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The variational method for calculating energy of quantum fluids, and its applications to the
Bose liquid 4He, Fermi neutron gas, and liquid 3He are discussed. The correlation functions
are parametrized by their healing distance, and can depend on the states occupied by the cor-
related particles in the model wave function. They are calculated by constrained variation of
the lowest-order contributions. The healing distance has a prescribed value in lowest-order
calculations, whereas it is sufficiently large in hopefully exact energy calculations. The
many-body cluster contributions in Bose fluids are summed with successive approximations
of an integral equation due to van Leeuwen etal. A simple diagrammatic cluster expansion
is presented for Fermi liquids, and its direct diagrams are summed with the integral equa-
tion. The contribution of exchange diagrams is shown to decrease rapidly with the number of
exchanges, and their sums are truncated after the energy has converged to within a few per-
cent.

I. INTRODUCTION

An equilibrium mixture of hyperons, interacting
through two-body potentials is the simplest model
of dense matter, and its region of validity has
been discussed by Bethe. ' In the nonrelativistic
limit of this model, the many-body Schrodinger
equation

should be solved for the variationally determined
ground-state composition to calculate the zero-
temperature energy as a function of density. The
strong repulsive core in v;& prohibits the use of
simple perturbation theory. Brueckner theory
has been used to calculate the energy of pure neu-
tron matter up to p =0.5/fm', beyond which lowest-
order Brueckner calculations become both difficult
and uncertain. '

Equation (1.1) can also be solved variationally
with a sufficiently general trial wave function.
For practical reasons the form of the trial wave
function is, however, restricted to

(1.2)

where C is a model Quid state wave function, and
the correlation function f;, is determined by mini-
mizing the energy.

At typical maximum densities in neutron stars'
the unit radius x„

~7TXO p=1

almost equals r, , the radius of the repulsive core
in n-n potential. In liquid 'He and 4He also the

x, at equilibirum density is a few percent less
than the He-He atomic potential core radius. The
binding energies of both types of liquid helium,
Fermi 'He and Bose 'He liquid are known, and
have been extensively studied by variational meth-
ods with the wave function of Eq. (1.2).' ' These
liquids form a suitable testing ground for many-
body techniques used in hyperonic matter, and
hence calculation of their energies is discussed
in considerable detail. The He-He atomic poten-
tial core is very hard and has r "behavior at
small x. It tends to induce much stronger cor-
relations than the n-n soft-core potential with its
x ' to r ' behavior. ' Thus liquid He is probably
too severe a test for the theoretical methods. As
far as statistics go, since there are many dis-
tinguishable hyperons of similar mass, hyperonic
matter can be anywhere in between a Fermi and
a Bose system when its composition is hetero-
geneous.

Expectation values with wave functions (1.2) are
generally expanded in cluster series. In the next
section, we brieQy review a method' in which the
variation is constrained to enable energy calcula-
tions with only the two-body clusters. Subsequent
sections describe hopefully exact energy calcula-
tions with unconstrained variation. The results
from the two methods are compared in the last
section to ascertain the former's region of validity.

II. CONSTRAINED VARIATION

The physical assumption here is that the con-
tribution of farther neighbors of a particle i to
the instantaneous potential Q, v;~ seen by i should
mostly be included in the average field of which

y; is an eigenfunction. Hence distant neighbors
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should not be strongly correlated, and the effect
of their correlation on the energy should be small.
If this effect is neglected, one could in principle
work with correlation functions satisfying the
c:ondition

if f;, o 1, then all f;„=1 (2 1)

when ij are nearest neighbors. But it would be
very difficult to handle Eq. (2.1) because f(r;f)
would depend on whether some other particle k is
closer to z or j than r... and thus the different

f;, would be coupled in a complicated way. In

practice, ' Eq. (2.1) is approximated as a healing
constraint on a single f,f as a function of r;, as
follows:

d " (lr, , I
=d) =0.

dr
&

(2.2)

The healing distance d is chosen such that on the
average there is only one particle within a distance
d of an average particle. With this constraint cor-
relations are at times allowed between second and
more distant neighbors, while at times even the
first neighbors are treated as uncorrelated. We

hope that these effects cancel.
All direct contributions of many-body clusters

are zero if Eq. (2.1) is valid, and we will show
that many-body exchange diagrams, which can
contribute even when Eq. (2.1) is valid, are small.
Thus the energy can be calculated with only the
two-body term in the cluster expansion, which is

tion (2.2), and is a function of d, which is deter-
mined from

d

p tfdr=l,
0

(2.6)

where the left-hand side is simply the average
number of particles within d as calculated in low-
est order .Equations (2.5) and (2.6) are solved
simultaneously.

