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We obtain the leading off-shell correction to the high-energy optical potential: v = uo
x[1—(y/2k')oo], where @=k[{8/Bq)lnf(q;k)] z for f(q;k) =f(j,q;k) the .off-shell projec-
tile-nucleon scattering amplitude. A slow energy variation of the amplitude at very high
energy gives y =k(8/Bk)lnfz(0), where fz(0) is the on-shell amplitude, and the correction is
small. In the region of projectile-nucleon resonances, we describe the two-body interaction
by a separable potential and relate y to the scattering phase shifts. The leading off-shell
correction is substantial for an absorptive resonance but "anomalously" small at an elastic
resonance.

I. INTRODUCTION

The problem of scattering on composite systems
is an extremely difficult one, and a standard ap-
proach in the analysis of nuclear elastic scattering
experiments has been to construct an equivalent
potential. ' One thereby reduces the unmanageable
many-body problem to that of a single partiqle
being scattered by an optical potential which both
describes the nuclear target and relates the nu-
clear scattering to the elementary projectile-nu-
cleon amplitudes. A particularly clear discussion

of this problem, appropriate to high-energy scat-
tering, was given some time ago by Glauber. '
This theory is essentially an extension of Fraun-
hofer diffraction theory to composite targets and,
in its simplest form, yields the well-known opti-
cal potential

n, (x) =2m V(x) =-4sAp(x) f,(0),

where A is the number of particles in the target,
p(x) is the nuclear single-particle density (nor-
malized to unity), and f~(0) is the projectile-nu-
cleon forward on-shell scattering amplitude at
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v(x) = v, (x) l + i 2' v, (x) ~,2k )
(2)

where v, is given above and l, is the nucleon-nu-
cleon correlation length. Our goal here is to ob-
tain a second correction to the lowest-order po-
tential, one which accounts for the off-energy-
shell scattering of the projectile during interme-
diate stages of the multiple-scattering process.
We shall aim for a local correction and expect a
form similar to Eq. (2); i.e., since both the cor-
relation and off-shell effects enter only when the
projectile can scatter at least twice, the leading
correction should be proportional to v0 in both
cases. We shall work within the framework of
potential scattering, and, in particular, assume
that the projectile-nucleon interaction is de-
scribed by an arbitrary sum of separable poten-
tials in each partial wave. This is both very gen-
eral and easy to work with (the fully-off-shell
amplitude can be explicitly written down). We
shall find that at very high energies, the poten-
tials can be entirely eliminated in favor of the
energy derivative of the on-shell elementary am-
plitude (the conditions under which this result
holds, independent of the potential model, will be

momentum k. This potential is very appealing,
since it is local (allowing a comparatively simple
solution to the one-body scattering equation) and
since it is expressed in terms of quantities which
are directly measurable in other experiments.

The Glauber theory has proved to be remarkably
successful in describing a wide variety of high-
energy elastic scattering experiments, and a
straightforward extension of the theory to coherent
production processes (e.g. , nuclear p' photopro-
duction) has provided the only presently feasible
method for extracting information on the interac-
tions of short-lived particles with nucleons. ' In
addition, the predictions generated by this simple
optical potential for pion-nucleus cross sections
in the vicinity of the 3-3 resonance4 agree reason-
ably well with recent experimental data, despite
the lack of any real theoretical justification for
such an application. The widespread use and suc-
cess of the Glauber optical potential warrants a
close examination of the corrections to Eq. (l).
That is, for a consistent application of the theory
to experimental data, we must be able to evaluate
in a systematic fashion leading corrections to the
lowest-order result and to demonstrate that these
are small. The correction arising from a more
detailed description of the target structure has al-
ready been studied in great detail. ' In fact,
Glauber's lectures' included the modification of
the optical potential arising from two-body corre-
lations:

discussed). The Glauber optical potential is
known to work very well in this regime, and in-
deed we find that the off-shell correction, like the
correlation correction, is quite small. We then
consider what happens as we lower the energy and
enter the region where there may be resonances
between the incident and target particles (specifi-
cally, we have in mind pion scattering, since
there are several prominent high-energy reso-
nances in the vN cross section). Here, we spe-
cialize to the case of a single separable potential
and, through the solution to the inverse scattering
problem, express our correction directly in terms
of the projectile-nucleon complex phase shifts.
Quantitative results are presented for two model
problems, those of absorptive and elastic pro-
jectile-nucleon resonances. We stress that we are
computing a correction to v, (x) and that, if this
becomes large, application of the Glauber formal-
ism must be seriously questioned.

Previous work on off-shell effects in very-high-
energy nuclear scattering (i.e., in the "Glauber
region") has been somewhat limited. Harrington'
and Eisenberg' have demonstrated that the Watson
multiple-scattering series, which contains an in-
finite number of scattering events and off-shell
elementary amplitudes, reduces at very high en-
ergies to the Glauber series, which contains a
maximum of A scatterings and strictly on-shell
amplitudes. This implies that the off-shell cor-
rection to the lowest-order optical potential van-
ishes at infinite projectile momentum but does
not give the size of the correction at finite ener-
gies. More quantitative work on off-shell effects
has centered upon pion scattering below and in the
vicinity of the 3-3 resonance. W'e shall discuss
the work of Ericson and Hufner' in some detail.
They assume a simple analytic form for the off-
shell mN forward-scattering amplitude close to
the 3-3 resonance and use this to solve for the
refractive index in nuclear matter. Their results
differ appreciably from ours and the relation be-
tween the two approaches will be shown. The new
features of the work presented here are, first,
that the leading off-shell effects are incorporated
directly into the high-energy optical potential and,
second, that this correction is expressed in terms
of the on-shell projectile-nucleon interaction.

II. OFF-SHELL CORRECTION

We start with the idea that the many-body scat-
tering problem has been replaced by that of pro-
jectile scattering in a nonlocal optical potential
v~(x, y) =2mV. The connection between this poten-
tial and the original nuclear scattering problem
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lies in the identification

v(p, q; k) = -4@Ap(p —q)f (p, q; k), (3)

v(p, q; k)=, d%dy e '& "v~(%, y)e'"'&. (4)

where p(p —q) is the Fourier transform of the nu-
clear single-particle density, f (p, q; k) is the off-
shell projectile nucleon scattering amplitude, and
the "off-shell potential" is defined by

Equation (3) is widely used and provides our
starting point. We give a brief derivation of this
result in order to indicate its theoretical founda-
tions.

Assuming that: (i) The projectile-nucleon scat-
tering matrix is equated with that for scattering
on unbound nucleons (i.e., the impulse approxima-
tion), and that (ii) the energy transferred to the
target at any stage during the multiple-scattering
process is negligible compared to the incident en-
ergy, the Watson multiple-scattering series'

gives for the nuclear elastic scattering amplitude

Z(k', k) = dx, ~ ~ dx„i e,(%, ~ ~ x„)i'Z(k', k; x, ~ ~ x„),

J'(f', f;x, ~ ~ x„)=pe '""*' f. (k' k )')

4 j Po (x ~ -x~)

(3.) ""'"
J~ g ~

f, (p, k; k).
(3 )3 (3 )3 f (k pl k) k2 p 2

4«~r 2 ~ &X;-"&)x, —, . f„(p„k;k) + ~ et' i X3

where 4, is the nuclear ground-state wave function and f, is the off-shell amplitude on the ith nucleon
(from now on, we drop this index and assume all nucleons are alike). We require three additional as-
sumptions: (iii) The independent-particle model is employed; (iv) the projectile is allowed to scatter at
most once from each target nucleon; (v) N «A, where N,„ is the maximum number of scatterings
which must be retained in the Watson series in order to reach a desired accuracy in the nuclear scatter-
ing amplitude. With these, Eq. (5) simplifies greatly:

-4'(k', k) =-4))Ap(k'-k)f(k, k; k)

d p
g (2v)'

[-4))'&p(k'-p) f (k', p; k)]» . [-4vAp(p-k) f(p, k;k)]
jp~ p2 + jg

+ 3 3 -4wAp k —pz k r p&i ~ 2 2 ' ~+~ pl p2 pi~ p2; k

[-4vAp(p, -k)f(p„k; k)] + ~

This can now be recognized as the Born series for
elastic scattering of the projectile in the potential
v(p, Qk) given by Eq. (3). Finally, we point out
that Foldy and Walecka' derived this result direct-
ly from the many-particle SchrMinger equation
for a model of separable interactions and that
v, (%) is obtained by evaluating v on the energy
shell.

In principle, we could stop at this point and,
given a model for the two-body scattering matrix,
compute the optical potential. However, we know
that the much simpler "on-shell" potential v, (%)
describes high-energy scattering experiments

quite well, and our philosophy is to treat the off-
shell effects as a local correction to the lowest-
order result. To this end, we define the average
and relative coordinates and momenta as r =

2

(%+y'), p = (% —y), P = —,
'

( p +g), and Z = (p —q). Then,
in the large nucleus approximation [i.e. , sharply
peaked p(g) j, Eq. (3) yields the configuration space
optical potential

u, (r, p)= J((~ ), (2 ),
-8"'e'~' v()), Z;a)

= vo(r)q„(p),
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where v, (r) = -4sgp(r) f~(0) is just the Glauber po-
tential and

(8)

This is a nonlocal potential with g, playing the role
of a nonlocal smearing function. Clearly, if the
forward off-shell amplitude is momentum-indepen-
dent, then q„(p) = 5~'~(p) and we return to the stan-
dard optical potential. Our task now is to extract
an equivalent local potential' while allowing for
off-shell variation of the scattering amplitude.

The SchrMinger equation for scattering from
the nonlocal potential Eq. (7) can be written as

2i k ~ gy(r) + v'y(r) = v(r) y(r), (9)

where we have removed the rapidly varying phase
factor from the wave function g(r) =—e'"' @(r), and
where the equivalent potential is defined as

J di e'"'n, Q)4(r i)-

Eq. (12) becomes just

v(r)=v, (&) 1-2~, v, (F)

We now have the leading off-shell correction in a
form similar to the correlation correction of Eq.
(2), its magnitude being determined by the pro-
jectile-nucleon dynamics through the quantity y.
Simple manipulation of Eqs. (8) and (11) results in
the expression

' a
y=f, (0) s f(e (14)

where f (q;k}-=f (Q, fi;0}. This directly relates the
leading correction to the optical potential to the
off-shell variation of the two-body amplitude.

It will prove useful to write y for a specific mod-
el of the elementary interaction. We consider an
arbitrary sum of separable potentials in each par-
tial wave:

u(&, y) = Q u, (x, y)(2l+1}Pg(x y),
v(r) = v, (r) (10)

u, (x, y) = Q X„,u„,(x)u„,(y) . (15)
The simplicity of Eq. (9) is of course misleading,
since we are still required to find the solution
p(r) for the full nonlocal potential v~(r, j) in order
to find the equivalent potential. We start with the
assumption that the nonlocality will be short
ranged at very high energies, an assumption which
can always be checked for any given form of the
interaction by directly solving Eqs. (8)-(10). This
is extremely difficult in practice, and our assump-
tion is that the size of our simple off-shell correc-
tion will provide a consistency check.

We proceed by expanding p(r —p) in Eq. (10)
about the point r. The first observation is that the
lowest-order term is exactly" v, (r}, because

di e '" ' n, ( p}-=1.

