
1518 C. H. BINGHAM AND G. T. FABIAN

IO.O

I,O

E

O

O
IJJ
M

o ol
O

LLJ

CL
LLI

Lt

C5

O.OI

/
1 m/

Xa

96
Zr (d, p)

Ed=33.3 MeV

1,108 MeV—
x 0.5

~ 2=2

~ ~ 1.399 MeV

'L

l

\

00 MeV
x 0.04
8=0

IO.O

~—=, 2.265 MeV
~ 2=5Z0

O 4
LLJ
(A 8

M

CL
C3

I— a$
IJJ
K
UJ

C5

3.731 MeV-
X=5

X. ~

— 1.265 MeV:
x 0.03
4=4

O.OI

o~

E L

O.OOI
IO 20 30 40 50

CENTER-OF-MASS ANGLE (deg)

60 O.OOI
IO 20 30 40 50

CENTER-OF-MASS ANGLE (deg)

60

FIG. 11. Experimental angular distributions for l =0
and l =2 levels in 96Zr(d, p) (points) in comparison with
distorted-wave calculations (smooth curves).

FIG. 12 ~ Experimental angular distributions for l =4
and l =5 transitions in 9~Zr(d, p) (points) in comparison
with distorted-wave calculations (smooth curves).

the small isotopic abundance of the target and
hence the results are only approximations to the
complete picture.

The spectroscopic strengths for the 2d„„3s|i„
and 1g„, states agree well with the expected values.
The measured spectroscopic strength for the 2d„,
states is somewhat higher than expected and that
for 1h»» states is -50-60% of that expected.
Similar results were reported previously for "Zr

and 92Zr. '
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The two-center shell model for fission has been generalized to include asymmetric defor-
mations. The calculation of the potential energy involves four independent shape variables,
where only two were required in the symmetric calculations. Potential energy calculations
have been carried out for Pb ~ Po 3 U 4 Cm Fm Fm, and Fm. Asymmetric
fission is found to be energetically preferred in BU', 24 Cm, and 5 Fm; and symmetric fis-
sion is preferred in Pb, 2 Po, Fm, and Fm. Two of these nuclei, namely ~U and

Po, have been studied in detail. It is seen that the asymmetry in S~U remains almost con-
stant from the second saddle to scission, whereas in Po (and also in Pb), the preferred
shape changes from asymmetry in the region of the second saddle to symmetry in the region
of scission. The results for Fm isotopes indicate that there is a transition from asymmetric
fission in the lighter Fm isotopes to symmetric fission in the heavier Fm isotopes. The
preference for symmetric mass division in 2 Fm is very strong, since two double-magic

&OSn82 fragments are formed at symmetry. In general, the structures which appear in the
potential energy surfaces are the results of an interplay between compound-nucleus shell
structure, fragment shell structures, and liquid-drop-model energies. Comparisons of our
results with experimental observations indicate that the observed mass distribution is corre-
lated with the potential energy surface in the neighborhood of scission.

I. INTRODUCTION

The most significant achievement in the calcula-
tion of potential energy surfaces for nuclear fis-
sion and heavy-ion reactions in recent years has
been the development of methods for calculating
shell corrections to smooth liquid-drop-model

surfaces. ' These methods allow one to calculate
potential energy surfaces' ' rather quantitatively,
and thus help one to understand nuclear fission
and fusion in a more detailed way.

In particular, it has been a long-standing hope
that such potential energy calculations would per-
haps provide a basis for the observed dominance
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of asymmetric mass divisions in low-energy fis-
sion of the actinides. Although this mass asym-
metry has long been considered to be a conse-
quence of shell effects, it is only recently that
theoretical calculations, by Moiler and Nilsson,
indeed established an instability of the second
barrier to asymmetric deformations. It is our
aim in this paper to show the physical reason for
this instability and to show its connection with
specific fragment structure properties.

Since all calculations based on extended Nilsson
models, i.e., one-center single-particle poten-
tials, are not suitable for an investigation of this
problem, we have undertaken a systematic study
of potential energy surfaces for nuclear fission
by generalizing the two-center shell model'' to
asymmetric deformations. ' Since this general-
ized two-center model can describe the correct
shell structure of a fissioning nucleus as well as
that of two noninteracting, well separated nuclei,
it is very suitable for an investigation of the fis-
sion problem. In the next section we will, there-
fore, present the mathematical details of the
model and discuss some of its properties. In
subsequent sections we will systematically investi-
gate the dependence of the nuclear potential en-
ergy on asymmetric deformations and the connec-
tion between the topology of the potential energy
surface and the structure of the nascent frag-
ments.

II. ASYMMETRIC TWO-CENTER MODEL

The Hamiltonian used for the calculation of
single-particle energies appropriate for highly
deformed, and even separated nuclear shapes,
as they appear in nuclear fission and heavy-ion
interactions, is that of the asymmetric two-
center model. Since earlier versions of this
model either violated nuclear saturation prop-
erties' or were too schematic for a detailed quan-
titative investigation of fission potential energy
surfaces, ' we introduce a new generalization of
the symmetric two-center model to asymmetric
shapes, which avoids these difficulties.