In Fermi fluids let us first consider pairs of
distinguishable fermions like those of spin-up
and spin-down particles of a given baryon type
or of two different baryons of any spin direction.
Such pairs are not exchanged in the antisymmetri-
zation of the wave function. If the two particles
are in states k; and k&, the two-body cluster con-
tribution of their interaction is given by

(W+W~);f = — rP;f f"
k V'f" Vf" V(p)~

g2+" = -[-,'(k; —kf)]'-=-k', (2.8)

we can write Eq. (2.7) as

(W+W ) = — 4 v ——k ——V %dr1 I , I' , km

8t f8

(2 7)

where f'f is the correlation function for particles
in model states k;, k, , and y;, is the relative wave
function e' "' ~~ 'z' Since

E, k' V'f—=-, p I v- — f'd'r (2 3)
(2.9)

g2
I! f IT'f + vf ' —X f') d'r =0—

~ p flZ
(2.4)

and gives directly the two-body "Schrodinger"
equation for x & d

——V'f+vf = X,f. (2.5)

The Ap can be obtained from the boundary condi-

for Bose Quids. Before minimizing E with re-
spect to variations in f, the part of v that con-
tributes to the average field and hence does not
induce correlations, must be subtracted from
integral (2.3). In accord with constraint (2.2), we

assume that the v(r) for r &d contributes only to
the average field, so that the integral (2.3) now

has the upper limit x=d. For x&d the simplest
(and quite reasonable) assumption is that a con-
stant ~p is the contribution to the average field.
This A., is to be determined from constraint (2.2).
Thus the variational equation becomes

+ =f 9'lf ~

and the constraint (2.2) as

(2.10)

(2.11)

It is convenient to decompose y &&
and 4 in partial

waves

p;, (r) = Z i l (kr)I'l (~, q )

@(r)= Q u, (r)Pp(8, y)ffkr.
t, m

(2.12)

If v is spherically symmetric the various l states
are not coupled, and the contribution of each can
be minimized separately following the procedure
described for the Bose Quids. The equation for
u, is obtained as

k2 l(l+1)
+ +VS = —k +A. Q

d~2 ~ ~2 l l ~ p l

(2.13)
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and X,' is determined from the boundary condition

1 du, (d) 1 dj, (kd)
u, (d) dr j,(kd) Cr (2.14)

The correlation function f depends upon both k and
I and may be written as

f,, =gf'(k, r)P. . (2.15)

where the projection operators P';,. operate only on
the model wave function by definition.

The same procedure can be followed in calcu-
lating the contribution of interaction between par-
allel-spin fermions of the same type in states k;
and k, Adding the exchange contribution to Eq.
(2.9) gives

2 (m;y; q, y;5» I—[Zf' (~, r)&']O(d) Iq;q, & =1,
kj L

(2.17}

where O(d) =1 for ~r ~& d and zero otherwise.
Equations (2.12), (2.14), and (2.17) are solved
simultaneously by iteration.

The above method is simple enough to study
complex systems like dense hyperonic matter,
and still sufficiently general to treat the small
differences in baryon-baryon interactions, inter-
actions in different angular momentum states, and
baryon masses. It is also possible to generalize

(w+w, ),», = — [e*(r)-e( r-)]0
x v ——k ——V Crdr,2 A 2 ~ 3

m pn

(2.16)

and on substituting the partial wave expansion
(2.12}in Eq. (2.16) the even l state contributions
cancel, and those of odd states are doubled. The
variational calculation of f;' is unaffected be-
cause Eq. (2.13) is obtained by individually mini-
mizing the contribution of each partial wave. The
d is given by

it to treat noncentral forces, particularly the
strong tensor forces in neutron-proton inter-
action. ' '

However, there are approximations in this mod-
el justified by purely physical arguments. Particu-
larly the healing distance d is obtained from a
lowest-order calculation of the number of parti-
cles within d. This may not be valid when 4 or,
[the unit radius r, (1.3) equals d in uncorrelated
systems]. In neutron star matter d-1 2r„. where-
as in liquid helium d -1.4r„because helium atom-
ic cores are much harder than the baryonic cores.
Secondly, the variational property E ~ true E, is
lost because the variational integrals are only
evaluated in lowest order.