Retaining the second term in the expansion, and
defining the dimensionless quantity y according to

"d p e '" ~ pg, ( p) =-i y k/k',

we obtain for the equivalent potential

This interaction is both quite general and easy to
work with, since the full off-shell projectile-nu-
cleon scattering amplitude can be explicitly writ-
ten down:

f(p, C;&) =Qf (p, q;&)(2&+1)&,(p" q),
(18)

f,(p, q; k }= -Q 4"'
u„,(p}B„'„.(k)u„, (q }

nni 7r

with the matrix g defined according to

d% u„., (t)u„-,(i)

n'

(17)

Note that the k-dependence is isolated in B. Equa-
tion (14) now gives

g (2&+1)g ——'
~ft„'„. (e)4s]

(18a}

v(r) = v (r) 1 -i-. ykvy (12)
(18b)

which, for a single separable potential, further
reduces to

y=
0 g(2l+1)f, (k) —in[u, (k)]'.ea

We further assume that in evaluating the correc-
tion term above, we may take P(r) as the solution
to the Schrodinger equation in the lowest-order
potential [i.e. , Eq. (9}with v = v, ] . At high ener-
gies, the Laplacian term is very small (the eikon-
al approximation corresponds to dropping it) and

Given the interaction form factors u„, , Eqs. (13}
and (18) provide a straightforward manner in
which to evaluate the off-shell modification of the
optical potential. Nevertheless, we shall attempt
to go further and relate y to measurable quantities.



E. J. MONE Z

III. VERY HIGH ENERGY

We first consider the description of the elemen-
tary interaction via an arbitrary sum of separable
potentials in each partial wave. Examination of
Eqs. (16) and (1'1) reveals that, as long as the par-
tial wave amplitudes f, (k) vanish faster than k '
as 0-~, the projectile-nucleon interaction is de-
scribed by the Born approximation at very high
energy

The expression for y now simplifies greatly, since
the energy derivative can be moved outside the
summation sign in Eq. (18a):

(19)

v(r)=v, (rl(( —,v, (r))2I'

( )() . Avrp(r)) (20)

The correction term adds a real part to the optical
potential and vanishes like k ' at very high energy.
For nuclear matter densities and an elementary
cross section of 40 mb, the ratio of real to imag-
inary parts of the optical potential above is just
(1 GeV/15k). This is very small for energies
where the Born approximation has any chance to
be valid and the Glauber potential is therefore ex-
pected to work quite well in this energy range.

Finally, we remark that the simple result in
Eq. (19) can be obtained immediately from Eq. (14)
without resorting to the potential model for the
elementary interaction. Clearly, the condition we
must impose upon the off-shell amplitude is that

However, the question of how far down in energy
we can go while satisfying this condition can be

This is the main result in this section and ex-
presses the leading off-shell correction entirely
in terms of the on-shell forward amplitude.

Elementary hadron-hadron total cross sections
become constant at high energy. This behavior is
associated with large absorption cross sections
and cannot be obtained from an energy-independent
potential. However, we stress that we have used
a very general potential" and that the final result
depends entirely upon the scattering amplitude.
With this as justification, we evaluate Eq. (19)
with empirical laboratory elastic scattering am-
plitudes. For a purely imaginary high-energy for-
ward amplitude and a constant total cross section,
we have y=l, giving

answered only within the framework of a specific
model for the projectile-nucleon dynamics.

IV. RESONANCE REGION

~s 2, . 1 t" ~i(x)—[u, (k)]'=ik 'sinh(is, ) exp —P.V. ( dx
4& ' '

m
' 'g, k'-x

(22)

Finally, we insert this into Eq. (18b) and obtain y
directly in terms of the phase shifts:

y -=—Q (2l + 1)f, (k) y, ,
1

2
1

k s [2i kfg(k)]2n'2 'sk 1+2ikf, (k)

2k'
I

" ~((x) —v, (k')
m J, (x-k2)~ (23)