We make the following ansatz for the single-
particle Hamiltonian:

H = T + —,
' m &u~,. '(z)p'+ —', m ~„.'(z —z,.)'+ V„„+V(l, s)

symmetric calculations, ' by choosing:

., '~;( — .)'8(l I-I, I),
where 8(x) =0 for x&0 and t)(x) = 1 for x&0.

It should be mentioned here that this potential
(or shape) parametrization is suitable both for
the description of heavy-ion interactions and of
nuclear fission. In the former process the two
ions approach each other only slightly distorted
compared with the fission fragment deformations.
This case is contained in the present parametri-
zation by setting $,. =0. The shapes describable
by the potential are then those of two unequal
separated or overlapping spheroids, i.e., those
appearing before and about the contact point in
heavy-ion reactions.

The function ~~,.(z) in Eq. (l) is chosen to de-
pend on z in the same way as the purely z-de-
pendent part of the potential:

(u„. '(z) =('up, . '+n, Hz —z,)'+(, (z —z,.)'] 9(IzI —Iz; I),

The quantities ~~;, o!, , $,. are defined in Appendix
A R

p z and ~p, are inverse ly proportional to the
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with i =1 for z & 0 and i =2 for z & 0. The nuclear
shapes that can be described by this model are
essentially those of two nonidentical semispher-
oids connected by a smooth neck. The centers of
the semispheriods are located at a, and z, . The
smoothing of the neck is achieved, in direct gen-
eralization of the corresponding expression in

FIG. 1. The lower portion of the figure shows a nucle-
ar shape described by the Hamiltonian given in Eq. (1);
the upper portion shows the corresponding z-dependent
part of the single-particle potential and is given by V(z)
=2m~«'(z-z;) +m~„g;(z —z;) t)(Iz I

—Iz;I) w'th i=1
forz &0 and i=2 for z &0 (see Sec. II and Appendix A).
It is to be noted that this potential is independent of the
transverse semiaxes a& and a2.
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transverse semiaxes a, and a, (see Fig. 1), and

o, a.nd $,. are chosen to allow a smooth transi-
tion from (up, to (op, .

The nuclear shape corresponding to the single-
particle potential V(p, z) in Eq. (1) is obtained in
the usual way by assuming that the nuclear sur-
face follows an equipotential surface with the
value V,:

V( p, z) = Vo p = p(z) ~ (4)

For the potential value V, we take, as usual, V,
= 2m&0 8 with A being the nuclear radius and (do

the oscillator frequency given by @x,= 41A '"MeV,
where A is the nuclear mass number. The shape
parameters can then be determined from various
conditions for smooth transitions of the potential
and its derivatives at z =0, volume conservation,
and the condition that for large separations (large
z, —z,) two independent Nilsson potentials should
be contained in the present parametrization. (For
details of these conditions see Appendix A). These
requirements finally lead to four independent
shape parameters for which we choose the neck
radius D (in fermis), the volume ratio of the frag-
ments A. , and the two additional coordinates n

(describing the relative maximum p dimensions
of the fragments) and o (describing the elongation
of one of the two fragments). The exact definitions
for these quantities are given in Appendix A. (See
also Fig. 1).

The angular momentum-dependent term V(1, s)
is taken to be:

C(z, )1, ~ s +D(z, )(1,' —(1,')),
C(z, )1, s+D(z, )(1,' —(T,')),

where l, and l, are the pseudoangular momenta
with respect to the two centers at z, and z, . These
pseudoangular momenta are defined in terms of
the stretched coordinates appropriate to each of
the two half spheroids. ' In order to assure a
correct transition to the appropriate C and D
values for the fragment regions, we have intro-
duced the Nilsson parameters I(. and p, in the fol-
lowing way:

C(z,.) = -2h&V(z;)~(z;),

D(z,.) =-', C(z,.)p, (z,.),
where 2 is defined by:

polation variable is (d. The values of g and p, are
given in Table I and are based on the values of
Nilsson et al. ' and Arseniev, Sobiczewski, and
Soloviev. "

The Hamiltonian (1) is then diagonalized in a
basis consisting of eigenstates of the basis Hamil-
tonian:

Ho = T + 2 I (0& p + 4 m (d (z —z )

Here (dp is the arithmetic average of (dp] and (4p2.
The basis functions of II, can be obtained by a
simple matching procedure. ' This basis choice,
compared with the standard deformed harmonic-
oscillator basis used by most other groups, has
the advantage that it already contains the over-all
deformation of the nuclear shape, even at scis-
sion and beyond. This means that the most im-
portant deformation-dependent terms in the Hamil-
tonian are already diagonal and only small pertur-
bations have to be diagonalized; thus good con-
vergence is assured.

In contrast, we note that the one-center de-
formed harmonic-oscillator basis leads to a pro-
gressively worse convergence when applied to the
description of shapes at the scission configura-
tion and beyond. This precludes any description
of heavy-ion interactions and of the latter stages
of fission in which such configurations occur.
The two-center basis states have none of these
shortcomings, and the convergence even improves
with increasing separation.