In subsequent sections, we describe hopefully
exact calculations of E with sufficiently large
values of d so that the effects of the constraint
are negligible. In principle these are variational
calculations with correlation functions given by
solutions of Eqs. (2.5) and (2.13), and with the
healing distance d considered a parameter.

The state dependence of the correlation func-
tion, and that of the potential in case of neutron
matter, makes exact many-body cluster calcula-
tions in Fermi fluids very complex. However,
we note that the short-range part of the neutron-
neutron potential, which is mainly responsible
for the correlations, is similar for all states.
The coefficients of the n-n potential

e ~""
v'(r) =Q a„ (2.18)

p,r
are given in Table I for the Reid, ' and the modified
Reid potential of Bethe and Johnson. ' The core
strengths differ by only -3% in various states of
the modified Reid potential.

The l and k dependence of f as calculated from

1.0-

TABLE I. The coefficients a» of n-n potentials,
Eq. (2.18).

0.8-

Oo6-

4 =2, k=O,

S =I, k=0.75 F

Even& 0

Qdd

(Modified)

—10.463 —1650.6
—10.463 -12.322 —1112.6

3.488 3.01 —702.0

0 6484.2

0 6484.2

0 6699.0

0.4-

0,2-

I

0.2 0,4

r(d)

0.6 0,8 I.O

Qdd

(Reid)
3.488 0 -933.48 4152.1

FIG. 1. The k and l dependence of f in liquid 3He at
p =0.277 Atoms/o and d =2+0 with LJ potential.
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Eq. (2.13) is also not too strong as shown in Fig. 1
for liquid 'He and Fig. 2 for neutron matter. The
correlation functions in these figures are cal-
culated at d = 2~„and it will be shown in subse-
quent sections that the energy is insensitive to d
when d ~ 2r, . The densities are 0.277 A/o' (o
= 2.55 A) and 2.4 n/fm~. At these densities, the
~,= ~, in both cases, and hence Figs. 1 and 2

are in some sense qualitatively comparable. The
f in neutron gas is smoother than that in liquid
He because the soft-core nature of the n-n poten-
tial allows the f to penetrate considerably inside
the core. The rather sharp rise in the 'He f may
be attributed to the strong attraction in He-He
atomic potential.

Only the y*fVf Vp term in Eq. (2.7) is respon-
sible for the state dependence of f in liquid 'He,
whereas the differences between the v, (r) also
contribute to this dependence in neutron gas. The
term is repulsive in relative s states (I =0) and
attractive when I ~ 1. It pulls the f, 's for large I
inwards, and also makes the effective interaction
more attractive as l increases.

If the y*fVf Vy term is neglected, the resultant
f for 'He corresponds to that in a mass-3 Bose
fluid. The angle average of this term is zero and
consequently the average f' of the present cal-
culations,

(2.19)

is very close to the f' of a mass-3 Bose fluid.
The f,„' in 'He, neutron gas, and fs„,' in fictitious
'He Bose fluid are compared in Fig. 3.

We note that the differences between various
f'(&, r) are not too large. In subsequent sections,
the calculation of many-body (&2) cluster contri-
butions is considerably simplified by using a
single f„'.

III. CLUSTER EXPANSION OF RADIAL
DISTRIBUTION FUNCTION

The radial distribution function of a Bose Quid
is defined as

II f«y'"r
(J'

II f~~'« (3.1)

where d7' omits integration over r „, and 0 is
the normalization volume. The subscripts denote
coordinate variables of the functions; thus g „
=g(r„„).

By convention, we antisymmetrize only the left-
hand side 0 * in calculations of expectation values
for Fermi fluids. Thus initially the particles 1,
2, . . . , i, respectively, occupy plane-wave states

~ ~ p p f with momenta k» k». . . , k;, and
summation over particles is changed to summa-
tion over states. The radial distribution function
for particles initially in states k and k„can now
be defined as

2
g(l ):(1)+g(kjykg)

j&j
(3 3)

The f;; approaches unity at large r;, and is small
or zero at x =0. It is then convenient to substitute

f;,' =1+F;; (3 4)

I.O-

Q A p,*, ;,' p;; dr'
g(h„, i„)=

0'g, ~ sy

(3.2)

where A is the antisymmetrizing operator, y, ; is
the abbreviation of cp, (r;), and all f;, =f„. The
true g is obviously

0,8-

I.O

0.8—

0.6—
~'

"0.4—

0.6-

0.4-

0.2-

2
f Boa

0.2—
0.2 0,4 0,6 0.8 I.O

0 0.2 04 06 0.8
r(d)

FIG. 2. The l dependence of -f in n gas at 2.4 n/fm,
d =2~0, 4 =0.55h z, with the acid potential.

