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The anomalous large-angle scattering of medium-energy a particles is interpreted in terms of an
exchange process. An exchange amplitude {"knock on"), calculated in the distorted-wave Born
approximation, is evaluated paying particular attention to the antisymmetrization of the A +4 nucleon
system, This amplitude is combined with a scattering matrix appropriate to fit just forward-angle elastic
scattering. It is shown that only the highest possible orbital angular momentum cluster (L =8 for ' Ca)
is significant and leads to agreement with experiment, This agreement is achieved with only one
adjustable parameter, the spectroscopic factor, which turns out to be quite small. It is shown that
this microscopic catuclation may provide a basis for the phenomenological Regge pole description of
this process.

I. INTRODUCTION

The so-called anomalous large-angle +-particle
scattering effect (ALAS) has, by now, been ob-
served in a number of different light and medium
nuclei at various energies. ' ' In elastic scatter-
ing and at forward angles one observes a well-
understood diffraction pattern. On the basis of
scattering from diffuse, strongly absorbing nuclei
one would expect an oscillatory pattern which is
strongly decreasing as well as damped out at large
angles. The ALAS on the other hand demonstrates
a forward-angle diffraction pattern, but at large
angles a strong oscillation and generally increas-
ing differential cross section is observed.

The ALAS has generated considerable interest
as a process that might shed light on n clustering
in the vicinity of the nuclear surface. There have
been many "explanations" ' "for the ALAS with-
out any apparent connection among them. A
straightforward attempt to perform an optical-
model (OM) fit has been successful in one ease, "
but in general such a simple analysis does not
seem to work. '6' " Parious attempts to explain or
simulate ALAS have tried to enhance one or a few
particular partial waves, based on the following
argument. For a J =0 nucleus the ~-particle elas-
tic scattering amplitude, f(8), is given by

1
f(8) =f, (8) + . Q (21+ I)e'"'(g, —1)P,(cos8),

l=0
(1.1)

where f, (8) is the Coulomb amplitude and cr, are
the Coulomb phase shifts. All other symbols have.
their usual meaning. " The g, giving rise to the
usual diffraction pattern are small for the strongly

absorbed low partial waves and rise smoothly with
a width of at most only a few units in l centered
near lo-kA where 8 is the nuclear radius. For
large l, q, goes to unity. At angles near 180'the
adjacent Legendre polynomials differ in sign and
this is largely responsible for the damping as well
as the over-all decrease in the differential cross
section. If, however, one partial wave is particu-
larly accentuated, relative to the smoothly varying
g„ then at large angles that one partial wave, L„
will contribute to the cross section a term roughly
proportional to

~ P~ (eos8) ~'. At forward angles
this one term does not dominate because of the
presence of Coulomb scattering and the fact that
all partial-wave amplitudes are of the same sign.
An "/ spike" could then contribute an additional
amplitude to Eq. (I.l) of the form

1
Af„= . P (2l+ 1)e'"'a,P, (cos8),

1=0
(I.2)

where the a, amplitudes are peaked in l to form
the desired aeeentuated partial waves.

The main criticism of most of the ALAS explana-
tions is simply that the spike i.s introduced only
phenomenologically with no quantitative, "micro-
scopic, " basis. One calculation, by Noble and
Coelho" similar in spirit to the present work at-
tempts to modify the elastic scattering by adding
an amplitude arising from heavy-particle strip-
ping (HPS) for the case of n particles incident on
' O. The present work suggests that the "knock-
on" (KO) exchange process" is an important term
in generating a, . In this calculation we perform a
distorted-wave Born-approximation (DWBA) cal-
culation for the additional amplitude. To obtain
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the DWBA amplitude we generate distorted waves
from an OM analysis of the forward an-gte scatter-
ing, and we treat fully the antisymmetrization in-
volved.

That such a process produces an a, which is sur-
face peaked is a very general result following ar-
guments of Frahn and Venter" and Dar and Koz-
lowski. " If o. clusters do exist on the nuclear sur-
face the incident z particle can knock out a cluster
moving in the average field of the passive core.
Qn the other hand o. clusters from deep inside the
nucleus cannot contribute to the KQ process, both
because clusters are not likely to exist there, and
because if they did the incident and outgoing o par-
ticles would be strongly absorbed. At large radii
the overlap of the incident and bound a particles
is small. Therefore, the KQ amplitude peaks in
coordinate space in the vicinity of the nuclear ra-
dius and by semiclassical arguments will there-
fore exhibit l peaking near lo=kR.

We shall show that the present model does pre-
dict the required spike with an amplitude that re-
flects the cluster spectroscopic factor. This spike
when added to the optical contribution produces the
qualitatively correct angular dependence over the
entire angular range, not just large angles. The
model is consistent with the energy variations of
the ALAS as well as its disappearance at high en-

1s 21

In Sec. II we identify the KQ matrix element, in-
troduce the approximations that define the model,
and display the specific equations for a, . Section
III is devoted to a presentation of the results ob-
tained for "Ca and a comparison with experiment.
In Sec. IV we compare the various other explana-
tions of ALAS indicating the connection to the pres-
ent model. Section V presents our conclusions.

II. "KNOCK-ON" MODEL

In this section we first define the KQ matrix ele-
ment and give intuitive arguments for its choice.
In order to actually compute the matrix element,
further approximations are then introduced and a
tractable expression for the a, is obtained. We
then discuss, qualitatively, our expression for a,
to demonstrate its l peaking. Special attention is

given throughout to the Pauli principle which is of
particular relevance for exchange processes. "

Since n particles are strongly absorbed, pre-
sumably the direct reaction mechanism is adequate
to describe their scattering properly. We choose
a DWBA representation to describe the KQ pro-
cess and believe it to be justified for strongly ab-
sorbed particles in much the same fashion as it is
applied to inelastic o,-particle scattering. That is
the strong absorption is an indication that many
channels are available and the one particular chan-
nel we are evaluating represents only a small part
of the cross section, enabling a perturbation treat-
ment. In our language a, should be "small" but to
calculate the total elastic scattering amplitude we

need both a, and g„even though the o., are small
and span a small region of l. This point of view
is supported by the "phenomenological" spike,
which turns out to be small compared to the E-kA

amplitude, q, .' It also suggests that the contribu-
tion to the total reaction cross section caused by
the introduction of this term should be small.
Under these conditions the double counting error
inherent in this kind of DWBA analysis will also
be small. It should be emphasized that we az'e ap-
plying DWBA to essentially only the high-partial-
wave-exchange processes.