This basis choice also leads to a natural general-
ization of the term (1,. ') which in the standard
Nilsson model is given by" N(N+3) j2. Here N is
the principal oscillator quantum number. Since
the eigenenergies of B, are given by'

E, = (N, + 1)5 (u
p

+ (n„+-', )I(u„. .

with n„. being an integer only in the cases of either

TABLE I. The table lists the single-particle parame-
ters f( and p, for protons and neutrons for the two com-
pound-nucleus regions discussed in the text and for the
fragment regions. They are, except for very small
changes, taken from Nilsson et al, . (Ref. 2) for the two
compound-nucleus regions and from Arseniev, Sobic-
zewski, and Soloviev (Ref. 10) for the f'ragment regions.

(d(z;) = ((d ' (d )

This assures a continuous transition from the
oscillator constant for the fissioning nucleus to
the two different oscillator constants for the final
fragments. The quantities ~(z,.) and g(z,.) are
interpolated linearly between the values for the
compound and the fragment regions. The inter-

Mass region

A ~100
A ~132
A =200
A 250

Protons

0.0688 0.558
0.0671 0.572
0.0610 0.626
0.0580 0,645

Neutrons
K p,

0.0638 0.491
0.0638 0.493
0.0636 0.370
0.0635 0.330
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zero or very large separations, we set

(1,.2) =2(N +n„.)(Np+n„+3),. (10)

thus assuring the correct transition of this term
from its proper value in the fissioning nucleus
to that in the two fragments (see, e.g. , Fig. 2 of
Ref. 8).

The actual diagonalization of (1) has been per-
formed in the basis mentioned above. We found
that taking the 300 lowest eigenstates of H, (in-
stead of using a specified number of shells) at
each deformation assures good convergence—
better than 10 keV in the shell corrections.

The choice of oscillator potentials in (1) is not
a necessary choice, since the two-center model
can be formulated with other potentials as well,
e.g. , Woods-Saxon potentials. It has been claimed,
especially by Bolsterli et al. ,

' that the harmonic-
oscillator potential is inferior to the more real-
istic finite depth potentials. This claim, although
correct for the description of many physical phe-
nomena (e.g. , single-particle reactions), is mis-
leading in the present context. First, the asymp-
totic behavior of bound-state wave functions,
which is different in the two models, nowhere
enters into the calculation of potential energy
surfaces. Second, the seemingly obvious advan-
tage of using a more realistic finite depth poten-
tial is lost because the Strutinsky shell correc-
tion method requires the presence of single-parti-
cle states rather high (=20 MeV) above the Fermi
surface. This necessitates the discretization of
the continuum into physically meaningless single-
particle states that appear as a byproduct in diag-
onalization of the finite depth potentials in oscil-
lator basis functions. In other words, the use of
the Strutinsky shell correction method necessi-
tates, in effect, the introduction of infinitely high
potential walls outside the nuclear radius, even
in the case of "finite depth" potentials. Thus, the
only remaining advantage in the use of finite depth
potentials is the better description of the surface
region, which makes the use of the l' term un-
necessary.

After having obtained the single-particle energies
of (1) as described above, shell corections 5U

are generated from these by using t»e Strutinsky
prescription' with a smearing width of 1.2@~ and
a correction polynomial of sixth order.

The liquid-drop model has been calculated for
the shapes given by Eq. (4) with the parameters
used by Myers and Swiatecki, ' except that the sur-
face symmetry coefficient I(., has been changed
to the value given by Seeger. " This change was
suggested by Johansson, Nilsson, and Szymanski"
who obtained second barriers which were system-
atically too high in the actinide region when the

original Myers and Swiatecki value was used. A

similar value of I(:, has also been suggested by

Pauli and Ledergerber. ' The most realistic value
for z, , of course, can only be obtained in a simul-
taneous refit of the liquid-drop-model plus shell
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FIG. 2. The two-dimensional potential energy surface
V(X,D) for ~36U is shown A. is the volume (mass) ratio
of the portions of the nucleus on either side of. the neck
plane, and D is the radius of the neck in fermis. The
energy has been mini, mixed with respect to n and 0,
which are the other two shape parameters describing
the asymmetric nuclear shape (see Appendix A). The
zero reference energy is at the ground state of 23~U.

The numbers labeling th. e contour lines give the contour
energi. es in MeV. The solid lines are the results of our
calculations; the dashed lines have not been calculated,
but are included as approximate curves for the complete-
ness of the V(A, ,D) plot.
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and those in the A-200 region are

G~ = [20.8 —0.0S33(A —180)]/A MeV,

G„=
I
14.5 —0.0233(A —180)j/A MeV.

(12)

They are taken to be independent of deformation,
since recent calculations in the range 180&A. ~ 212
indicate that the assumption of a surface-dependent
pairing strength is incompatible with experimental
data on fission barriers in that mass region. '
The pairing energy is then given by

f g2
Z, =Q 2+a, v, ' —2+e, ——

P, n u P
(13)

The total potential energy is given by

t/'=ELM +Ep +5U,

corrections to experimental masses, a calcula-
tion not yet undertaken. The results for mass
asymmetry in fission and the indications of frag-
ment shell structure effects in the potential ener-
gy surfaces that we shall present in this paper
are not sensitively dependent on ~, . The quantity
g, is, however, more critical in detailed calcula-
tions of barrier heights.