FIG. 3. The points, full, ahd broken lines, respec-
tively, show the average f in Fermi He, f in mass-3
Bose He, and average f 2 in n gas. See captions of Figs.
1 and 2 for details of densities, d, and potentials.
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g(1+E;,) =I++ E;,+ Z
s &g, A &l(ag &kl)

(3.5)

for all pairs other than mn in Eq. (3.1) or Eq. (3.2).
The I';, is a short-range function with absolute
value generally less than unity, and products of
(I +E;~) can be expanded in powers of E as follows:

C. I

c.z
kI I 2 k2

k2' 2

gN

N-1 /'
gF dr

N-1 / '(~1-~2) '12 yJ F12e d r12

Integrals over various terms in Eq. (3.5) are
represented by diagrams of the type shown in
Figs. 4-6.

The points in these diagrams represent the parti-
cle coordinates, broken lines represent I" func-
tions, and numerator diagrams must always con-
tain points m and n with f „'. In Fermi fluid dia-
grams the full line k, entering r; represents the
final state y, occupied by the particle i in the left-
hand side 4 *. The lines k, ~ ~ k; must originate
from points 1 ~ ~ i, respectively, by our conven-
tion.

Diagrams of type C.2, C.4, and D.1 in which the
state lines k; originate and end in the same point
are direct diagrams analogous to the Bose fluid

C.4 F F d~ d~12 1$ 12 1$F F d r d r

C.5 rk ~ o /F FJ 12 13 12 lg

5 5

C.s k k k

I 2 I 2
k2

C7 I /
I 2

~ nN-2/ (~] y$ ~p' p]+q '~yp)
g F12Fl~e

d r12d rip

FIG. 5. Fermi fluid denominator diagrams.

A. I

A. 2

A.3

A. Bose Fluid: Denominator Diagrams
= sP

~-----o = Q F d~r
12 12

3 4
QN-2 F d~ r ~F d~ re-----~ 12 12 J ~4

I

diagrams A.2, A.4, and B.1, respectively. The
small circles k; in these diagrams simply contri-
bute a unit factor. A line k, going from i to j gives
a factor e' ' "', and the sign of a Fermi fluid dia-
gram is given by (-1)'", where I is the number
of closed loops and s is the number of state lines.
Diagrams of the type C.6 in which an uncorrelated
particle is exchanged give zero contribution. Such

3

I 2

N-2
F12d rl2 Fled rip

A. 5
3

r
I 2

gN-2
12 2$ $1 12 1$

S. Bose Fluid: Denominator Diagrams ~N f2 m n mni(k -k ) ~ r
mn

0.2

o. i k+ „= n" P,
km

B.I

I 2

~N f2
ln

0p, & kt = ~ f } F e n 1 nld~rN-1 2 i(k -k ) ~ r
mn ml nl nl

A

B.2

8.4

N-1 2f F12d r12
4

I

e e
fn 0

N 1 f2 F d~ r
mn lm lm

I

e' 'a
m n

Q
- f2 F F d~r

mn lm 1n ml

I 2
ec

m& FlmF1 d r lm F12d r12

0.4

m n n

I

06 c kii a

m
k n

I

i
kI gN-1 f2 F

mn ml

i(K r' +k r +k r )k„ m ml n nm 1 ln d$
ml

gN-1 f2 F m 1 mid/
i(k -R ) ~ r

mn ml ml

I

k„gN1 f2 m n
mn

i(Kn-kl) r 1
kfn JF le d r 1

FIG. 4. Bose Quid diagrams. FIG. 6. Fermi fluid numerator diagrams.
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diagrams contain an integral

i(k~-ky) ' r day
4

which is zero from orthogonality of cp, 's.
The contribution of diagrams like B.2, which

contain two or more disconnected pieces, is sim-
ply the product of contributions from each piece
(B.l and A. 2 are the disconnected pieces of B.2),
apart from powers of Q. The connected numerator
diagrams of type 8.3 or B.5 in Fig. 4, and D.5 or
D.6 in Fig. 6, which can be broken into two sep-
arate parts at a single point are called factorable
because their contribution appears as a product
of two disconnected pieces. The connected non-
factorable diagrams of type B.1, 8.4. in Fig. 1,
and D.1, D.2, and D.3 in Fig. 3 are called irre-
ducible. The diagram D.4 will be discussed sub-
sequently.