For composite particle scattering by a target
there are many exchange processes in addition to
the direct term. The present interpretation at-
tributes the ALAS to the KO term solely. Two rea-
sons lead to this choice. First the a particle is a
particularly stable cluster, and exchange processes
in which only a part of the cluster is exchanged. and
recombines with a suitable fraction of the target to
form the outgoing a, are expected to be small. The
stability of the cy particle is manifest in our treat-
ment by the neglect of excitation of either the inci-
dent or outgoing u particle. Secondly, the antisym-
metrization results in relatively small combina-
torial factors that multiply the corresponding am-
plitudes, as we shall show later. There are sug-
gestions that "core-exchange" amplitudes should
be small. " We have not evaluated such amplitudes
and the general features of our agreement with ex-
periments suggests these contributions are not im-
portant.

The scattering amplitude for a spin-0-charged object on a J=0 target is given by Eq. (I.l). For forward
angles say 8&60, where z scattering displays a diffraction pattern, the g, can be obtained from an QM
fit, and are hereafter denoted by g, '~'. This fitting procedure takes into account the direct term as men-
tioned above. The KO term, to be added to the OM amplitude, represents a perturbation r f„(e) which can
be expanded, similarly, in partial waves| 00

bf„= . g (2l+ 1)e'"&a, P, (cose)
1~o
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such that the total nuclear amplitude valid for all angles is

1 00

f~ =f„' '+&f„=f, + . P (2I+ 1)e'"'(g~'~'~+a, —1)P,(cos8) .
l-0

The antisymmetrized T matrix element for the reaction a+ n- b+P in the DWBA is given" by

(11.2)&-b -2(-I)'(+ +bX' '(4, kb), [ Vb —U~l&+.+.X"(r., k.)&,

where y „,X8' are distorted waves in the incoming and outgoing channels n and P, respectively, and de-
pend on the distance between the center of masses of the two fragments involved. Let us assume for sim-
plicity one kind of particle numbered by 1 to ¹ The a, P channels are chosen to correspond to the parti-
tions

@, =4, (1, 2, 3, . . . , n.),
e„=e„(n,+I, s. +2, . . . , n. +n„),
0 b =+b(1, 2, . . . , nb),

e, =e, (nb+I, . . . , nb+n, ), (11.3)

where the 4 are antisymmetrized with respect to their specific coordinates, and the operator P realizes
all possible permutations between the coordinates of 4', and 0 „. There are altogether ("&„'"&)such permu-
tations. The sign (-1) is positive if an even number of particles are exchanged, and negative for an odd
number of particles. The phenomenological optical potential U8 depends only on r&, whereas the resiaual
interaction V(i, j) leads to,

k= ],...,fthm

'fly + j.b ~ ~ ~ b fag + fl

V(i, j), (II.4)

It is now a simple exercise to employ (II.2) for a four-nucleon composite particle in the entrance and
exit channels. As a result we obtain

(II.5)

The various terms in (II.5) represent, with an obvious notation, the direct term, the single-particle ex-
change, and the two-, three-, and four-particle exchange terms: Denoting n =n& =n, we have

T~.„,= (4'b(1, 2, 3, 4)4 8(5, . . .N)g~s ~(r8, k&), (V8 —U8)4', (I, 2, 3, 4)4'„(5, . . .N)y~„'~(r„, k, )),

2 3 4 ~ 5 )(~ V~ UB@r 5 2 3 4 1 6

Tcx+g1y2y3y4 4'85y ~ ~ oNxgyVBUgg5y6yvy4 f)t 1y2y3yBy ~ ~ +uxor

T~~=+ 4 1 234%85 . . .NX~~ V -U& 5 678 1 2349 . . .Nx~'~r k . II6

The binomial coefficients in(II. 6) arise from counting the permutations involved. The total number of per-
mutations, regardless of order, between two groups of n, and bb„objects respectively is ("&„'"'). This num-
ber is obtained by adding the unity permutation to the number of permutations permitting the exchange of one
object between the groups, two objects etc. The number of permutations where k objects are interchanged,
regardless of the order, is clearly ("b') ("b"). Since the wave functions 4 in (11.6) are already antisymme-
trized, all permutations of one type yield the same matrix element and give rise to the assigned combina-
torial factors. In addition, we have
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Following the formula given by Austern" the "knock-on" term is:

T(KO) =
( )'( ) (4,(1, 8, 8, 4)a 4(5 ~ N)8(4)(54, 8i), T() ~ ~ 4; 5 ~ ~ ~ 8)

xC, (5, 6, 7, 8)4„(1~ ~ ~ 4, 8 ~ ~ N))t&„+&(r, k, )),
where, for elastic scattering 0, =4

~ is the ground-state intrinsic +-particle wave function, 4 8=0 „repre-
sent the target in its ground state, r =r& is the vector between the Q.-particle center of mass and the tar-
get center of mass, and the interaction leading to the "knock-out" process is

'U(1, . . . , 4; 5, . . . , 8) = Q V(i, j).
4-X ~ ~ ~ ej- Sa ~ ~

(II.8)

In order to evaluate (II.7) further simplifying assumptions have to be introduced. The dependence of 4„,
0 8 on the coordinate appearing in the interaction is separated out, and the formalism for developing an
expression with which we can obtain an estimate of the knock-out contribution is given in Appendixes I and
II.

Using (A II.4), (A II.5), in (A II.3) it follows that;

&(KO) = „,Q(4 i APn)Ap(o)i4„)(4p(R~)X~ '(R„ki), V(R„R )4~(R2)y"(R„k,)),

where A~t(o) stands for the operator that creates an a particle with center-of-mass (Iuantum numbers P.
The matrix element (4'„~ A~t(o. )A~(o,)~4$ is a spectroscopic amplitude and measures the "number of n's"
in the total antisymmetrized wave function 4

It is important to note that the normalization of the "spectroscopic amplitudes" in (II.9) is according to
(A 1.5)

4, .g( a'!I '„AAl !"a')= ', , nr(a-4)(a-8)pr 8)=—',
(-)

Ps Q

(II.9)

(II.10)

which is approximately 3800 for N =40. The fraction of sum rule (II.10) absorbed by its "n terms" is, ac-
cording to the model, the spectroscopic information probed by the ALAS.