The pairing interaction has been taken into ac-
count in the BCS formalism using Z levels for the
protons and N levels for the neutrons. The pairing
strengths that give good fits to the odd-even mass
difference in the heavy-element region are

Gp = MeV, G„= MeV,
19.4 13.8

where E~D„ is the liquid-drop-model energy.
Our calculations have been carried out by fixing

successive values of D and A., and then performing
for each of these a two-dimensional potential en-
ergy surface calculation. By thus doing a full
four-dimensional calculation, a correct deter-
mination of the saddle-point location within the
chosen shape parametrization is assured. "

III. RESULTS

Potential energies have been calculated for the
following fissioning nuclei: '"Pb, '"Po, '"U,

cases, namely '"U and '"Po, have been studied
in detail.

Our procedure for carrying out the calculations,
in general, was to fix values of the volume (or
mass) ratio & and the neck thickness D, and then
to minimize the potential energy with respect to
n and o. %e thereby obtain a matrix of values
V(A, D), for a given fissioning nucleus. The elimi-
nation of the two other shape parameters by mini-
mization is not meant to imply that the fissioning
system always follows the minimum energy path;
rather, this procedure just permits the display
of our results in terms of the two most important
fission variables ~ and D. The quantity D may
serve as an approximate fission coordinate in the
region beyond the second saddle point, where the
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FIG. 3. The potential energy V(D) as a function of
neck thickness is shown for selected values of A, , for
236U. These curves represent selected vertical cuts
through Fig. 2. The energy has been minimized with
respect to n and a, and normalized to zero at the
ground state. Note the rather sudden change from sym-
metric to asymmetric shapes at D —=5.6 fm.

-10 I

-20 -15
I

-10
I

0 5
LENGTH (fm)

I

10
I

15

FIG. 4. Shapes of the 3 U nucleus at various points
along the minimum potential energy path. The shapes
labeled A, B, and C are reQection symmetric (A, =1)
and correspond to the neck radius 7.05 fm (approximate
ground state), 6.4 fm (first saddle), and 5.8 fm (second
minimum), respectively. The shapes labeled D, E, and

F are asymmetric and correspond to neck radius and vol-
ume ratio of 5.0 fm, 1.5 (second saddle), 2.5 fm, 1.45,
and 0.5 fm, 1.45, respectively.
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constriction degree of freedom becomes impor-
tant. '

236
92 144

The two-dimensional potential energy surface
V(A., D) for '"U is shown in Fig. 2. The ground
state of this nucleus occurs at D = V. 05 fm, cor-
responding to a spheroidal shape. " Following the
minimum potential path to scission we pass over
the first barrier at D =6.4 fm, for which the nu-
clear shape is reflection symmetric. Continuing
into the second minimum at D =5.8 fm, we find
that a reflection-symmetric shape is still pre-
ferred, but that the potential becomes very soft
towards asymmetric deformations. The mini-
mum energy path crosses the second barrier at
D =-5.0 fm with a quite asymmetric shape, namely
A.:—145/91. Continuing towards scission, i.e. ,
towards smaller D values, we see that the rnini-
mum in the potential energy surface shifts slightly,
to A. =140/96, in excellent agreement with the most
probable mass division observed in the low-energy
fission of '"U."

We note also, from this figure, that the asym-
metric barrier is favored by about 2.3 MeV rela-
tive to the symmetric barrier, and that near scis-
sion the most probable asymmetric shapes are
preferred by -7 MeV relative to symmetry. The
cal.culated barrier height (saddle-point energy)
is in satisfactory agreement with the experimental
value. "

In Fig. 3 we have plotted a few vertical cuts
through Fig. 2. That is, we plot V(D) for selected

values of X. The usual double hump in the barrier
is apparent, and differences for different ~ values
are shown. This figure does not imply that the
occurrence of a particular final A. at scission cor-
responds to a process that has followed one of
these curves; rather, the system may move over
the full four-dimensional potential surface, and
any final A. may result from events, for example,
which cross the saddle at A. =145/91 (or any other
A), depending on the quantum dynamics of the pro-
cess.

The shapes of the nucleus at various points along
the minimum potential energy path are shown in
Fig. 4. The shapes A, 8, and C are reflection
symmetric; shapes D, E, and F are asymmetric.
It is interesting that near scission the heavy frag-
ment appears to have a more nearly spherical
shape than the light fragment.

In Fig. 5 we show a comparison of saddle-point
shapes for different values of ~. The point to note
here is that the shapes are not very different, and
the nucleus does not have to change its shape very
much to cover the full range of A, .

A similar, and perhaps more important com-
parison is shown in Fig. 6 for shapes nearer
scission, at D =2.5 fm. Again it is clear that
the full range of A. is accessible with relatively
small changes in shape.

Since the calculations of the full four-dimension-
al potential energy surfaces are very time con-
suming, our calculations for most other nuclei
are restricted to cuts V(X) for different values of
D around and beyond the second saddle point, as
located within the symmetric calculations. To

E
4

(A

C5

0

I I I I I I I I I I I

236U A B
20

15

10

E

2v) 5

CL 0—

2&6U

B

C
— A

—16 —12 —8 —4 0 4 8 12
LENGTH (fm)

16
-10

—20 -15 -10
I

0 5
LENGTH (fm)

10 15 20

FlG. 5. Shapes of the ~U nucleus for different values
of A. are compared at D =5.0 fm, corresponding to the
second saddle region. The shapes A, 8, and C corre-
spond to A, =1.0, 1.45, and 1.7, respectively.

