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Pion Production by 185-MeV Protons
'
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We present distorted-wave Born-approximation calculations of the reaction C{P, ~+)1~C at
T& =185 MeV. It is found that the production cross section to specific states in ~~C depends
very sensitiveIy on the pion-nucleus distorted-wave function,

We consider a distorted-wave Born-approxima-
tion (DWBA) calculation of the differential cross
sections for "C(P, n')"C at T~ = 185 MeV and
"C being left in either the ground state or in one
of the excited states between 3- and 4-MeV excita-
tion energy.

The differential cross section for this reaction is
given by first-order time-dependent perturbation
theory as

where K„(E,) and K~ (E~) are the pion and proton
momenta (relativistic energies). The sum is over
the spin projection of the incident nucleon, and
the total angular momentum projection of the re-
sidual nucleus. (The units are such that k = & = 1.)
The transition operator employed here is the
usual Galilean invariant form of the pion-nucleon

interaction

where f is the pion-nucleon coupling constant (f'
= 0.088), o and v are the nucleon spin and isospin
Pauli matrices, -

p. and ~ are the pion and proton
mass, respectively, and 4 is the pion field (which
is treated as a vector in isospin space). V, acts
only on the pion field directly to its right, and V~

acts only on the incident proton's coordinates.
The matrix element of ~ 4 between a final state
consisting of one positive pion of momentum K„
and an initial state consisting of the vacuum is

where 7 is the nucleon-isospin-lowering operator,
and pc ~*(K„, r„) is the pion wave function. After
summing over the nucleon-isospin coordinates,

we obtain the matrix element (f ~

H'
~
i) as

(f)H'~i) =v'4n —
~

(e~„~cr ~ V„y& '*(K„r,)-—y'-'*(K„r„)o ~
V~ ~ e„q (K~, r~, o~)),

where C~„and 4, are the wave functions for the
residual and target nuclei. g (K~, r~, &x~ ) repre-
sents the incident proton. 0~ is the spin variable,
and nz is the initial spin projection. The radial
dependence of the nuclear matrix element is taken
to be the radial bound-state wave function of the
(transferred) neutron.

We used standard, local optical-model wave
functions for the proton distorted wave. Spin-orbit
coupling was included. The Coulomb interaction
was described by a potential representing a uni-
form charge distribution of radius r, . The real
part of the central potential was V,~= V„f(r, R„, a„),
where the function f(x, 8, a) =(1+e " " ') '. The
imaginary part of the central potential was V„
= Vzf(r, Rz, ar), and the spin-orbit potential was
V, ~

= ( V, +i W, )2/r[-(d/Ch) f (r, A„a, )]1 ci. We
used potential parameters which give best fits to

185-MeV elastic scattering data. They were'
V„=-16 MeV, R„=1.0A' ' fm, a„=0.5, VI =-10
MeV, RI=1.34A"' fm, ar =0 5~ Vs= 2.5 MeV

W, = 1.0 MeV, R, = 1.0A' fm, a, = 0.5, and &,
= 1.26A"3 fm.

For the pion distorted waves, we originally
used the Kroll-Kisslinger pion optical model. "
The equation is

(V'+ [(E„—V )' —p, ']].y (K„, r, )

=$- b,K„'p(r)+ v b,p(x)

xi[1+ ', $b,p(x)] 'vg-g(K„r„),

where V, is the Coulomb potential, and p(&) is
the nucleon density normalized to the number of nu-
cleons. Since no n'-"C elastic scattering data
exists, we used m'-"C potential parameters, and
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assumed the A dependence is mostly contained in
the normalization to the number of nucleons. The
density used was p(r) = N(1+ Wr'/a') e-"'~',
where N is the normalization constant, W= $, and
a= 1.6 fm. The Coulomb potential was calculated
from a modified Gaussian charge density normal-
ized to the nuclear charge. The parameters were
W= $, and a=1.55 fm. For 185-MeV protons
incident on "C, the resulting pion has a center-
of-mass kinetic energy of 33.1 MeV when "C is
left in the ground state. We used best-fit param-
eters to 30.2-MeV w'-"C elastic scattering. They
are 5, =-4.45+ i0.669 and 5, ='I.20+i 0.465 for g