If protons and neutrons are treated separately, the above discussion and approximations follow similar
lines. Eventually one again derives (II.9), with rule (A I.B)

y(tfp g$g} /t g y(gp g$g} P~

(2,)4~ (+ ' " l&Po ~ol~n' &-(2,). 2 ~
(II.11)

which is around 9000 for 'Ca.
To complete the model a recipe for choosing 4~(R), the cluster wave function in the target must be speci-

fied. For this we can use a result obtained from the cluster model. " If we assume the four particles con-
stituting the o, cluster to be in harmonic-oscillator orbits (n„ I &) then if all the energy is attached to the
center-of-mass motion (n, L,) one obtains,

4

2(n —1) + I.=P [ 2(n, —1) + I, ] . (II.12)

Since we believe these o, clusters to exist mainly on the nuclear surface, we choose the (n„ I,) levels in
the highest major shells occupied, and keep the right-hand side of E(I. (II.11) fixed. In order to actually
generate such wave functions, we choose a Vfoods-Saxon well having a range and depth appropriate to the
(N —4) core. This choice can be guided by examining the optical potential obtained by fitting elastic n scat-
tering from the (N-4) target. The binding energy of the cluster to the core is chosen, consistent with this
picture, to be the experimental binding energy of an a particle to the (N —4) core. We vary the depth to
obtain this energy as an eigenvalue, and the corresponding eigenfunction is the required one. This pre-
scription, although hard to justify rigorously, provides the correct tail for the wave function which is the
relevant portion for the a scattering. All other (n, I,) states are calculated in the same well, and are there-
fore more tightly bound. Comparing the exchange amplitude (II.9), (A III.5) with the definition of its partial-
wave expansion (I.2) we have

a, =—,—I —(a„(A„(a)Aa(a)(ag(5 5) T(), 8, T.)
nI. X

(II.13)
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with

I((, «, 4 =J «))),d)(,f (8„)«)('«()),l«««(R„)),)c'„(B«,)f ())„)«), (A III.6)

where p, is the reduced mass of the n-particle-plus-target system, 3nd

c= (4!)'for one type of particle

=(2!)' for two types of particles. (11.14)

Expression (II.13) summarizes the model. The

spectroscopic information appears through the co-
efficients {4'„~A 4~4„), which are extracted from
experiment.

Spectroscopic amplitudes developed from a de-
tailed nucleer-structure calculation would be ener-
gy-independent. The reliability of our calculation
can in part be determined by studying the energy
dependence of the extracted values.

Let us denote by a, the contribution resulting
from one particular L in (II.13). From expression
(AIII.6) we see readily that a, peaks for some I.
The argument is the following: For very high l,
the centrifugal barrier keeps f, outside the tail
region of bound state 4„~, and the whole integral
is small. For small /, f, represents a strongly
absorbed wave function" (in the sense that it oscil-
lates appreciably if the projectile energy is not
too low), and the integral will average out to zero.
This is equivalent to the observation in inelastic
e-particle scattering, calculated in DWBA, that
there is no effect caused by cutting out inner con-
tributions in the pertinent radial integrals.

The intermediate l, for which the integral has
its maximum value, depends on the bound-state
~-particle angular momentum, L. It is known~

and can be verified directly from (A III.8) that the
interaction multipoles v„decrease quite rapidly
with increasing A. . Therefore, the integral favors
low multipoles A, , whereas the strong absorption
favors partial waves corresponding to the nuclear
surface. Since, however (l, X, L) in (II.13) must
obey the triangle rule, once L is fixed, the maxi-
mum value of the integral is determined by these
competing trends. If L is low, the maximum will
occur for low l. If L is increased, the l for which
the integral maximizes, is increased, and will
very roughly be around I. because this situation
can utilize the increased magnitudes of the low A. .
Therefore, we can find over a range of energies
not too Sigh, a spike in a, that fits the data corre-
sponds to a certain L. This I., however, is ex-
pected to be high. We can understand this feature
for wave functions with the same number of nodes
on physical grounds. Since the exchange process
takes place on the surface, we expect this region
of the nucleus to be rich in high-I. n particles
since they are kept out by the centrifugal barrier

whereas the low-I. n particles have greater ampli-
tude in the nuclear bulk, where they either "dis-
appear" or do not participate in the reaction. Thus,
we expect the high-I. o. particles to be those which
are exchanged.

The maximum L is determined by the target nu-
clear structure as demonstrated, for example, by
Eq. (II.12). Therefore, if the energy is high enough
so that the surface partial waves are much greater
than I, the magnitude of a, [ Eq. (A 111.6)] will be
greatly diminished. This in turn will lead to a dis-
appearance of AI AS at high energies.

III. RESULTS FOR Ca AND DISCUSSION

To apply the formulas of Sec. II we have chosen
to calculate the scattering of n particles from
'Ca. The reason for choosing "Ca ALAS data is

primarily the existence of a large quantity of good
data for this nucleus at a number of energies. "'"
The time consumed (-30 min/case on UNIVAC

1108) tn each calculation does not permit ready
computation of many cases. Furthermore we have
in this work attempted to specify only the mecha-
nism of the reaction. Clearly before any signifi-
cant progress can be made it will be necessary
to develop a quantitative nuclear-structure madel
for surface n particles.

The ingredients of the model are an optical po-
tential that fits the forward-angle cross section
(es 60') where Coulomb and diffraction scattering
dominate, a well to generate the bound n states
with specified quantum numbers given by (II.12)
and binding energy, and the n-n force.

The optical potential was taken from Ref. 24,
where it was determined from the scattering of
31-MeV (lab) incident a particles on "Ca. The
parameters are tabulated in Table I. We have
used this same potential for all the energies
(22—30 MeV) presented in this paper. The choice
of the bound-state well is more ambiguous. As a
guide, we may conceive a three-body model where
the "Ar core binds an 0. particle in an effective
well, while the incident o. particle scatters off this
system. Thus, the well that binds the z particle
to the "Ar core should be similar to the reg/ part
of the optical potential of the n-36Ar elastic scat-
tering. Accordingly, we have taken the Woods-
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Saxon parameters of this potential from Ref. 24
and varied the depth to give the correct binding
for specified quantum numbers, changing only the
radius to reflect a smaller nucleus. For "Ca, the
separation energy is the difference between the
bindings of "Ar and "Ca and has the value of 7.1
MeV. The parameters of the resulting well are
given in Table I. We expect the results of the
model not to be sensitve to the particular choice
made, since the wave function in the surface re-
gion is determined primarily by just the separa-
tion energy.