If all disconnected and factorable numerator
diagrams which contain a particular irreducible
diagram are collected together, and the irre-
ducible part is factored out, then its coefficient
cancels the denominator within terms of order
(1/N). Thus g„„ is simply the sum of all irre-
ducible diagrams divided by Q".

Figure 7 illustrates this cancellation for the
first two terms of the denominator in Bose fluids,

Denominator=Q 1+& N(N —I) JF, dr, +
N

The irreducible diagram 8.4 of Fig. 4 is con-
sidered for illustration. It is trivial to obtain
the first unit term of Eq. (3.6) in the coefficient
of 8.4 in the numerator. The four diagrams that
contribute to the second term of the coefficient
are shown in curly brackets of Fig. 7. The first
three are faetorable and contribute

—3(N —3) Jt F,2d r».

Note that a factor 0 is taken out of these contri-
butions to cancel the Q" in Eq. (3.6). The fourth
disconnected diagram gives

——,'(N-3)(N-4) Jt F»d'r»,

I

z
k)m, n, l

m n m n

I M Ml I q+

m n m n m n

I

mn

N0 + K a«a + «««
k&a 4r

ko)mll, m], n t

[Oenominator + Terms of order —j1

N

FIG. 7. Cancellation of denominator in Bose fluids.

The Fermi fluid numerator diagrams D.4 and
D.6 appear to be similar and factorable. How-
ever, if D.4 is factored, the factor with f „' is

i( k & kn~ 'rmne

which is the contribution of a diagram in which
line k, originates from point m. Such a diagram
is not allowed because in our convention the line
k; must originate from point i. Hence D.4 must
be considered as a new irreducible diagram. The
diagram D.2 is a factor of D.6, and its coefficient
is simply one of the denominator diagrams C.S.
Thus D.6 must be factored along with other fac-
torable diagrams with D.2 as a common factor to
cancel the denominator within terms of order 1/N.

The diagrammatic method and the van Kampen
cluster expansion" are identical in Fermi fluids
up to at least three-body clusters, and probably
more. The calculation of many-body clusters is,
however, very laborious by the van Kampen meth-
od, and the main advantage of the above method
is its simplicity.

Recently Gaudin, Gillespie, and Ripka" have
attempted to cancel the denominator by collect-
ing all diagrams containing a connected diagram.
Thus their expectation values are sums of all
connected (but not necessarily irreducible) dia-
grams. The denominator contains N(N —1)/2
diagrams of type C.2, whereas the number of
numerator diagrams with D.i and C.2 as uncon-
nected parts is only (N —2)(N- 3)/2. The leading
term of the difference,

and the second term in the coefficient of 8.4 in
numerator becomes

f
2NQ" '

jt F»d'r»/Q" = 2p
~

F»d'r» (3.7)3, 3Q2N(N —1) J~
F„r„—

Q
F,md r».0 g

The first part of above equals the second term of
denominator (3.6) whereas the second part vanish-
es as 1/N

is clearly nonzero even when N- ~ and hence the
denominator cannot be cancelled against only un-
connected diagrams Factoriza. tion of the (2N —4)
connected diagrams with D.1 and C.2 as factors
essentially provides the difference [Eq. (3.7)].
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IV. INTEGRAL EQUATION FOR SUMMING

DIRECT DIAGRAMS

Some of the diagrams that contribute to the
radial distribution function in a Bose system are
shown in Fig. 8. A sum over all particles labeled
by numbers 1, 2, . . . is implied, arid it simply
gives a p with factors to account for double count-
ing (for example, diagram E.7 gets a factor —,').
Thus the contribution of diagram E.2 is

l.6

)4-

l,2-

I.0
fmn p +)m+ind +1:fmn ~mn (4.1)

The functions I' and S are shown in Fig. 9 for a
typical f with d = 2r„ in liquid 'He near equilibrium
density. Since the magnitude of S is larger than
that of I, and they are of opposite sign, the con-
tribution of diagram E.3,

0.8—

0.6— -F(

f „'p
Jt F, S,„d'r, (4.2) 0.4-

-S(r)-
is larger than that of E.2. It can be easily seen 0.2-

n

I

A

fA n

E.2

2
I

rn n

2

2
3

m

E.4

r in Units ro

I

2

FIG. 9. The functions I', S, and S in liquid 4He at p
=0.35 Atoms/0, and d =2xp with Lennard- Jones potential.

