influence the cor-
relation parameters —the full three-independent-
hole-orbital contribution in the case of the Chakka-
lakal procedure, the dispersive two-body combina-
tion series in the case of the Wong procedure.

It was Wong who first called attention to the
absence of an explicit dispersion correction from
the Jastrow two-body energy. "'" Of course this
fact is obvious from the outset, since the explicit
dispersion correction to the energy is O(~'),
while the two-body Jastrow energy (with g = v) is
by definition O(z ). On the other hand, if disper-

in which 5„ is the part of 8 implicating exactly n
independent hole orbitals, the approximation (V.5)
retains all contributions involving th~ee or fewer
independent hole orbitals, with E, = 8, = -', @'k~'/2m,
(bE), = g„and (bE), +(bE)',""= 8,. Chakkalakal's
f (r») bears a close resemblance to the Brueckner
E(12), if one judges by the degree of agreement
of Jastrow and Brueckner smallness parameters.
The two ~ values agree to surprising accuracy,
over the whole density range studied (kz =1.2-1.7
fm ' for the OMY and 1.1-1.6 fm ' for the IY po-
tential). The same may be said of the f(r») of
form (V.4) determined by Wong, "who minimized
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sion contributions, of first and/or higher orders
in K, are allowed to influence the determination
of f, one cars say that some dispersion effects are
Anplicitly present in the two-body Jastrow energy;
they would presumably encourage the healing of
f"'". Be that as it may, Wong has argued that a
better approximation to the energy would be ob-
tained if the two-body Jastrow result were supple-
mented by an exPlicit dispersion correction;
basically, Wong infers that expression (V.2) is
preferred over expression (V.3)."'" This argu-
ment is predicated on the assumption that the
Brueckner energy E~, with choice (111.2) of propa, -
gator renormalization, is fairly accurate, or at
least a lower bound on the true energy.

Let us see how this suggestion works for the IY
potential at k~ =1.36 fm, the equilibrium Fermi
wave number given by the Jastrow ealeulation of
BCC based on Chakkalakal's f determination.
(This k~ corresponds closely to the empirical
equilibrium density of "realistic" symmetrical
nuclear matter. ) According to Wong, '6 the Brueck
ner calculation yields E~ =-0.4 MeV, with K =0.224.
For Chakkalakal's f (specified by g, =1.76 fm ',

p, =1.72 fm ', v =1.310) one has E, +(& E), = 8,
+ g~ =-6.4 MeV, Eo+(AE), +(b,E)3' =+6.8 MeV,
and E, +(I+2m) '(bE), =2.7 MeV, with a =0.224
and of course Eo = 23.0 MeV. For Wong's f (speci-
fied by p. , =1.34 fm ', p, =1.70 fm ', v=2. 555)
one has E, +(b,E), =-8.1 MeV, E, +(AE), +(b.E)~'~

=+6.4 MeV, and E~+ (1+2m) '(b E), = 1.4 MeV, with

K =0.219. A numerical study by Ter Louws'. has
shown that approximation (III.14), for n =3, is
good to within 1% over the full density ranges con-
sidered, for both IY and OMY potentials and the
respective density-dependent Chakkalakal correla-
tion functions. (This approximation is not as good
for Wong's f.) We may expect (111.15) to be quite
adequate here, as a mean0 for incorporating the
complete Jastrow dispersion correction.

These results are consistent with, but certainly
do not imply, the following situation: the revised
Jastrow energy estimate (V.2) possesses the upper
bound property, lying some few (here 2-3) MeV
above the Brueckner energy, which constitutes an
accurate approximation to the true ground-state
energy. A state-independent correlation factor
of Jastrow type is not realistic enough to provide
an accurate energy.

A numerical examination of the three-hole-orbi-
tal contributions to the Jastrow energy calls this
viewpoint into dispute, and shows rather clearly
that %ong's suggestion for revising the simple
two-body Jastrow energy is a poor one for the
model problems of BCC.

For his f, ChakkalakaP' finds (n E), = -1.1 MeV.
[BCC gives 8, =-0.07 MeV, but in their calcula-

tion (aE)~~~" was overestimated, by perhaps as
much as an MeV. By the same arguments as ap-
plied to the hole-hole diagram in BBG theory, "
(b,E),'~ should be quite small, positive for the
Chakkalakal f, and perhaps 0.3 MeV. We neglect
it here, approximating h, by (AE),.] Similarly,
for Wong's f, Ter Louwso finds (b,E), =3.5 MeV

g3.
The relatively small magnitude of these (&E)3

values has drastic implications, in view of the
large size of the dispersion contributions (b,E),'
which they contain: (4E),'~ =13.2 MeV (Chakkalakal
f) and (&E)~'~ =14.5 MeV (Wong f). The remainder
of (AE)„viz. the proper three-body part (EE)~3",
which Kong implies may be neglected, must be
large and negative, some -14 MeV in the case of
the Chakkalakal f and some -11 MeV in the case of
the Wong f.