The z-n force has been chosen to have a con-
venient multipole expansion in Eq. (A II.4). For
our purposes, a central Woods-Saxon force" is
believed to be sufficient instead of an I.-dependent
one. ' We have further replaced the force of Ref.
25 by a "best-fit" Gaussian, i.e. we used

V„„=—V, e " (r, —r,)',
V, =125. MeV, +=0.467 fm '

This Gaussian reproduces the potential of Ref. 25
to within 7% out to better than twice the o,-particle
half -density radius.

We have investigated the sensitivity of our cal-
culation to the range of the potential (Ill. l). A var-
iation of the range parameter n by +20% essen-
tially causes no change in the shape of the differ
ential cross section but does affect the normaliza-
tion. Varying z from 0.40 to 0.55 fm ' changes
the cross section approximately a factor of 3 at
the maximum in the cross section at 164'. Since
at large angles do/dA is roughly proportional to
N' we believe this indicates an accuracy of our
normalization to something of the order 50%. The
inaccuracies of the model are almost certainly
greater than that, considering the quality of the
fit to the data.

The double integrals (A 11.6) have been performed
using the trapezoidal rule with 250 points for each

TABLE I. Parameters of the optical-model and bound-
states Woods-Saxon wells for Ca. The potentialS ap-
propriate to the distorting potential and the potential
binding the n particle in the target nucleus. All sell
depths are in MeV and all size parameters are in units
of 10 ~3 cm.

Specification V Rf ag W„) R2 a2 R

Optical model 50 5.65 0.585 12.4 5.65 0.585 5.65
{Reference 24)

variable in the range 0 to 10 fm. The shape of the
bound- and continuum-wave functions indicate this
number of points should be adequate.

In the choices described above there are obvious
unresolved questions. In this sense it should be
appreciated that we do not expect a fit to the data
of the quality of a diffraction analysis of forward-
ang1. e scattering data.

The only free parameter left in the model is the
spectroscopic amplitude in (II.9) which is bounded
by (II.10), (II.11), and is energy indeP-endent.
Thus a consistency check of the model is to re-
pro'duce, with the same spectroscopic amplitude,
the energy dependence of the ALAS. We have cho-
sen arbitrarily the E = 29.0-MeV data" to gauge
the spectroscopic amplitudes. Two variants were
tested: I.= 6 and 1.=8 bound z states were used to
evaluate a, . The reason for considering just high-L,
states has been discussed before, and these are
the two highest L, values allowed by 2s-1d nucle-
ons. The best-fit spectroscopic amplitudes N
=(+„~A~A~~C„)*1/c Eq. (II.14) are given in Table
II, and the corresponding differential cross section
in Figs. 1 and 2. The spectroscopic amplitudes N
in Table II are chosen to yield a good over-all fit
to the cross-section curve, not just to reproduce
the backward-angle region. Trying to fit backward
angles better deteriorates the quality of fit at in-
termediate angles. However, the values of N cho-
sen according to these two criteria are similar.
Figures 1 and 2 and Table II exhibit two features:
(1) The spectroscopic amplitude exhausts only a

few Per cent of the sum rule IEqs. (11.10)-(Il.I1)].
Since we have ignored effects pertaining to the in-
ternal structure of the e, distinction between the
two sum rules is meaningless. This value for the
spectroscopic factor indicates that ~-cluster com-
ponents constitute only a minute part of the nuclear
wave function. This conclusion fits the general be-
lief that clusters, if they exist, exist only on the
surface therefore exhausting a smaQ fraction of
the bulk of the nucleons for ~ Ca.
(2) The dramatic effect of including the exchange
is appreciated by comparing the OM fit to the cal-
culated one. We note the large rise in backward

TABLE IE. Normalization factors N for L =6 and I
=8 determined from the E~ =29.0-MeV data. Fitted N
= (4 (40Ca) ~AI, Az(S'(40Ca)) X Eq. (IL&4) values for Eh&
=29. MeV. C

Partial wave L

Bound-state well 55 5.45 0.585 0 0
fitted to give
L=8 state bind-
ing of 7.1 MeV

5.45 300
70

' This is the highest value consistent with unitarity
of the partial-wave amplitudes.
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angles an e z id th "1'ft'ng" of the intermediate angle
region (9(F6 8ss 130'). These two features are cha, r-
acteristic of the data and are clearly missing in

the forward angles.the QM calculation which fits the
As to the detax e'1 d fit to the data we note that the

calculation o xg. isf F 1
' not quite in phase with the

experimental resu s.lt The periodicity seems too
tivated us to ex-sma y all b a few degrees. This motiva

t rou hlamine t eh L=6 cluster since we expec, g y
speaking, a periodicity o m«sp, ' ' f m/(2I+I) where /is the

gular momentum of a sha p p'r s ike. Since de-angu
e ' " "weho edL decreases the spike s j, w pcreasing e

It is clearthis cluster wave would fit better. xs c
. 2 that the L = 6 contribution makes a

e li ible improvement to the periodic& y, an,
when made large enough to fat the mag

'nitude at
large angles, comp e e y1 tel destroys the forward and
interme xa ed te angle agreement. A mixture of L=

d L=8 contribution does not signi scan yan
when reasonable amplitudes for the two conntribu-
tions are used.

The shape o ee of the angular distribution at large
angles is influenced by the width of the spike as
well as its location. From (AIII.6) we can see

—n otential willthat the range of the effective n-n po
srt ongly influence this width. Since there are

n uestions concerning the use of th pe otentialmany ques io
"ies are not over-(Dt'. 1) we feel the phase discrepancies

OPTICAL POTENTIAL

L=8, N =70
-—EXPERIMENT

text it should be noted thatly serious. In this con ex ' t
the odd multipoles of vz are not equal to zero.

In Fig. 3 we have depicted the abso lute value of
=2S MeV and tabu-partial-wave amplitudes, for E =

lated them in a eT ble III. We note clearly the spike
a + '&" theI

a
I

though in the sum of the INa, +gP I
the

e" of theik '
itting on the edge of the slope

rising op ~ca -pt' 1- otential amplitudes. As the energy
is lowered, as shown in Fig. 4 for E~=24 MeV,

ke" does not shift as rapidly as the n(l'Pt)the a, st e
and therefore tends to be "buried y g,

han e in thet th t the spike shows up as a change
'

"slope" of the total q„which directly affects
delicate cance a sonsll t' s that take place at backward
angles. " ei ht" of theA ther point of interest is the heing ono

f theike in NI a, I. Phenomenological OM fats of t
ALAS reveal a spike of about 0.1 in eig
spike in N a, .