FIG. 6. Shapes of the 6U nucleus for different values
of A, are compared at D =2.5 fm, corresponding to the
approach to scission. The shapes A, 3, and C corre-
spond to A. = 1.45, 1.0, and 1.7, respectively.
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illustrate the relationship between the full poten-
tial energy surface and these cuts we show in
Fig. 7 the curves V(X) for "'U. The curve cor-
responding to the neighborhood of the second sad-
dle point is labeled D =5.0. This curve gives a
good indication of the behavior of the potential
energy surface about the saddle, although it alone
does not suffice to localize the saddle point un-
equivocally.

Similarly, a key indication of the behavior of
the potential energy surface near scission is the
function V(A. ) for D =D „,where D „is some
value of D approaching scission, chosen generally
in the range 2 to 4 fm. Such a curve for '"U is
labeled D =2.5 in Fig. 7.

The remaining curves in Fig. 7 correspond to
D = 5.7, close to the second minimum in the poten-
tial energy surface, and to an intermediate point
between D = 5.0 (saddle point) and D = 2.5, namely
D =4.5. It is seen in Fig. 7, as in Fig. 2, that
asymmetric shapes (A. =145/91) are favored at
the saddle, and that the potential energy minimum
shifts slightly, to X=140/96, as D decreases to-
ward scission.

130
118

I

135
113

I

NH

N

140
108

I

145
103

150
98

I

10

Let us discuss one further aspect of the "'U
results. It has long been known that the Q values
for fission, i.e., the available energy for fission
into various fragment mass divisions, favor divi-
sion into final fragments with A. =132/104. The
minimum potential energy near scission is seen
here, however, to occur at A. =140/96, in agree-
ment with experiment. Our explanation for this
may be stated approximately as follows: When A.

is precisely (or very close to) 132/104, the double-

magic mass-132 partner tends toward sphericity
to take advantage of its large binding energy. In

so doing, however, the repulsive Coulomb poten-
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FIG. 7. The potential energy for 23~U as a function of
A, , the volume ratio of the portions of the nucleus on
either side of the neck plane, for several values of D,
the radius of the neck in fermis. The energy has been
minimized with respect to n and 0 and normalized to
zero for the ground-state energy.

FIG. 8. The potential energy for 4 Cm as a function
of A. , the volume ratio of the portions of the nucleus on
either side of the neck plane, for several values of D,
the radius of the neck in fermis. The energy has been
minimized with respect to G.' and cr and normalized to
zero for the ground-state energy.
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tial tends toward higher values, so that the total
potential energy is actually higher than that at
X =140/96, where the additional -8 nucleons in
the heavy fragment apparently provide an optimum
compromise between the increased binding energy
of nuclei approaching double-magic configurations,
and the reduced stiffnesses of nuclei receding from
closed-shell configurations.

248a. „Cm»,

The potential energy for this nucleus has been
studied by examining cuts in the V(A., D) surface,
showing V(X) at D =5.0, 4.0, and 3.0 fm. The re-
sults of these calculations are shown in Fig. 8.

The symmetric saddle point for this nucleus
occurs at 4.0 ~D ~ 5.0 fm; the curve labeled D
=5.0 in Fig. B,indicates that the preferred shape
is reflection symmetric. As the system continues
toward scission, we see that asymmetric shapes
become preferred (see curve for D = 4.0) and this
preference becomes even stronger at D =3.0, as
evidenced by the stronger minimum at A. =144j104.

252 258 264F
C. 100Fm152' 100Fm»8, » 100 164

The potential energies for these nuclei have
been studied„as in the case of '"Cm, by examin-
ing cuts through the V(A., D) surfaces, showing

V(X) for several values of D. The results are
shown in Figs. 9-11.

The saddle point in '"Fm, from reflection-sym-
metric calculations, ' occurs at about D =4.87.
The curve showing V(A) for D =4.87 in Fig. 9 indi-
cates that here the preferred shape is still reflec-
tion symmetric. Similar results are obtained for
' 'Fm and '~Fm, as shown by the curves labeled
D = 5.0 in Figs. 10 and 11.

As D becomes smaller, in the descent towards
scission, we find that the minimum potential en-
ergy in '~Fm shifts rather quickly to an asym-
metric shape (curve labeled D =4.4 in Fig. 9). The
asymmetric shape then appears to remain pre-
ferred through intermediate stages (curve labeled
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FlG. 9. The potential energy for 5 Fm as a function
of A, , the volume ratio of the portions of the nucleus on
either side of the neck plane, for several values of D,
the radius of the neck in fermis. The energy has been
minimized with respect to n and cr and normalized to
zero for the ground-state energy.