The higher-order dispersion contributions,
O(v"), n~ 2, reduce the energy by a few (4-5) MeV,
but do nothing to alter the conclusion that 11-14
MeV of attraction from (b,E), = 8, would be ignored.
As the density increases, matters grow worse:
at kz = 1.6 fm ', (AE)~3" =25 MeV, and a contribu-
tion of some -20 MeV would be discarded. The
same behavior is found for the OMY potential.

In the face of the large-scale cancellations in-
volved in (AE)„ it is, contrary to Wong's sugges-
tion, preferable to keep all three-body contribu-
tions or drop them all rather than split up the
small quantity (b,E)~ =83 into two large ones of
opposite sign and discard the negative one. Ob-
serving this injunction, we have

Eo+(b E)~ =Eo+(hE)~ +(AE)s&E3. (V 8)

These results are consistent with the following
situation: the Jastrow energy (two body or three
body) possesses the upper-bound property and,
lying some several MeV below the Brueckner en-
ergy, constitutes a more accurate approximation
to the true ground-state energy.

The striking neutralization of the O(z) contribu-
tion to the dispersion correction by the other O(z)
terms, in particular by (4E)~'~, leads us to believe
that this situation is more likely to prevail than
the one proposed earlier. An ordering of the terms
in the cluster expansion of the Jastrow energy-
expectation value in accord with the Brueckner
approximation is surely a bad one, presuming
this expansion to have convergence properties
such as to make it at all useful. Since the small-
ness parameter K is the same, both numerically
and in formal role, in BBG and Jastrow cases
is it not conceivable that this kind of ordering is
bad in the BBG context as mell'? At least an ex-
plicit evaluation of the O(z) terms in the BBG ex-
pansion, in particular, the Bethe-Faddeev sum,
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is required before the issue can be decided. In
order for the three-body approximations of the
two approaches to agree, the Bethe-Faddeev sum
must yield some -7 MeV for the IY potential at
k~ = 1.36 fm ', presuming the Chakkalakal f to be
a superior (nearly optimal) choice for the Jastrow
case. [Remember that in a conventional BBG
calculation with choice (III.2) of u(i), there are
dispersion contributions to the Brueckner energy
O(z'), O(z'), . . . , as well as O(e), and dispersive
contributions to the Bethe-Faddeev term 0(/P),
O(K'), . . . , the a dependence of the dispersion
correction in the Brueckner energy being such
that, for the projected agreement, the Bethe-
Faddeev sum need not be so large in magnitude
as the proper three-body part of the Jastrow en-
ergy. ] Actually one would expect that if both three-
body approximations provide accurate evaluations
of the energy series concerned (which are pre-
sumed to converge), the Bethe-Faddeev sum
should give a bit more attraction than this be-
cause the exact BBG energy should lie below the
exact Jastrow energy.

If, on the contrary, it were to turn out that the
Bethe-Faddeev term is small and repulsive" for
the hard-core OMY and IY potentials near equil-
ibrium, one would have to think more deeply into
the connection between Jastrow and BBG methods
in order to understand the Brueckner-Jastrow
energy discrepancy we have discussed. One would

be forced to regard with skepticism the claim that
K, when as large as -0.3, plays, in any useful
sense, the role of a smallness parameter. Cer-
tainly one would have to conclude that, even if
the two-body correlations of BBG and Jastrow
approaches are quite similar, notably in the re-
spect of producing a common wound integral, the
specifically three-body correlations of the two

approaches may still be profoundly different.
It is important to realize that sensible cancella-

tion of contributions to the Jastrow three-body
term occurs formally as well as numerically.
The interesting point is that with a Jastrow wave
function the cluster expansion of the energy shift
for the uniform infinite medium simplifies neatly
into a sum of two-body, three-body, . . . , inte-
grals of very tight structure. The integrand of
any such survivor past the two-body term must
have the property that each particle label present
is joined to every other (by a product of dynami-
cal or statistical bond functions), via at least tgao

chains having no particle in common. Contribu-
tions not possessing this tight structure do appear
superficially if we write out the FIY formulas of
Sec. II for the Jastrow ansatz (there are reducible
violators buried in the combination terms and in