'n hei ht. This or-
der of magnitude is indeed reproduced by the 1.
= 6 a, I's (Table III) but not by one with reasonable

f I.=6. This is another indication
that, within this model, I.=8 n cluster participa e

n. In fact with L=6 the normalization
of N=300 comes close to the limits dxc a e y
tarity (q, & 1).

An impor n c ecta t heck of the model is the energy
variation it pre zc s.d' t These results are presented
in Fig. w er5 here we have shown the cross section
for E=2 e4 M V The angular distributions xn igs.

'ment of1 and 5 show the comparison with experiment o
our calculation wx th N = 70 and a fixed QM distort-
ing potenia w ict' 1 h' h was not varied with energy.
It can be seen from Fig. 5 that some of the energy

n
'
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dependence of the scattering might be incorporat-
ed into the normalization factor. However, such
effective energy dependence is clearly inadequate.

We have also calculated the cross section for
E = 22.0 MeV. In this case disagreement with ex-
periment is significant. However, we observe
that in the experiment" the cross section at the
largest angle (1'I6) as a function of energy varies
as 5.98:7.71:26.2 for E =29, 24.1, and 22 MeV.
Figures 1 and 5 show a slow increase in the calcu-
lated cross sections with decreasing energy con-
sistent with the 29.0- and 24.1-MeV data. We see
no simple explanation for the sudden increase at
22.0 MeV except the onset of a new phenomenon
such as a compound nuclear resonance.

In Fig. 6 we show our calculated energy depen-
dence for the cross section integrated from 100
to 180. The limits of integration were chosen to
eliminate the Coulomb part of the cross section
and cover the ALAS part. This result is in quali-
tative agreement with the data of Refs. 1, 17, and
21 showing essentially a disappearance of ALAS,
at least as characterized by pronounced large-
angle cross section, with increasing energy.

IV. DISCUSSION AND COMPARISON

VfITH OTHER RESULTS

There have been a number of both qualitative and
quantitative explanations attempting to explain the
ALAS. Generally they have fallen into two classes
reminiscent of some of the simple ideas of duality
in particle physics.

The first of these classes, essentially, attempts
to explain the effect in terms of entrance-channel
phenomena. The back-surface reflection, ' Regge-
pole-like spikes in g, vs l,' '""and l-dependent
optical potential' fall into this category. The com-
mon ingredient of all these optical descriptions can
be as a modification of the usual ON 8 matrix for k

values near those for which q,
- ~. Our approach

has in essence accepted the qualitative validity of
these descriptions but has argued that while they
may be correct they offer little or no insight to a
microscopic description of the process. This state-
ment is only partially true, however. The l-depen-
dent potential of Eberhard' justifies its existence
by reference to the angular momenta available at
a given energy in single-particle motion and argues

TABLE ID. Partial-wave amplitudes for E~=29 MeV (lab). The partial-wave amplitudes as a function of /. The first
column a, are the real and imaginary parts of the amplitude given by Eq. (II.18) with N ==1 and I =8. The second set has
I =6. The third set is the optical-model partial-wave amplitudes. The fourth set is the complete amplitude. For com-
parison we also show the direct term, Eq. (A III.1). The entries are of the form sxaa -n where s is the sign of the am-
plitude; aa the value and -n the exponent (base 10) i.e., real part a, =-0.12x 10 2.

ag
L =8

Real Imaginary

a)
I =6

Real Imaginary

(OPt)
~l

Real Imaginary

Xa + g{op"

I =8
Rea.l Imaginary

a""
I =8

Real Imag inary

0.29 —5
-0.59 —5
0.11—5
0.14 —4

-0 22 —5

-0.21 —6
-0.18 —5

6.56 —5
0.36 —6

-0.18 -4

0.53 —4
-0.10 —3
—0,10 —4

0.21 —3
0.42 —4

0.11—4
-0.28 —4
0.85 —4
0.21 -5

-0.23 —3

-0.013
0.023

-0.006
-0.025
-0.001

0.013
0.002

-0.017
0.006
0.018

-0.012
0.023

—0.005
—0.024
-0.001

0.013
0.001

-0.017
—0.006

0.017

0.38-5
-0.13 —5
—0.30 —5

0.28 —5
0.37 —5

0.23 —5
0.36 —5
0.26 —5
0.31—5

-0.23 —5

—0.41 —4
-0.34 —4

O.1O-3
0.24 —3

-0.21 —3

-0.15 —4
0,52 —4
0.11—3

—0.10 —3
—0.50 —3

-0.48 —3
-0.60 —3

G.11—2
0.28 —2

0.11—2

-0.18 —3
0.63 —3
0,13 —2

—0.63 —3
-0.30 —2

0.028
0.021

-0.021
-0.046
-0.006

0.004
-0.013
-0.013

0.000
-0.001

0.025
0.018

—0.014
-0.029
—0.020

0.003
-0.010
-0.006
—0.007
-0.036

-0.12 —5
-0.50 —5
-0.20 —5

0.42 —5
0.46 —5

—0.45 —5
-0.30 —5

0.49 —5
0.36 —5

-0.33 —5

10
11
12
13
14

-0,11—2
0.37 —3
0.18 —2

-0.12 —2
0.16 —3

0.32 —3
0.18 —2

-0.84 —3
-0.70 —3

0.39 —3

-0.15 —2
-0.15 —2
-0.58 —3
-0.35 —4

0.43 —3

-0.19 —2
0.70 -4
0.60 —3
0.68 —3
0.59 —5

0.074 -0.039
0.117 -0.043
0.196 0.108
0.455 0.258
0.740 0.275

-0.004
0.143
0.324
0.374
0.751

-G.G16
0.081
0.049
0.209
0.301

-0.27 —5
-0.44 —5

0.30 —5
0.89 —7

-0 27 —6

-0 49 —5
0„26—5
0.27 —5

-0.21 —5
0.44- 6

15 0,29 —4 -0.28 —4
16 -0.27 —6 —0.35 —5
17 -0.18 —6 -0.35 —6

0.14 —4 -0.77 —4 0.925 0.160
—0.43 —5 -0.10 —4 0.975 0.074
—0.11—5 —0.15 —5 0.990 0.034

0,927 0,158
0.975 0.073
0.990 0.034

0.40 —7
0.0
0.0

0,88 —9
0.0
0.0
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that the lack of a sufficient density of single-par-
ticle states with adequate angular momenta should
cause a decrease in the absorption potential for
high partial waves. While this is physically rea-
sonable it only provides a basis for understanding
the cut-off l value and not the additional parame-
ters necessary to fit the data, especially the width
in / space, of the l-dependent function used to de-
scribe the absorptive potential. Specific objections
to an l-dependent optical potential have been raised
by Qeschler et al.' and Schmeing. " These objec-
tions are valid though they in turn can be countered
in several ways. These counter proposals, while
removing the simplicity of interpretation suggest-
ed by Eberhard, might in fact, enable the data to
be fitted albeit with isotope-dependent parameters.