Equation (23) is the main result of this section.
We stress that although y can be computed only in
terms of measurable quantities, this result is in
no sense model-independent, but rather depends
upon the specific method used for the off-shell
extrapolation. That is, the assumption of a single
separable potential in each partial wave defines
the off-shell scattering amplitude in terms of the
on shell, and we have simply eliminated the in-
termediate step of explicitly computing the poten-
tial. One could instead choose to construct phase-
equivalent interactions with several separable po-
tentials in each partial wave and then insert these
into Eq. (18a); this is a fairly simply way to test
the sensitivity of the off-shell correction to dif-
ferent continuations off shell. Here, we restrict
ourselves to consideration of two physically in-

We now consider what happens as the incident
energy is lowered into the region where there are
projectile-nucleon resonances. Specialize to the
case where the interaction is described by a sin-
gle separable potential in each partial wave. Equa-
tions (16) and (17), taken on shell, define the in-
verse scattering problem which must be solved in
order to obtain potentials which reproduce the
elementary, partial wave scattering amplitudes:

q (k)e&i &(())) 1 e2iv ((&)

2;k

A. g [~s(k)]'

I -A
g I [dt/(2v)'] [ u, (t)]'/(k' —t'+i(7)

(21)

where i, (k) is the complex phase shift. Inversion
of this equation" "follows with trivial modifica-
tion the standard procedure used in the case of
real phase shifts, and we simply state the result:



SHELL CORRECTION TO THE HIIGH-ENERGY OPTICAL. . .

A. &. Absorptive Resonance

Our first model rob
id

problem is motivated b th

structure which
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ic we encounter in the T = —'
g 811d T

y a sorptive E-wave res
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E-wave interaction (tak-
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tion is given by
x o be zero an, and the absorp-

(k' —k„')'+ r' (24)

with a=2, k =1 GeV, and F =250 MeV. Thi s form
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sx y e integral in E . ~23
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and these results, lete. o understand=e, where g(k) is positive definite and eak
a resonance. Equation (22) now gives

j. k2
1 = —g(k) —P V d

m
' „', (k'-x)'

1+exp [-g(k}j-- '2 l-..p[-g(u)) '"'
and, since tthe elementary amplitude

'

imaginary,
xu eis pure

v=-i[el(z- qq~[U[)+
'~

u '
2k' ' 2k'

Note that at resonance Imy is p
't'
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, w xeRe =-1
g erxvative. In addition we

Imy scales with
i ion, we see that

i g, sothatwe e e
cant reductio '

th
'

n xn e imaginar
xp ct a szgnifi-

ag' y part of the optical
ia or a highly absorptive resonance. Thi

xs seen explicitly in Fi re
e. s

'n j.gure 2, where we display

40

~o —r

Re y

~rm y

40
200

C' ( R =5.2fm)

20—
I-~)-

'~ ~

l00

IO -20

-40 ~eIas

i I l I

900 IOOO I IOO

k (MeV)

0
900 I000

k (MeV)

I IOO

FIG. l. Real and imaginary parts of as
incident momentum f thum or the projectile-nu

bitrary scale.
Dotted line is (1-g) dravrn to ar-

FIG. 2. Total and elastic cro
on "C unif

xc cross sections for scatterin
fm) both with (solid

ou ashed line) the off-she
corresponding to Fig 1~ ~



E. Z. MONrZ

8. Elastic Resonances

Next we turn to the case of a real phase shift.

I

}=@'
k'+k„'

I I[I I I I

the total and elastic cross sections as a function
of incident momentum for scattering on "C both
with (solid line) and without (dashed line) the off-
shell correction; the nucleus was assumed to have
a uniform density with radius p = 3.2 fm. The elas-
tic cross section is very small compared to the
total because of the purely absorptive projectile-
nucleon amplitude. The interesting feature is of
course the pronounced dip in the cross section in
a fairly small region around the resonance energy.
This is certainly an appreciably larger effect than
that due to nucleon-nucleon correlations, ' but we
caution once again that a specific off-shell extra-
polation has been assumed. The sensitivity of this
result to other reasonable methods of continuing
off shell should certainly be investigated.