FIG. 10. The potential energy for ~ Fm as a function
of A, , the volume ratio of the portions of the nucleus on
either side of the neck plane, for several values of D,
the radius of the neck in fermis. The energy has been
minimized vrith respect to m and cr and normalized to
zero for the ground-state energy.
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D = 4.0) and onward towards scission (curve D = 2.0).
In contrast, the preferred shapes remain sym-

metric throughout the descent to scission for '"Fm
and '"F, as seen in Figs. 10 and 11. The prefer-
ence is quite strong, i.e., the potential minimum
is quite sharp in '"Fm, where symmetric fission
results in the formation of two double-magic
132„Sn„nuclei. The potential near scission in '"Fm
is softer towards asymmetry, exhibiting a some-
what Qat shape as might be expected in the transi-
tion region between asymmetry ('"Fm) and sym-
metry ('"Fm).

Measurements of mass distributions in the fis-
sion of Fermium isotopes show asymmetric peaks
in '"Fm "and '"Fm,"and a symmetric peak in
'"Fm." The peak-to-valley ratio for '"Fm is,
however, only 12, a small value relative to the
usual peak-to-valley ratios for the low-energy
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fission of actinides. A broader peak, with some
dip in yield at symmetry has been found for
'"Fm."'" The results of our calculations are
qualitatively in accord with the measurements.
The most probable heavy-fragment mass for '"Fm
is calculated to be 140 amu, as observed for "'Fm
and Fm. Although the rather flat potential cal-
culated for Fm would indicate a broader, more
flat-topped mass distribution than is observed,
there are two possible reasons why such a dif-
ference might occur; (l) The calculations are
not refined sufficiently to give complete details
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FIG. 11. The potential energy for ~~4Fm as a function
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either side of the neck plane, for several values of D,
the radius of the neck in fermis. The energy has been
minimized with respect to n and a and normalized to
zero for the ground-state energy.

FIG. 12. The two-dimensional potentM energy surface

V(A, ,D) for po is shown; A, is the volume (mass) ratio
of the portions of the nucleus on either side of the neck

plane, and D is the radius of the neck in fermis. The

energy has been minimized with respect to o. and 0,
which are the other two shape parameters describing
the asymmetric nuclear shape (see Appendix A). The

zero reference energy is at the ground state of Po.
The numbers labeling the contour lines give the contour

energies in MeV. The heavy lines are the results of
our calculations; the thin dashed lines have not been

calcu1ated, but are included as approximate curves for
the completeness of the VP. ,D) plot.
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of the distributions, and there may be significant
dynamic effects not yet taken into account, and

(2) the measurements were made by bombarding
'"Fm with thermal neutrons, resulting in an ex-
citation energy of -6 MeV in the fissioning nucleus.
The effect of increased excitation energy on the
fargment mass distribution in this specific case
is not known, but acts generally to enhance the
symmetric yield. A measurement of the mass
distribution for the spontaneous fission of Fm,
which is expected to be rather broad according to
our calculations, would therefore be very impor-
tant for a better understanding of this transition
region.

The important point here is that a transition
from asymmetric fission in the lighter Fm iso-
topes to symmetric fission in the heavier Fm iso-
topes occurs and is accounted for in the calculations
of potential surfaces, in which fragment structure
effects are evident. Specifically, symmetric fis-
sion becomes prominent when the number of neu-
trons reaches a value, apparently N-158, at which
two nearly-double-magic fragments can be formed.

210
84 126

Some years ago, in the liquid-drop-model studies
of Nix and Swiatecki, "it appeared that the liquid-
drop model would successfully describe the fission
of nuclei lighter than about radium. These nuclei,
at medium excitation energies, generally produce
fragment mass distributions peaked at symmetry,
average total kinetic energies peaked at syrn-
metry and slowly decreasing with asymmetry,
and other observed quantities, all of whose gener-
al properties are consistent with results of the
liquid-drop-model calculations. "" (Measure-
ments at low excitation energy do not exist. )

We have chosen the nucleus ' Po to study in
detail, as an example of nuclei lighter than radi-
um, to determine whether the potential surface
would exhibit an over-all liquid-drop character.
A recent calculation of Bolsterli et a/. ' has indi-
cated that the saddle point might occur at an asym-
metric shape; if this were confirmed (as has, in
fact, now occurred in our calculations, see below),
the potential energy surface should show signifi-
cant deviations from liquid-drop behavior.

The results of our potential energy calculations
for '"Po are shown in Fig. 12. The figure shows
V(A., D), the potential having been minimized with
respect to the other two shape variables o. and o,
as for "'U and all other nuclei. The ground state
(zero energy) is at D:-7.25 fm; the first barrier
is reflection symmetric and occurs at D:-6.6 fm,
with V=16 MeV. The second minimum occurs at
D:-6.0 fm, with V=11.5 MeV. Again, as in the
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PIG. 13. The shape of the ~ Ponucleus at various points
along the minimum energy path. The shapes labeled A,
8, C, and E, are reflection symmetric P.=1) and corre-
spond to neck radius 7.25 fm (ground state), 6.6 frn (first
saddle), 6.0 fm (second minimum), and 2.0 fm (near
scission), respectively. The shape labeled D is the
asymmetric saddle shape and corresponds to the neck
radius of 4.5 frn and volume ratio of 1.5.

case of '"U, the second minimum is soft towards
asymmetry and leads to a second saddle at an
asymmetry of X-130/80. In this case the second
saddle consists of a wide region from D -5.0 to
D -3.5 in which the energy varies little (only -1.8
MeV) and seems to show a slight dip at D -4.5 fm.
Beyond this saddle region the energetically fa-
vored path leads, via a steep valley, to symmetric
mass division at scission.