=1'; and b, =-4.41+ i0.140 and b, =5.26+ i0.180
for $ =0.4

The neutron's bound-state wave function was cal-
culated with the usual Schrodinger equation. A
Woods-Saxon potential was used, and the radius
parameter was varied to test the sensitivity of the
pion-production results. The depth was adjusted
to give the correct neutron-separation energy.
The diffuseness parameter used was 0;5, and the
radius parameter was varied from R„=1.22A"'
fm to R„=1.31A'~' fm. (We used A=12 here. )

Figure 1 is a plot of the calculated and experi-

C(p,~')' C(g.s. j Tp= l8$ MeV

mental differential cross sections vs the center-
of-mass angle for the reaction "C(P, &')'sC I,
The experimental data are those of Dahlgryn et al.'
The dashed and solid curves are the DWBA re-
sults using, respectively, Kisslinger ($ =0) and
Kroll-Kisslinger ($ = 1) wave functions for the
pion distorted waves. The DWBA cross sections
are 1 to 2 orders of magnitude higher than the ex-
perimental data at forward angles, and the calcu-
lated backward-angle cross section does not fall
off as fast as the experimental cross section.
These DWBA cross sections are also 2 to 3 orders
of magnitude higher than cross sections calculated
with proton distorted waves, and pion plane waves.
Further, the p, /m term in the transition operator
can be turned off with negligible effect on the cal-
culated cross section.

Figure 2 is a plot of the calculated and experi-
mental differential cross sections vs the center-
of-mass angle for the reaction "C(P, w')'sC*(3-4
MeV) at T~ =185 MeV. The experimental data are
again those of Dahlgren et a/. ' Kroll-Kigslinger
(g =1) distorted waves were used in the DWBA
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FIG. 1. This figure is a plot of the C(P, m'+) C(g.s.)
differential cross section vs the center-of-mass angle.
The dashed curve is the DWBA result using the Kissling-
er model ($ =0), and the solid curve is the DWBA result
using the Kroll-Kisslinger model ($ =1). The experi-
mental data are those of Dahlgren et al. (Ref. 5).

FIG. 2. This figure is a plot of the ~2C(P, x+)~3C~(3-4
MeV) differential cross section vs the center-of-mass
angle. The data are those of Dahlgren et al. (Ref. 5). The
DWBA curves are calculated assuming ~~C is in the $
state at 3.09 MeV. The dashed curve eras calculate/
using a radius of R„=1.22M fm for the neutron (Woods-
Saxon) potential. The solid curve had a radius of 8„
= &.3ZW"' fm.
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calculation, and it was assumed that "C was left
in the ~' state at 3.09 MeV. Different bound-state
wave functions were used in order to test the
s nsitivity of the calculation to changes in this
wave function. If the Woods-Saxon radius param-
eter is set at R„=1.31A' ' fm, then the calculated
cross section is 1.0 to 1.4 orders of magnitude too
high in the forward direction. The calculated
cross section exhibits a minimum at 60', and a
second maximum at 97, while the data appear to
be symmetric about a minimum at 90 . If the
Woods-Saxon radius parameter is set at 8„=1.22
A'" fm, then the calculated cross section is shifted
up slightly, and the minimum and maximum are
shifted out 3 to 4'. (If one assumes that "C is left
in the ~5 state at 3.85 Me7, then the Kroll-Kis-
slinger cross section is 2.5 orders of magnitude
higher than the data at forward angles, and 1.5
orders of magnitude too high at backward angles.
Again the calculations are only moderately sen-
sitive to changes in the neutron's wave function. )