Our expression for y, simplifies to

2 8
y, (k) = —5, —1 +k —ln(sin 5,)+$,(k),

(25)

Note the threshold behavior y, - 21 as k-0; this
will lead to an interesting comparison between our
results and those of Ericson and Hufner. '

W'e consider the case of an elastic resonant par-
tial wave, by which we mean one with the phase
shift rising smoothly from zero to m (we can as-
sume that 5 falls back to zero at some arbitrarily
large energy), such that 6(ks) = —,'n, where k„is the
position of the resonance(e. g. , the T= ,', J=-,'par--
tial wave in wN scattering). Our first observation
is that the first two terms in y, {k) vanish at the
resonance. The last term is more complicated
but, at the resonance, we can rewrite it as

2 I

'
dy

~ (k )=-— t g(y)+gls v (ly)2 l Iy
(26)

"here we have let g, -5, (y=k'/ks'). It is clear
that the particular combination of phase shifts
given in the integrand above tends to cancel for a
resonant phase shift. More quantitatively, con-
sider the phase shift

jp
~r= jn y rr (2V)

with n &0. To obtain the correct threshold be-
havior, we must choose n =2/+1, but we take the
attitude that, since the precise threshold behavior
is not important in computing g, (k) close to ks, n
can be varied to fit the resonance width. The

l I

E

I

37r
4 7T

0
IOO 200 zoo &00 soo

k (MeV)

600 700

FIG. 3. p& as a function of the phase shift given by
Eq. (25) with n =3, corresponding to dominance of the
projectile-nucleon amplitude by a p-wave elastic reso-
nance.

FIG. 4. Imaginary part of the pion optical potential
near the 3-3 resonance, with (solid line) and without
(dashed line) the off-shell correction. The target nu-
cleus is Q(g =3.2 fm).
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point is that the integrand in Eq. (26) vanishes
identically for any m &0, causing the entire leading
order off-shell effect to vanish at resonance.
Needless to say, there are many other possible
forms for the phase shift besides those described
by Eq. (2V), and in general these will not cause
$, (ka) to vanish. Nevertheless, the arguments
above indicate that, if the off-shell extrapolation
is performed according to a separable potential
which reproduces the phase shift at all energies,
then the leading off-shell correction to the optical
potential is "anomalously" small at a "classic"
elastic resonance.

We can evaluate y, analytically for 23 = 3, which
in fact gives the correct p-wave threshold be-
havior:

y, (q= 3) = —6, -1 + —6,(w —6,)cot6, + (P, +P,),2 3 45)

2w(w —6, )'(6, ', w)--26, (w--6,)' ln [6,/(w - 6,)]
4w'(6, --', w)'

2w -(w-6, )'-"'
Ws

n(E) = «(Z)/k,

«' —4wpf'"(«E)=E' —m '=k' (29)

Here, k is the free-space momentum of a pion
with energy E, p is the nuclear matter density,
«(E) is the pion wave number inside nuclear mat-
ter, and f '"(«, E) is the forward off-shell scatter-
ing amplitude. Given the functional dependence of
f '" on momentum and energy, we can solve Eq.
(29) for the optical potential v(E) = 2k'[1 —n(E)] .
EH choose the simple analytic form

Figs. 4 and 5 show that the modification of the
imaginary and real parts of the optical potential
is quite small. Our previous arguments imply that
this cannot change very much" when a detailed
numerical calculation of y, is performed with the
experimental phase shifts.