The second saddle for this case is much higher
than that for "'U and agrees well with the experi-
mental barrier height. " We note that the asym-
metric saddle is favored by 2 MeV with respect
to the symmetric barrier. The second minimum
is quite narrow and lies at an excitation energy
which is high relative to the ground state; an inter-
esting question is whether this minimum can sup-
port an excited state whose wave function is con-
centrated in this region.

It is clear that the potential surface V(A, , D)
shown in Fig. 12 contains prominent structures
resulting from shell corrections and deviates ap-
preciably from the smooth liquid-drop-like po-
tential. Still, looking at the region of the surface
for D = 3.0 fm, we see a resemblance to the
smooth liquid-drop potential; we may understand
on this basis, perhaps, why the liquid-drop-
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model calculations initially appeared to be so
successful.

In Fig. 13 we show the shapes of the ',O~Po nu-
cleus at several points along the minimum pot-
tential energy path to scission. %e note especial-
ly the asymmetric saddle shape, curve labeled D,
and the quite elongated symmetric shape near
scission, reflecting the fact that the nascent frag-
ments (",,'Mo at symmetry) are soft, mid-shell
nuclei.

A plot of V(X) for several values of D is shown
in Fig. 14. The curve labeled D =6.0 corres-
sponds to the second minimum, that labeled D
= 5.0 corresponds to the onset of the second sad-
dle. For D ~ 4.0 symmetric shapes are clearly
preferred. This, as explained in the section on
"'U, is the kind of display we use in those cases
where the entire V(A, D) surface has not been cal-
culated; this figure provides a direct compari-
son of ' Po with those cases.

Returning briefly to the calculated asymmetric

saddle in "'Po, we offer the following qualitative
explanation for this phenomenon. The minimum
in V(X) at the saddle point, where D = 4.5- 4.0 fm,
occurs at X=1.7=132/78 (see Fig. 14). This mini-
mum and the shoulder which persists at this value
of A. for cuts taken closer to scission, at D =3.5,
3.0, and 2.0 fm, is probably due to the influence
of the double-magic ",',Sn„configuration reaching
into the potential energy surface. Its strength is
not enough to overcome the very strong liquid-
drop-model preference for symmetry near scis-
sion, but is sufficient to cause the asymmetric
minimum in the otherwise flat saddle region.

202E. 82Pb120

This nucleus is another example of nuclei lighter
than radium, for which the fragment mass distri-
butions are peaked at symmetry. %e have exam-
ined a few slices V(A) at fixed D values, to ascer-
tain whether the same general features occur in
the V(X, D) surface for this nucleus as for "'Po.
The results are shown in Fig. 15.

The curve labeled D =4.37 shows V(A. ) in the
region of the saddle point, located on the basis
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FIG. 14. The potential energy for 2~0Po as a function
of A, , the volume ratio of the portions of the nucleus on
either side of the neck plane, for several values of D,
the radius of the neck in fermis. The energy has been
minimized with respect to u and o and normalized to
zero for the ground-state energy.

F'LG. 15. The potential energy for Pb as a function
of A, , the volume ratio of the portions of the nucleus on
either side of the neck plane, for several values of D,
the radius of the neck in fermis. The energy has been
minimized with respect to ~ and 0 and normalized to
zero for the ground-state energy.
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of earlier calculations for reflection-symmetric
shapes. ' We see that, as in '"Po, an asymmetric
shape is preferred. The descent towards scission,
i.e., V(A) at smaller values of D, indicates again
a steep valley whose minimum is at symmetry.

Thus the results for 2Pb seem to be quali-
tatively similar to those for '"Po. In both cases
the potential energy calculations indicate a mass
distribution peaked at symmetry, in agreement
with experimental observations for light nuclei.

IV. DISCUSSION AND SUMMARY

The comparison of our results with experiment,
as discussed above, shows clearly that the ob-
served mass distribution is correlated with the
potential energy surface in the neighborhood of
scission. In this region of the potential surface,
fragment structure effects are identifiable and
are strongly felt, as we have also shown. We,
therefore, conclude that the observed mass dis-
tributions in low-energy nuclear fission are strong-
ly influenced by specific fragment shell structures.

It is a remarkable coincidence that in '"U, and
possibly also in other actinides, the asymmetry
remains almost constant from the saddle point to
scission, whereas in "'Po the preferred asym-
metry changes drastically between saddle and
scission. This comparison appears to us to illus-
trate the interesting interplay between the shells
of the fissioning nucleus and those of the nascent
fragments in the structure of the potential energy
surfaces. The details of this interplay and the
specific manner in which it occurs in the potential
surface depends to some extent on the form of the
single-particle potential and on the increase in
height of the intermediate peak in V(z) at the neck
plane as the neck radius decreases toward scis-
sion. The analytical form we have used (see Sec.
I&) appears to be physically reasonable, but this
aspect should ultimately be studied by means of
self-consistent calculations.