the proper terms) but they all cancel out order

by order in g. In the O(z) cancellation whose nu-
merical consequences have been mentioned above
the part of the three-body contribution (4E)",
which corresponds structurally to the third-order
v or G Goldstone diagram containing a direct hole-
bubble insertion is compensated precisely by the
part of (b,E),3 which corresponds structurally to
the third-order v or G Goldstone diagram contain-
ing a direct particle-bubble insertion. Indeed,
one may state further that no contribution to (bE),
survives which corresponds structurally to a third-
order v (or G) diagram which can be split apart
by cutting only one or two v (or G) lines. The
proof leans on the state independence of the Jas-
trow E(12) and E(123). We emphasize that this
cancellation phenomenon is a general feature of
the ordinary Jastrow method, not restricted to
the special model under consideration and not re-
stricted to the three-body cluster. Just as in the
classical Ursell-Mayer cluster expansion for the
logarithm of the partition function, "each term
8„,in the IY expansion with the Jastrow ansatz
(V.l) may, for the uniform infinite medium, be
collapsed to a sum of irreducible n-body integrals,
irreducible in the sense that they cannot be eval-
uated in finite terms from fewer-body integrals.
Such a collapsed version of (V.6) was used in the
calculations of Refs. 45 and 27, masking the (here
largely artificial) presence of a dispersion contri-
bution (b,E)P in the three-body cluster.

It seems not unreasonable that some remnant
of this cancellation phenomenon, in particular,
substantial neutralization of (&E),' by a portion
of (b,E)~3" of particle-bubble character, should
persist when one goes over from Jastrow two-
and three-body correlation factors f(r»), f(r»)
xf(r») f(r») to more elaborate "more realistic"
state-dependent E(12),E(123) (for example the
BBG choices). After all, the formalism of Sec. II
is variational in spirit and therefore supposed to
be in some way optimal in structure; the presence
of a negative component of (b.E)~'~ which acts to
diminish the repulsive dispersion contribution
(&E),'~ may be a manifestation of this optimal
structure.

Even so, the dramatic scale of the internal can-
cellation we have observed in (&E), is a special
feature of the model problems considered and may
be traced immediately to the inordinately large
values of the "smallness parameter" ~ associ-
ated with the IY and OMY potentials. For the IY
(OMY) potential, z grows from 0.224 (0.300) at
gr ——1.36 fm ' (1.54 fm ') to 0.324 (0.368) at xz
=1.6 fm ' (1.7 fm '). (These values are based on
the Chakkalakal f's. ) The value of g for the real-
istic Reid soft-core potential'4 is only about half
as large, 0.135 at x~ =1.36 fm '." Therefore we
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do not wish to call into question the accuracy of
the conventional Brueckner calculations on nuclear
matter near equilibrium density with realistic
static two-nucleon potentials. The qualitative
situation is further altered, from that we have
explored, by the existence of strong noncentral
components in the realistic potentials. '

On the other hand, it would surely be disturbing
if the success of the Brueckner approximation in
the nuclear-matter problem (as evidenced by small
higher-order terms in the BBG expansion) were
to hinge delicately on the details of the two-nucleon
interaction assumed. Our results underscore
this possibility and suggest that in studies of the
sensitivity of the nuclear-matter ground-state
energy to off-shell and deuteron properties of
classes of phase-equivalent potentials, "it would
be advisable to supplement the Brueckner approxi-
mation by an adequate evaluation of the three-
body part of the BBG expansion, for those poten-
tials having large wound parameters e.

Our findings may have more direct bearing on
Brueckner- Jastrow comparisons for certain other

problems involving large wound parameters, viz.
the calculation of the ground-state energy and
density of liquid 'He" and of the binding energy
of a A particle in nuclear matter. "'"'"
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Pion-Oxygen Elastic Scattering in the 3-3 Resonance Region
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The total and differential cross sections for x — Q elastic scattering in the 3-3 resonance
region are calculated using the first-order optical potential derived from the multiple-scat-
tering theory of Kerrnan, McManus, and Thaler. In order to include the 3-3 resonance and

generate a reasonable off-shell behavior of the m-nucleon transition matrix, a separable mod-
el is used to construct the z-nucleon transition matrix. The optical potential also includes a
proper transformation of the x-nucleon transition matrix from the x-nucleon to the ~-nucleus
c.m. frames. The results are compared with recent m -~60 elastic-scattering data and with

earlier m — C calculations.

I. INTRODUCTION

With the advent of meson factories, there will
be an increase in the study of nuclear structure
using the 7t meson as a probe. The basic m-nu-

cleon interaction has relatively well-determined
phase shifts that show the interaction to be reso-
nant and dominated by the 4= —,', T = —,

' channel over
a fairly wide energy range. In order to extract
detailed information about nuclear structure, a
reliable method of calculation should be estab-

lished, in which the resonant features and the
general dependence of the m-nucleon interaction
are correctly incorporated.

In an earlier paper, ' we studied first-order m-

nucleus optical potentials defined in the multiple-
scattering theory of Kerman, McManus, and Tha-
ler'; several models for the off-shell m-nucleon
transition matrices were used. The m-nucleon
collision matrices employed in the Kisslinger and
Laplacian (or local) optical models were seen to
diverge with increasing off-shell momenta, where-