The most striking effect in the above calculations
is that the use of Kisslinger or Kroll-Kisslinger
distorted waves results in DWBA cross sections
which are at least an order of magnitude higher

than the data. This effect is consistent with the
DWBA results of Jones and Eisenberg' who studied
"C(s', P)"C at an incident pion kinetic energy of
50 Me7, and compared their calculated cross sec-
tion with the single experimental data point avail-
able. They pointed out that it is the velocity-
dependent term in the Kroll-Kisslinger optical
model which is responsible for the "unwanted
overenhancement" in the DWBA cross sections.
The unwanted overenhancement in the (P, m')

DWBA cross sections, and presumably in the (n',P)
DWBA cross sections, is caused predominately by
the real part of the velocity-dependent term, as
the imaginary part can be turned off with neglig-
ible effect. This rules out the possibility that the
overproduction is being caused by an effectively
positive imaginary contribution from the velocity-
dependent term. Figure 3 shows the DWBA pion-
production cross section calculated with the veloc-
ity-dependent term turned off (b, = 0). The param-

~p was adjusted to bp = -6.41 + i7.29. At forward
angles, the order of magnitude and shape fits are
relatively good for both the ground-state case,
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FIG. 3. This figure is a plot of the C(P, m+)» C differ-
ential cross section vs the center-of-mass angle. The da-
ta are those of Dahlgren et al .(Ref. 5). The DWBA curves
were calculated with a local potential (b& =0). The pa, —

rameter bp was ho=-6.41+ i7.29. For the excited-state
curve, SC was assumed to be in the ~+ state at 3.09 MeV.

FIG. 4. This fjgure j.s a, plot of the C(p, z ) SC(g.s.)
differential cross section vs the center-of-mass angle.
The data are those of Dahlgren et al. (Ref. 5). The DWBA
was calculated with different local potentials V, =4& p(r)
for each partial wave. The density was a modified Gauss-
ian form, and the d's were adjusted to fit elastic scatter-
ing data.
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FIG. 5. This figure is a plot of the C(P, x+) 3C(g.s.)
total cross section as a function of the ivcident proton
kinetic energy, T&. The experimental value at T& =185
MeV is 580 nb. The dot-dashed curve was obtained us-
ing Kroll-Kisslinger pion waves. The solid curve was
obtained using a local potential w'ith b p

= -6.41+ i7.29,
b ~

=0. The dashed curve was obtained with plane waves
for both the pion and the proton. The neutron's bound-
state wave function was the same for all three cases.

and the excited-state case (assumed to be —,
'" at

3.09 MeV). However, the excited-state backward-
angle cross sections are not reproduced. Further,
the distorted waves calculated in this way do not
fit pion elastic scattering data. Note that, unlike
the data, the two calculated curves behave rough-
ly the same way at backward angles. This was
typical of these calculations, and indicates that
the physical effect responsible for the backward-
angle cross sections has not been correctly in-
cluded in these calculations.

In order to test whether the unwanted overen-
hancement is a result of the Kisslinger model,
or is a result of all wave functions which fit pion
elastic scattering, we replaced the Kisslinger po-
tential with local complex potentia, ls V, = d, p(r),
which were different for each partial wave. The
parameters d) were adjusted to fit the elastic
scattering data. Figure 4 is a plot of the results
using a modified Gaussian density, p(r) =A(1+ Wr'/
a')e~ ' ' ~, where' =13, W=~4, and a =1.6 fm.
The d&'s which fit the elastic scattering data were:

d, =1.8 —i0.02 MeV; d, =-3.8-i0.18 MeV for l
~ 1. The calculated result is now roughly the
same order of magnitude as the data at forward
angles (less than a factor of 3 different from 0 to
75'). However the backward-angle cross section
is at least a factor of 10 too high. We also used
Woods-Saxon densities with various parameters
and the results were similar, although the shapes
of the curves are more diffraction-like. Numeri-
cal comparison of these wave functions with Kroll-
Kisslinger wave functions supports an argument
by Eisenberg' that the Kisslinger model results
in an abnormally high pion effective momentum
inside the nucleus. Therefore, if the reaction
takes place inside the nucleus, the effective mo-
mentum transfer is smaller and the resulting
cross sections are enhanced.