As was pointed out by McVoy' and recently em-
phasized by Rinat' the Regge-like description of
the ALAS may shed light on the nuclear process
involved in AI.AS. In their view a family of states
whose trajectory was capable of being described
by a set of fixed quantum numbers, which differed
only in the angular momentum, would give rise to
a Regge-like description. Such a trajectory would

be, for example, a highly excited rotational band
where the energy of the states varies as 1,(I.+ 1).
We would caution that an 1.(I, +1) behavior of the
ALAS peaking may not reflect anything more than
strong absorption. For example, if strong absorp-
tion dominates medium-energy z-particle reac-
tions then the crucial I value pertaining to large
angle is L, -kB, this varies as E'", therefore
E- L,o' and therefore one gets behavior similar to
a rotational spectrum, without necessarily having
any underlying rotational structure present. To
develop the rotational picture in a Regge-like
framework would, it seems to us, entail being

able to understand the magnitudes of residues of
the poles at the very least. Furthermore if we

plot, on an Argand diagram the exchange ampli-
tude a„as shown in Fig. 7, we see that the trajec-
tory, as a function of l, does in fact rotate clock-
wise as do the Regge trajectories shown by McVoy.
We therefore have an interpretation consistent with
the Regge formulation without specifically intro-
ducing a pole-dominant term. In other words, our
interpretation could be said to provide a micro-
scopic derivation of the important Regge poles in

this reaction.
The other category of interpretations, into which

ours falls, involve invoking an z-n interaction. ~
The calculation nearest to ours in spirit is that of
Thompson. ' We disagree with his conclusion that
only low partial waves in the z-n system enter the
calculation. We also disagree with his neglect of
the quantitative role of antisymmetrization, and

relation of the exchange process to the (o, 2o) re-
action at much higher energy.

An early attempt to understand the ALAS in
terms of an n-n interaction was made by Schme-
ing. " The term she evaluated was essentially our
direct term (see Appendix III) which shows no peak-
ing in / space as can be seen from Table I. Equa-
tions (A IV.S) shows that the combinational factors
arising in the antisymmetrization in fact cause the
direct term to be negligible despite better overlap
in the matrix elements.

References 2 and 3 emphasize the role of speci-
fic clustering effects in determining ALAS. Our
calculation obviously utilizes the particularly
stable n configuration as described in Sec. II.
Since z clustering must be a surface effect and

should not involve all A nucleons in the target we

expect our empirical normalization to be small
compared to the sum-rule limits Eq. (II.15). In

fact our normalization is such that if all 20 neu-
trons and 20 protons were involved in this single
configuration the spectroscopic factor would be
(",)'-4x 10' whereas to fit the large angles we re-
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FIG. 3. For an Q. particle of 29.0 MeV the amplitude
of the OM contribution to the 8 matrix as well as the con-
tributions from an I =6 and 1.=8 bound o.-particle KO
process are shown. Also shown is the over-all 8 matrix
as a function of l, the incident orbital angular momentum.
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FIG. 4. Same as Fig. 3 except that E~ =24.0 MeV.
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quire only a normalization of order 70 which is
equal to between (',)' and (',)', confirming our sus-
picion that only a few outer nucleons participate
in the interaction. We speculate that it is just the
relatively small number of nucleons which makes
the model sensitive to the shell-model structure
of the nucleus in the sense of Ref. 3. While we
have not specifically calculated any isotopic effects
we believe we have developed a procedure for in-
corporating such spectroscopic information into
its role in elastic cy-particle scattering. To il-
lustrate this we point out that the increased size
of Ca" means that q,

-
3 will be at higher / value

at the same time that the increased separation en-
ergy of the last n particle (8.84 MeV for ~Ca com-
pared to 6.25 for "Ca), along with any blocking or
other specific nuclear effects, would result in a
much lower value for the radial integral (A III.6).

Qur formulation of the KQ contribution to elastic
scattering also provides a ready explanation of
the inelastic scattering results of Schmeing and
Santo." The width of the spike in the case that
initial and final angular momenta are different will
be increased because of the w'ider range of multi-
poles A, of the Q,-e force. As the width of the spike
increases the opposing phases of the nearby Le-
gendre polynomials at large angles it mill cause
an averaging which will tend to wash out any par-
ticular enhancement at these angles.

While we have not considered "core-exchange"
terms other attempts to fit lighter-element ex-
periments showing ALAS have been made. For
0.+' Q Noble and Coelho' have considered heavy-
particle stripping. It is not clear to us that their
treatment of the absorption or the treatment of
the Pauli principle was accurate enough to lend

ISO

2 f d8 sin 8 —(L=S, N=70)
dQ —60

significance to their spectroscopic factors which,
mhile less than unity, were quite high.

It has been suggested by Austern" that in heavier
nuclei the core-exchange terms might in fact be
small. In this context it may be that the recent
data by Sewell et al." showing a "resonance"-like
behavior for 180' scattering from nuclei heavier
than "Ca may be consistent with our interpretation.
%'hile we have not performed any specific calcula-
tion the energy width of their structure is similar
to that shown in Fig. 6.

Qn the other hand we obviously cannot rule out
HPS or simple compound-nuclear resonances in
the case of light nuclei such as "Q. In fact, as
seen for examp&. e in the data of Cowley and Hey-
mann, "the large-angle cross section is compar-
able to that at forward angles even for energies
such that the Coulomb effects are relatively im-
portant at forward angles as they are in the case
of "Ca. An +-particle resonance with an appre-
ciable fraction of the Wigner limit for its width
could fit such data and might explain why the light
nuclei have different qualitative behavior from the
Ca data. Consistent with this should also be noted
that the "spikes" introduced by Cowley and Hey-
mann are large compared to those we utilize. In
fact some of their energies have a, -1 for the spike
whereas our Na, -0.1. Qf course in their case the
Regge description is only a representation of the
observed structure and may very well represent
only compound-nucleus properties.