I 2

fll 0

5
2 4

Io

3
I i II I2

I
m) qn

15 16

I

mg }n
+2

E.7

I

A

m e|,
'

Pn
/

2

I

/h

m n

Composite Diagrams

I 2
I

mg Jn
X i~/I

F, 2

Nodal Diagrams

', 2 p4If

m n

5
I

I w ~ (

$7

mg

8 9

10
II

~ i ' ~ l26

m n

I 2
/ I/

m n

E.9

5

l~

I I
I

O'—--Q Pn
I mi I

8
K. IO

I 2
fC-"-g
V
m n

F. 7

F. 5

Elementary Diagrams

2

/ N I

m n

F.6

2

lq ' y4

m

F.9

FIG. 8. Some irreducible diagrams that contribute to
Bose g(r). FIG. 10. Classification of Bose fluid diagrams.
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that E.4 contributes more than E.3, etc. The dia-
grams E.2, E.3, . . . are called single chains,
and in dense fluids their contribution does not
decrease with the number of particles in the chain,

The contribution of diagram E.5 is equal to

(4.3)

is of the same order as that of E.2 because S» 1
in the range of E. Thus diagrams of type E.5-E.7
in which additional chains are added to connect
two particles in a chain are also of the order as
those of single chains. Diagrams in which any
two points of a chain may be connected by many
chains are called hypernetted chains, and E.8 is
a typical HNC diagram. No two chains or sub-
chains are connected by an E.

The simplest diagram in which two chains con-
necting m and n are connected by an E.is E.9. Its
contribution S is small (Fig. 9), particularly in
the region where f „' is appreciable, because all
four particles have to be within the range of E.
One would thus expect contributions of diagrams
like E.10 involving E.9 as a subdiagram to be
small.

All g „diagrams can be classified as composite,
nodal, and elementary, as shown in Fig. 10. Com-

1.406
1,856
2.306
2.756
3.206
3.656
4.106
4.556
5.006
5.456
5.906
6.356
6.806

gL.O.

0.7095x10 '8

0.1376x10 3

0.7026x10 ~

0.4308
0.7809
0.9460
0.9943
1.0
1.0
1.0
1.0
1.0
1.0

0.6257x10 '5

0.7321x 10 3

0.2334
0.9521
1.242
1.180
1.057
0.9775
0.9573
0.9731
0.9957
1.008
1.009

gHNC /4

0.5006x 10-»
0.6307x 10
0.2183
0.9128
1.228
1.186
1.068
0.9857
0.9593
0.9703
0.9919
1.006
1.009

posite diagrams have more than one unconnected
path connecting m and n. In nodal diagrams, all
paths connecting m and n must pass through at
least one point. In diagrams F.4-F.6 the nodes
are at points 1 and 2. All diagrams which are
neither nodal nor composite are elementary. All
HNC diagrams are either nodal or composite.

TABLE II. The radial distribution function for liquid
4He at p =0.35 Atoms/o3, d =2ro, with Lennard-Jones po-
tential, in the lowest order, HNC, and HNC/4 approxi-
mations.

The integral equation

-In,""~ „=p f g, —1 —In, "'~,) (g„,—1)d'r, (4 4)

derived by van Leeuwen, Groeneveld, and de Boer" sums all composite and nodal diagrams formed from
elementary diagrams included in E „and E. In the approximation E „=0, we get the familiar HNC equa-
tion"

ln 2 =p l g~~ —1 —ln — -2 g i-1 0 g~ (4.5)

whose consistent solution is the sum of all HNC diagrams. The next approximation, E „=S „gives the
sum of HNC diagrams plus the elementary diagram F.7 and all HNC's in which F.V substitutes or adds to
a link. We call this approximation HNC/4.

Table II shows g „ in lowest order, HNC, and HNC/4 approximations. There is little difference between
HNC and HNC/4 distribution function when g) 0.1, whereas g L o is a poor approximation except when r
is large. Hence HNC/4 should be a fair approximation because addition of more complicated elementary
diagrams involving more than four particles should produce changes smaller than the difference between
HNC and HNC/4.