Because of the close correlation between our
theoretical results and experimental observations,
it appears as though a fissioning nucleus may "feel
out" its potential energy surface, following rather
closely a minimum potential energy path toward
scission. Alternatively, the motion may be more
rapid, and the mass parameter may be smoothly
and slowly varying as a function of the shape vari-
ables, so that the structure of the potential surface
still essentially determines the fission path. The
early formation of the fragment shells is expected
to lead to a collective mass parameter for the
separation degree of freedom which approaches
the reduced mass of the fragments soon after the
second saddle; thus dynamic effects should have

only little influence on our conclusions drawn from
static saddle and scission point properties.

Although the dynamic calculations and solution
of the complete Hamiltonian remain essential, it
appears at present that the potential surface plays
the dominant role. This provisional conclusion
is based on the discussion of possible dynamic
effects (see above), on the correlations between
observed and calculated preferred mass ratios
as discussed above, and on a number of previous
works in which fragment deformations and total
kinetic energies in low-excitation fission have
been systematized on the basis of simple static-
scission models. "

Many experiments and correlations of data over
an extended period of time have pointed out the
importance of fragment structure effects in fission
observables. In our earlier calculations, ' and
again here, we have shown that fragment structure
effects can be identified in the potential surface,
and we have indicated how these develop. In the
results reported here, quantitative agreement is
found between the potential energy predictions
near scission and the observed most probable
mass divisions for a variety of nuclei.
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APPENDIX A

1
2 2

CO+ &Z& = 40&2Z2 9

z 19 2

(A2)

o 2 $ 2 o 2 1
p1, +p QyZ~ 4 p2 +2 Q2Z2 ~ (AS)

These four conditions together with the volume
conservation constraint leave us with five inde-
pendent potential parameters. Another constraint
follows from the requirement that the function
v„(z) should be practically constant over the whole
volume of the fragment nuclei when the nuclear

The parameters $; and n; appearing in the single-
particle potential can be determined with the help
of the following conditions: (1) The nuclear shape
[ p(z)] and its derivative [p'(z)] must be continuous
at z =O. The nuclear neck should be located at
z=0, implying p'(z=0) =0; (2) the single-particle
potential V( p, z) and its final derivatives should
be continuous at z =0. Conditions (1) and (2) lead
to the following constraints on the potential pa-
rameters:
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u)„'(z =0) =2((up, '+tdp, ').
This leads to:

(A4)

2 (~Pi ~P2 ) ~

o o

1

1 o 2 o 2

82

(A5)

This additional condition then leaves us with four
independent potential parameters which can be
converted into shape parameters by using Eq. (4);

configuration consists of two well separated frag-
ments. In other words, the model should be able
to describe two separated Nilsson models. This
condition of a very slowly varying ~„(z) over the
fragment volume implies that n; should decrease
with increasing z, . In order to determine this de-
pendence we require:

then

(doc]= R,
40 8]

oa] —o
(u ps

(A6)

Instead of these, however, we choose as shape
parameters, for presentation and discussion of
results, the physically more meaningful quantities
D -=radius of the neck in fermis and A. -=volume ra-
tio of the nuclear parts on either side of the neck
plane. Note A. = j„,pdpdz/f„, pdpdz, where the
integrations are to be extended over indicated
parts of the nuclear volume. (X= 1 corresponds
to symmetry. ) The remaining two shape param-
eters in this framework are then:
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Neutron transmission and total neutron-capture yields were measured using the time-of-
flight technique at the Oak Ridge electron linear accelerator facility using enriched samples
of ~2Mo. A total of 42 resonances were observed for neutron energies less than 32 keV. 12
are assigned to s-wave interactions, while 23 are assigned to p-wave interactions. The
resonant energies, neutron widths, radiation widths, and spins are deduced. The average
s- and p-wave radiation widths are equal to 0.178+ 0.015 eV and 0.24+ 0.03 eV, respectively.
The s-wave neutron strength function is (0.65+ 0.26) && 10 4, while the p-wave strength func-
tion is (3.3+1.1)x 10 4.

I. INTRODUCTION

A recent development in the field of radiative neu-
tron capture is the observation of the importance
of single-particle or valency contribution to the
y-ray decay of the neutron resonances for nuclei
near the peak of the 3p neutron strength function. ' 4

In a separate paper' capture y-ray spectral mea-
surements are reported for resonant neutron cap-
ture in the target nucleus 'Mo for neutron energies
less than 25 keV. Qne purpose of the present paper
is to supply the neutron resonance parameters re-
quired to calculate the valency model contributions
to the y-ray transition probabilities for this nu-
cleus. Previous measurements' of the total neu-
tron cross section, which employed samples of
natural isotopic composition, identified only a few

resonances in "Mo. Total neutron-capture mea-
surements by Weigman, Rohr, and Winter' using
enriched samples were limited to neutron energies
less than 10 keg.

The present work reports the results of neutron
transmission and total neutron-capture experi-
ments performed at the Qak Ridge electron linear
accelerator (ORELA). Neutron resonance parame-
ters for the target nucleus "Mo are deduced for
neutron energies less than 32 keV where only s-
and p-wave neutron interactions are significant.
The required parameters are the neutron width
I'„, the total radiation width I'„, and the spin and
parity of the resonance J~.

The parities of the resonances are determined
from the shapes of the transmission dips. The
s-wave resonances are identified by the asymmet-