O.I—

L=8, N=70
EXPERIMENT

OPTICAL POTENTIAL I
I

I
I
I
I
t

/
I 20— /

/
/

/
/

/IIQ—
V) /
C /

/
/

IOO —
/

O /

/
/ Iso 'i

/ der
2m/ d8 sine &&(Optical Model)

b 90— IOO

—50

40

30 a

20 b

b
b

O.OI =
I
I
I
I
I

t
I
I
I

I

80—

26
I

28

E,"'
(MeV)

1

l

30 52

—IO

OQOI I I I

20 40 60
II

uter

II I I tl I

80 IOO I20 I40 160 I 80
e(deg)
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FIG. 6. The integrated cross section from 100 to 180'
as a function of the energy for the OM without an ex-
change contribution and for the complete calculation
showing the decrease of the exchange term with increas-
ing energy. The units are arbitrary but are the same
for both curves.
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seriously upset the forward-angle contribution
while producing large changes at intermediate and
backward angle. We also argue that the analysis
is consistent with isotopic effects, and the ob-
served energy dependence.

Comparisons are made with other explanations
of the ALAS and it is shown that essentially most
of these explanations are consistent with the re-
sults obtained in this work. In the case of the
Regge-pole explanation we have provided a possi-
ble microscopic derivation of the pole.

That aspect obviously needing further analysis
involves the cluster spectroscopy of nuclei dem-
onstrating ALAS. The "core-exchange" contribu-
tions should also be evaluated.
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APPENDIX I

The formulas derived below concern the cofactor expansion of an antisymmetrized wave function and
sum rules obeyed by spectroscopic amplitudes. Vfe assume, first, one kind of particles for simplicity.

Denote by a~, c~ fermion creation and annihilation operators for a single-particle state +. The number
operator N in the space of antisymmetric wave functions is

N=ga„a„. (A I.l)

Employing the fermion anticommutation relation, one easily proves

Qa„as az a =N(N-1},
o. g

P a „a8at a& a& a~ = N(N 1) (N —2), —
asy

a„a8a&at, a&a& a8aN=N(N —1) (N 2) (N-3) —.
egypt

(A 1.2)

The various lines in (A I.2) express the pair-number operator to the quartet-number operator.
The spectroscopic amplitude introduced below does not coincide with the standard one in that the normal-

ization is different and angular momentum coefficients are omitted. For our particular purpose, however,
it will be sufficient. Denote by 4

&
an antisymmetrized state with N particles, then the single-particle
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spectroscopic amplitude Sf~&a~; is defined by

$(~) (@(~) at @(N-i))

By the same token, two- and four-particle spectroscopic amplitudes can be defined similarly

$(» —(y(» at at@(&-»)f(a8) i f ~ a 8

$(N) (y()() at at at a& y()( 4))-, a a8a a&

(A 1.3)

(A 1.4)

Using closure and (AI.2) the following sum rules follow easily:

p~S" ]'=(4" at a 4 ")
i

g ~

S'"'),~' =N

~ $&(„()„q),~'= P (4'&",a„as a az a& a a() a„4,")
~ n8y~ j n8y6

=N(N 1)(N-—2)(N —3) . (A 1.5)

In the sum rules (AI.5) we have deliberately taken absolute values to include scattering states in the clo-
sure relation.

The cofactor expansion of an antisymmetrized wave function +&(") follows easily from (AI.5) and (AI.2).
If Q, denotes a single-particle orbital member of a complete set, we have

E&[y.(,)(t (.)][ .
Q A. [(t)„(x,)(j)8(x,)(t)~(x,)y((x,)]*[a„asa~a, e~(")]. (A 1.6)

In (A I.6), A is the normalized antisymmetrization operator of N objects

, g(-I) Z, .
p

(A i.'I)

Formulas (AI.6) express merely the expansion theorem of a determinant by one, two, or four rows There-.
fore any labeled particle coordinate can be separated this way.

The above discussion is easily carried over to the case of two kinds of particles, P and n. In this case
we have in particular

(A 1.8)
(n8)p( y (5)„

where n~ and n„ is the number of protons and neutrons. In addition

Cf" "'=(,),[,„'„,„„,~„, P a[y„(xi)y8(x,)@, (x,)y, (x,)]* *[a„,a,,a, a, e~" " ]. (A 1.9)

APPENDIX II

The formalism of these Appendixes in essence defines a cluster representation of the interaction in which
the bound ~-particle cluster interacts with the incident cluster through an effective interaction. Using the
cofactor expansion (AI.6) with notation of Appendix I one obtains:

1
T(KQ) =,» P (4'„~ at at8a at& a& a a8 a„.(4$(4,(1, . . . , 4)A[/„(x, )p&(x,)$&(x,)P(,(x,)]

n8y6~l gl yt $t

x)(s '(r(), k~) ~
V(1, . . . , 4; 5, . . . , 8)(4, (5, . . . , 8)A[ (t)„.(x,)y()i(x,)(t)„.(x,)gp(x, )])((„'(r„k,)) . (A II.1)

Expression (A II.I) is still exact in that the summation is over a complete set of four-particle wave func-
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tions. We note, as mentioned in the text, that if the same cofactor expansion is used, the other exchange
terms in (II.6) for N large enough are strongly suppressed. We assert now, as part of the model, that the
o-cluster terms in (AII.1) dominate the sum. Stated differently, if instead of an uncorrelated four-body
wave function basis, we consider correlated quartets, the important terms in (A II.1) are the correlation
with the same spin and parity a,s the n particle. The intuitive motivation for this assumption is reminis-
cent of the cluster model.