V. BOSE FLUID CALCULATIONS

Traditionally the kinetic energy part of the total energy E,

8= J(n f;, )(Q —— & +-,'Q v;;) (nay}i i II fu'
i,j

is transformed using the Jackson-Feenberg" identity,

(5.1)

~r i [+i*& @+(~2@i*)4—2(V+'*) (VC )]dar (5.2)
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with

(5.3)~'=ll f*, .
i &g

The (V;f;,V;f;,) terms cancel, and the entire kinetic energy can be included in an effective potential V&, ,

(5.4)

1
EiF ———Q ViF gd3r .2n;, . (5.5)

We use E&„ to denote the energy as calculated above, and we have E =E,„when the true g(r) is used in in-
tegral (5.5). When f satisfies Eq. (2.5) for r&d then

5' (Vf)2
V)~(x d)= —,'(5+1 +-

m f'

ViF(r&d) =v. (5 6)

Alternatively the potential and the part of kinetic energy obtained by collecting terms in whi, ch V' oper-
ates on a single f can be included in an effective potential V, and "potential energy" W defined as

O' V'f;,V=v ——
m f;q

(5.7)

W =—g ~j Vg d'r .1

20;; (5.8)

This effective potential V is simply A, for r d when f satisfies Eq. (2.5), and it is v when r&d. The V,
operating on f;; and f,, gives additional kinetic energy U,

(5.9)

(5.10)

We use the superposition approximation"

1 ~ Vifij Vifia s sU=- —
2 A(r;i, r;„) d r;gd rii,

2iri 0 .„jj
where g3(r, i, r;„) is a three-particle distribution function defined analogous to the radial distribution func-
tion g. The total energy of the Bose fluid is simply

g, (r...r,,) =g(r, , )g(r, ,)g(r») (5.11)

which is exact only in the HNC approximation.
The results for the liquid 4He energy with Len-

nard-Jones potential, ' and with g as given in HNC
and HNC/4 approximations are shown in Table III.
The difference (W+ U)„„c—(W + U)»c« is rather
small while that between E JF HNc and EJF HNC/4 is
quite appreciable. The effective potentials V&F

and V are shown in Fig. 11 for x&d. The V» con-
tains the singular v and is very large at small r
making E» too sensitive to g at small r.

In lowest order (g=f') the W and E&F are identi-
cal as can be seen by integrating the (Vf )' term
by parts. Thus when g =f' the integral from the
core region above the V=~, line in Fig. 11 exact-
ly cancels that from the dip below the line. When

Jt g[V&„(r) —V(r)jd'r = U,
1

20;, (5.12)

and it is obviously simpler to calculate W+ U di-
rectly when g is only approximately known. Even
the g»«4 is not accurate enough for use with the
Jackson- Feenberg identity. The small difference
between (W+ U)„„c and (W + U) „Nc«may be used as
representative of the error in the HNC/4 integral
equation.

Figure 12 shows the variation of liquid 'He en-
ergy at experimental density with d/r, When

graf'

the cancellation is not exact. In principle
for exact distribution functions (W+ U) must equal
E», so that
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TABLE III. The E(p) for liquid 4He with LJ potential
in HNC and HNC/4 approximations. The EJ& is calculat-
ed with Jackson-Feenberg transformation, and (9 + U)
is discussed in text.

I I I I I I

Atoms
Energy ( K per atom)

(S'+ U) E
HNC HNC/4 HNC HNC/4

0.26
0.29
0.32
0.35
0.38
0.41

-5.452
-5.703
-5.819
-5.778
-5.554
-5.125

-5.530
-5.820
-5.988
-6.009
-5.857
-5.513

-5.027
-5.045
-4.885
—4.493
-3.835
-2.879

-5.318
-5.454
-5.435
-5.208
-4.737
-3.991

1.0
I I I I I I I I I I

I,5 2.0
d/ro

d = 2x, the energy is quite insensitive to d and
hence most of our calculations are carried out
with d = 2r, Th.is range of f is still much shorter
than that of the exponential f used in Monte Carlo
calculations. '' Details of other results on 'He
and comparisons are given in the last section.