Figure 5 is a plot of the total pion-production
cross section o „, calculated as a function of the
incident proton kinetic energy T~ for the case
where "C is left in the ground state. The experi-
mental value is 580 nb. (This value was obtained
by extrapolating back to 0', and then integrating. )
Three curves are shown. The dot-dashed curve
was calculated with Kroll-Kisslinger pion wave
functions. For this case, the potential parameters
were varied in a smooth way to simulate energy
dependence. The resulting o „, is a factor of 3V

larger than the experimental data point at T~
=185 MeV, and shows a steady increase as T~ is
increased to 240 MeV. The solid curve was cal-
culated with the local potential used for Fig. 3
(b, =-6.41+i 7.39, b, =0). At T~ =185 MeV, the
resulting o „,is less than a factor of 1.2 below the
experimental data point. In contrast to the Kroll-
Kisslinger curve, this curve rises only slightly
as T~ is increased to 240 MeV. For T~ &156 MeV
the local-potential curve begins to decrease rapid-
ly as T~ decreases toward threshold. The dashed
curve is the result of a full plane-wave calculation.
It is only slightly smaller (30 nb} than the local
potential curve at T~ = 185 MeV, and remains rela-
tively constant as T~ increases from 185 to 240
MeV. As T~ decreases from 185 MeV to threshold,
the plane-wave curve falls off faster than the local-
potential curve, so that at 156 MeV it is a factor
of 2 smaller.

Limited success was obtained with this approxi-
mation only when the velocity-dependent term in
the Kisslinger model was discarded (b, =0}. It
appears that the Kisslinger-type pion waves are
incorrect inside the nucleus even though they are
correct outside the nucleus (they give phase shifts
which fit the elastic scattering data). Therefore
there is a need for an improved pion optical model.
With improved pion distorted waves and a more
sophisticated production mechanism (pion able to
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be emitted either by the incident proton, or by one
of the nucleons in the nucleus), DWBA may be an
inadequate approximation for this high-momentum-
transfer reaction. We would like to see further
pion-production experiments on other nuclei in
order to see if the striking difference between

the ground-state cross section, and excited-state
cross section is characteristic of nuclei besides
"C. It would also be very useful to have pion-
nucleus elastic data for the residual nucleus ("Q
in this case).
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Center-of-Mass Motion in Many-Particle Systems.
II. Critique of the Gartenhaus-Schwartz Transformation*
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We examine the Gartenhaus and Schwartz (G-S) transformation, which generates a transla-
tionally invariant wave function from one which does not possess this property. A clarifica-
tion of the G-S procedure for the calculation of matrix elements is achieved if one takes two
independent limits of the parameters A, A' which appear in the expression for a transformed
operator n' = (IimAi „U$ ) a(lim& „U~). It is shown that the G-S operator, U =lim& „UA
=limA „exp[-2iA(% 6'+d' ~ %)j, is equivalent to the operator U =(2w)ts(6)S(%). This opera-
tor is seen to be a specific example of the more general class of operators presented earlier.

In the work of Gartenhaus and Schwartz' (G-S)
an operator is presented which transforms any
wave function into one which is translationally in-
variant. If we are given a many-particle function,

which depends on the particle coordinates r„ then
a new function 4 may be generated therefrom by
a transformation

such that 0 has the property

e(r, +Z) =y(r, )

operator U, defined as

with g the center-of-mass operator and 6' the total
momentum operator.

Now, following Q-S, let us consider the calcula-
tion of a matrix element of an operator 8,

8n = (+~ I8l @'&

which, because of Eq. (3), can be written in the
form

8~, = (e~l8'lC, )-=(Cql(lim U~~,)8(limU„)l4, ).
A' A

for arbitrary h. Such a + is generated by the 0-S Let us follow Q-S further and investigate the trans-