Quantitatively, these ideas can be formulated by transforming (A I.4) by a unitary transformation U to a
correlated basis, e.g. all eigenfunctions of the four-body Hamiltonian:

a„as a& at; =Q U(oPy5; PQ)A (P, Q)A [ P„(1)$8(2)gz(3)gz(4)]= g U(uPy5; PQ)4'po(1, . . . , 4)UUt = 1.
P. Q P, Q

(A II.2)

In (A II.2) P stands for the center-of-mass quantum numbers and Q for' the internal relative quantum num-
bers. The operator A (P, q) creates an antisymmetric cluster with wave function 4~o. Inserting (A II.2) in
(A II.1) we obtain:

x(4, (1 ~ ~ ~ 4)C~(5 ~ ~ ~ 8)y& (rs~kg) I V(1 ~ 4, 5 ~ ~ 8)l @e(5 ~ ~ ~ 8)C~ o (1 ~ ~ ~ 4)y~ (r„,k,-)) . (A II.3)

According to our assumption, we truncate the summation in (A II.S) on Q to include only those combina-
tions with a-particle quantum numbers. Thus the relevant 4~o in (AII.S) represents an u-cluster having
center-of-mass quantum numbers P with respect to an origin in space. If the single-particle states in 4
are taken as harmonic-oscillator wave functions and, for instance, 4„ is a single determinant of the same
harmonic oscillator, the C„center of mass and the 4~+ center of mass are identical. We shall assume for
simplicity this to hold in (AII.S). Thus r„=r8=R is the center-of-mass coordinate of 4~o. 8ince the target
has zero spin, angular momentum conservation gives P=P'. We can further simplify (AII.S) by neglecting
the internal structure effects of the n's in the scattering process. Thus we assume

@,=1, 4 =C (R)

and consistently, the -n interaction is assumed to depend only on the center-of-mass coordinates

V(1, . . . , 4, 5, . . . , 8)aV(R„R,) .
These simplifications lead to Eq. (II.9).

(A rr. 4)

(A II.5)

APPENDIX III

Below we present the angular momentum decomposition of the exchange matrix element (II.9). The inter-
action (AII.5) is taken to be spin-independent.

and

V(R„R,) = V(i R, -R, i ) (A III.1)

(A III.2)

where n, L, denote the principal and angular momentum quantum numbers of the o. center-of-mass motion
with respect to the core.

Employing the following partial-wave expansions for spinless charged particles"

and

~ x
' )=&—pi'e'"f, (&, r)yp(Q, )+ (Q~)(g ~ =& pi 'e'"f, (&, r)Yp(Q, )Ff"(0„)

lm lm
(Alii. S)

V(p, -r, ~)=g I ((n, ,)I'+~(n„)v, (r„r,)
Xp

(Alii. 4)
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we obtain, using standard angular momentum technique (( k;( =
( &f ~

= &),

(4q(R, )y~ ~(R, kf), V(R„R,)4}f, (R,)X ' (R„k)))
=g (C„,„(R)q'-'(R„k,), V(~ R, -R,

~ )e„,„(R )q"(R„k))(I gI, —p~ 00)'

4m= —,Q e""(2l+1) P, (cos8) I(l, X, L)
3XL2

(A III.5)

f(), l, L} fdR=dR f (R, k)d„(R )vg(R, R kkg(R }fj (R k). (A III.6)

The extra Clebsch-Gordan coefficient inserted in (A III.5) originates from coupling the cluster 4~ with the
core-wave-function angular momenta to give zero angular momentum to the complete target wave function.

The partial wave expansion (A III.4) for Gaussian force

V = —Vo e " (R, —R,)'

gives~

v~(r„r, ) = —V, e I"& +'R ~(2X+ l)i), (2a'r, r,),
where the modified spherical Bessel function i~ is defined"

1/2

(A III.V)

(A III.8)

(A 111.9)

APPENDIX IV

It has been suggested" that the ALAS cari be interpreted in terms of the direct projectile n-cluster scat-
tering (II.6). Using the same line of derivation and notations as for the exchange term, the result is

aI'" = —,"„Qc,(e.
~
A„', (u)X„,(n) ~ e„)D(I,I),

where

D((, L) f dR, dR, f, (R„k)k„(R)U(R R,)k, L(,R„)f(R„k)

and

1 1 n for one kind of particle4! (4

1 1f„„„„,*(n&+n„) for two kinds of particles.

(A IV.1)

(A IV.2)

(A IV.3)

The factors in (AlV. 3) are determined assuming all pair interactions are equal. We see immediately that
the huge combinatorial factors inhibit this kind of mechanism relative to the exchange term.
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Excited states of 0 have been investigated with the C( He, n) O(p) SN reaction at an
incident-beam energy of 12 MeV. Proton groups corresponding to 0 excited states were
observed in time coincidence with the associated neutrons detected at 0„=O'. The natural
widths of these states (or limits thereof) were obtained directly from the proton spectrum.
Angular-correlation data obtained for these proton groups were analyzed according to a
general formalism which allows channel spin as well as orbital angular momentum mixing
in the 40 ~ N+p exit channel. These analyses yield the following spin and width limita-
tions: tE„(MeV), J, I' (keV)]; 5.91, 0 or 1, ~47; 6.29, 2 or 3, 103+6; 6.59, 2, —56; and
7.78, 1, 2.or 3, 76+ 10. The apparent dominance of a direct-transfer mechanism for the
population of these states permits further spin and parity restrictions. Information regard-
ing the wave-function configurations for these states is discussed on the basis of the ob-
served proton decay. Of particular interest is the observance of an f-wave component in
the proton decay of the 6.59-MeU state which implies an s p ( p,f) component in the wave
function of that state.

I. INTRODUCTION

Within the mass-14 isobaric triad, the "O nu-
cleus is the T~ =-1 member and has been the
least investigated. Figure 1 illustrates the ex-
cited states of '40 and some of the known proper-
ties as given in the survey article of Ajzenberg-
Selove. ' Most of the information regarding the
excited states of "0have been obtained by means
of direct-particle-transfer studies using the "C-
(3He, g}~4Q '~N(~He, t)'~Q, and '6Q(P $)'4Q reac-
tions. ' '

For the ('He, n) reaction it is expected that if
the reaction proceeds by direct-transfer pro-

cesses that T =I and s =0 will be transferred to
the excited state in the final nucleus. Two such
studies'' were made using this reaction and it
was found that indeed it did appear that most of
the neutron groups had angular distributions con-
sistent with a two-particle transfer mechanism
at the beam energies used. On this assumption
and with the use of distorted-wave Born-approxi-
mation (DWBA) double-stripping calculations,
tentative spin and parity assignments were made. '4

The work with the ('He, t) reaction' resulted in
probable spin and parity assignments for ' 0
states based on a comparison of the shapes of the
angular distributions with those from transitions