The smallness of the off-shell correction at the
3-3 resonance is certainly very surprising when
compared to the large effects computed by Eric-
son and Hufner (EH). They start with an expres-
sion for the energy-dependent index of refraction
n(E) for a pion traversing infinite nuclear matter:

4/3
(w 6 )4/3

X
[ 6 4/3 + 6 2/3(w 6 )2/3+ (w 6 )4/3] 2

(28)

I I

C~~(R = 3 2 tm]

This is plotted in Fig. 3 as a function of the
phase shift 6, =wk'/(k'+k„'). Note that y, varies
rapidly away from threshold and that in the vicin-
ity of the resonance 4w&6, &-', w, we have Iy, I

&0.4.
To get an idea as to how significantly this affects
the optical potential in a problem of interest, we
use Eq. (28) in computing the optical potential for
scattering on "C (ft = 3.2 fm) close to the 3-3 reso-
nance. In other words, we take Eqs. (13) and (28)
with the measured T = —,', J= —,

' nÃ phase shifts.
This is clearly not a consistent procedure, but

where C and I'(E) are fixed to give the correct
total cross section. They argue that this form is
suggested by the Chew-Low model and by p-wave
scattering from a short-range separable potential,
since the amplitude is of the form u(k)2/D(E) with
u(k) - k giving the proper threshold behavior.
Equation (29) is then solved algebraically, and
EH find significant corrections to v, . We shall
"solve" Eq. (29) in a different way, allowing us to
show the origin of the difference between our re-
sults and those of EH.

As with our derivation of the off-shell correc-
tion, we assume that the leading correction is
small and expand" «(E) around the on-shell mo-
mentum k. Retaining only the leading correction,
we easily arrive at the expression

I
0

I I

n(Z) —1=—,1.—,o,),vo 7

v, = -4wp f (0), y = —f (k, E) .k 8
(31)

-2
IOO

l
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k (MeVj

I

500 600 700

FIG. 5. Real part of the pion optical potential
corresponding to Fig. 4.

This is immediately recognized as the same ex-
pression we have used in evaluating the off-shell
effect, although we feel that our approach makes
clearer the underlying assumptions. However,
EH employ the scattering amplitude Eq. (30},
yielding y =2. Note that this comes entirely from
the threshold behavior and agrees with our result
y, (0) =2l [see Eq. (25}and Fig. 3]. In contrast
to this, we have noted that the off-shell extrapola-
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tion can really be performed according to a sep-
arable potential simply by writing y = k(8/Bk)
&&In[u(k)]' and then replacing u(k) by the solution to
the inverse-scattering problem. %e have already
seen that this leads to roughly an order of magni-
tude reduction of the off-shell correction as we go
from threshold to resonance. This is consistent
with the observation of Silbar and Sternheim, "
who solved E(I. (29) numerically for various 'rea-
sonable" off-shell continuations and concluded that
the correction was very sensitive to the extrapola-
tion procedure. The separable potential simply
gives results very different from those of Ericson-
Hufner and Silbar-Sternheim. Our result is also
consistent with the calculation of Landau and
Tabakin, '4 who computed the form factor u(k) for
the 3-3 partial wave by feeding the experimental
))N phase shifts into E(I. (22). Examination of their
Fig. 9 reveals that u(k) reaches a, maximum very
close to the resonance energy.

A final, bothersome point in connection with the
comparison to EH is that their amplitude is moti-
vated by the very successful Chew-Low model and
that this seems to give results so different from
those of the separable potential approach. Again,
the difficulty is that EH have retained only the
threshold momentum dependence. The separable
potential implied by the static theory" is u(k)- kg(k)/(m, '+ k')'~', where g(k) is the cutoff func-
tion corresponding to an extended source distribu-
tion (u can be obtained directly by taking the P»
projection of the crossed @%Born d'iagram). A
good fit to the nN phase shifts is obtained" with a
Yukawa source function g(k) = (1+k'/a') ' of range
a ~ =0.38 fm. This "Chew-Low potential" predicts
an off-shell correction similar to that in Fig. 3:
At resonance, y(k) has fallen substantially away
from the threshold value y(0) = 2 and asymptotically
approaches y(~) = -3. In other words, the Chew-
Low potential and the separable potential approach
described above yield qualitatively similar results.

V. DISCUSSION AND CONCLUSIONS

iation of the projectile-nucleon scattering ampli-
tude

y=k —Inf (q; k)
aq

(14)

Assuming a very general form for th~ elementary
interaction (i.e., an arbitrary sum of separable
potentials in each partial wave), this reduces at
very high energies to

y = k —ln f~(0)
9

(19)

y=
0 Z (2~+1)f((k)r&,

1

2
1

k a [2ikfg(k)]'n' '2 Bk I+2ikf, (k)

2k~

p

r, (x) —v, (k')
(x- k')' (23)

where 7, (k) is the projectile-nucleon complex
phase shift. However, we now point to an incon-
sistency in our formalism: The phase shifts give
us the scattering amplitudes in the projectile-
nucleon c.m. frame, while Eq. (14) is to be evalu-
ated in the laboratory frame" (we shall e(luate the
laboratory and m-nucleus c.m. frames, since we
are considering only large nuclei). The simplest
remedy is to assume a transformation law for the
off-shell amplitude based upon that used for on-
shell amplitudes. Considering the case of an in-
cident pion, our prescription will be to compute
the nN c.m. frame off-shell amplitude according
to E(I. (16) and then to identify

which is independent of the details of the interac-
tion and depends only upon the on-shell amplitude.

At lower energies, in the region of projectile-
nucleon resonances, we specialized to the case of
a single separable interaction in each partial wave.
This allows us to compute the off-shell amplitude
directly from on-shell information:

%e have obtained the leading correction to the
lowest-order high-energy optical potential arising
from off-shell scattering of the projectile during
intermediate stages of the multiple-scattering
process. Under the set of assumptions listed in
Sec. II, the optical potential can be written

v(r)=r, (r)(1-&, r, (r)),

where primes are used to denote quantities in the
nN c.m. frame and

q'=qm[m'+ (((.'+2m (p'+q')'~'] 'I

for p, and m the pion and nucleon masses, respec-
tively. Inserting this into our expression for y,
we have finally

v, (r) = -4vA p (r)f„(0). Y(p) + Y(y) t (31)

The size of the off-shell correction is determined
by y, which is in turn related to the off-shell var-

where y&» is to be computed according to E(I. (23)
(with the appropriate wN c.m. variables), and
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where

p(y) 1 Q p

( p'+ m')(p'+ k')"'+2m p, '+ mk'
(p,'+ k')"'[p, '+ m'+2m(p, '+ k')' '] '

Equations (31) and (32) should be used in any com-
parison to experimental data. Note that e -1 as
k-0, so that we return to our original result in
this limit. Also, one can easily verify that n
does not differ from unity very much in the region
of mN resonances. This prescription for trans-
forming the off-shell forward amplitude is not
unique, but it is encouraging that this transforma-
tion effect does not appreciably alter the results
which we obtained above and now summarize.

At very high energies, we found that the size of
the off-shell correction was very small, justifying
use of the "on-shell" or lowest-order optical po-
tential. In the region of projectile-nucleon reso-
nances, we examined two model problems by con-
sidering absorptive and elastic resonant phase
shifts. We found a substantial off-shell correction
when scattering in the vicinity of an absorptive
resonance, manifesting itself in a sharp reduction
of the imaginary part of the optical potential in a

narrow region around the resonance energy. On
the other hand, we found an "anomalously" small
effect in the region of an elastic resonance, with
the leading off-shell correction actually vanishing
at the resonance energy for a certain class of
phase shifts. Comparing this with the work of
Ericson and Hufner' near the 3-3 resonance, we
conclude that the correction is quite sensitive to
the off-shell extrapolation. We extrapolated ac-
cording to a single separable potential, which is
hopefully a rational way to describe the two-body
interaction close to resonance. Nevertheless, in
view of the sensitivity of the results, one should
certainly investigate the consequences of continu-
ing off-shell through other dynamical models.
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