VI. FERMI FLUID CALCULATIONS

The sum of direct g(k„, k„) diagrams can be
easily calculated with the integral equation (4.4).
Let this sum be denoted by g» and let

FIG. 12. Variation of energy with d in liquid 4He at p
=0.35 Atoms/o with LJ potential.

the pair of particles in states k and k„ is ex-
changed. As discussed previously all HNC, or
better HNC/4 chains connecting rn and n must be
summed to any number of particles. The effect
of this sum is the multiplier h of Eq. (6.1), and
it is denoted by a crossed line in diagram Q.4.
The contribution of 6.4 is obviously

& (&) =gs&f'. (6.1) (k k ) e&( &m-kn) '& (6.2)

Figure 13 shows g(k„, k„) diagrams in which only Sum over exchanges k, k„gives the square of the

K

3-

2-

-2- V(r )

~ JFV (r)

.(9.
G. I

I

p,

k„
G.2

g5

-$6
km

7 8

G, 3

0.2 0-4 0.6
r in Units of d* 2r0

t

0.e
kn

G, 4

FIG. 11. The effective potentials in liquid 4He at p
=0.35 Atoms/v and d =2rp with LJ potential. FIG. 13.3. Fermi g(k~, k„) diagrams with one exchange.
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Slater functionS(kyar)

= —Q e'"",
3

3
= — » [sin(kyar) —k1,r cos(kyar)],

p
(6.3)

X

kl kn

[this S should not be confused with that of Eq.
(4.1)], and the contribution to the Fermi radial
distribution function (3.3) is

g~ = -S'(kyar)ga. (6.4)

Exchange of a particle in state k or k„with
another particle gives diagrams of type H. 1 in
Fig. 14. The sum of all direct diagrams connect-
ing m and 1 is represented by the double broken
line and equals [ga(r, ) —1]. The gz includes a
unit contribution from m and 1 unconnected, and
this is subtracted to insure that only the irre-
ducible diagrams are counted. A S'(k1„r1„)is ob-
tained by summing the exchanges, addition of dia-
grams with and without F,„gi evsf, „' which is
converted to g,„by summing Bll direct diagrams
connecting 1 and n. Thus the double full line 1n
denotes

H. l ex,

H. I

I 2

0
II II
l1

H. 2

I 2

I 2
II
II

II 11

k ITI I1

~L --."::-:-~n
"n

H. 2 ex.

+,„(r,„)= p ga(r1„)S'(kyar, „), (6.5) H. 3 H. 4

where the factor —,
' comes from requiring that the

spins of particles 1 and n be parallel. The contri-
bution of these diagrams is

gg y 2ggyp gg +

(6.6)
H. 5

The factor 2 arises because m and n may be inter-
changed. FIG. 14. Fermi g diagrams w'ith exhanges in the chains.

Two successive exchanges between particles in states n and 1 and 1 and m give three-particle exchange
diagrams. The sum of all three-particle exchange diagrams with any number of direct chains is repre-
sented by the diagram H. lex in Fig. 14, and its contribution

g„„„=S(kyar) gap J) [ga(r, ) —1]S(kyar„, )ga(r„, )S(kyar„, ) d'r, (6.7)

cancels g„, at small r when m and n have parallel spins.
In this notation, it is quite simple to write the contributions of more complicated exchange diagrams.

That of H. 2 in Fig. 14 is, for example,

g„,=-g~p' g~ r, —1 E,„r» g~ r„, —1 d y,d'r, =— 'h, . (6.8)

Figure 15 shows the functions g, „,~„(=f'), Ag»c (=ga in HNC approximation -f'), d g (the difference be-
tween ga in HNC and HNC/4 approximations), g„„and g„, in liquid He at experimental equilibrium den-
sity. The E~ is a rather small function because g is small where S(kyar) is unity and vice versa. Hence
diagrams with exchanges in the chains give a small contribution. We neglect diagram H. 4 because its con-
tribution should be much smaller than &g which itself is small. The maximum contributions of H. 3 and
H. 5 are respectively 0.018 and 0.016 at x -0.6d. More complicated exchange diagrams are expected to
have still smaller contributions and are neglected. The g is given by

(gB +gH. 2)[ 2 (ktr)] +ga. l +? gH. 1ez +gH. 3+ (6.9)
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In the superposition approximation, the g3(r;i, r;, ) can be easily expressed in terms of the functions k and
f' for various exchanges between particles i, j, and k.

The potential and the part of kinetic energy in which V2 operates on a single f are given by expressions
(5.7), (5.8), and (6.9). This contribution is denoted by W. The terms with (d', operating on f» and f»
give the term U as defined by Eq. (5.9) and calculated with Fermi three-particle distribution function
containing exchange contributions.

Terms in which V'y operates on cp, give the Fermi gas kinetic energy T,

T= 5k~2.
2m

(6.10)

The Vif»V1y» terms do not contribute to direct matrix elements when f is spherically symmetric. Its
contribution through exchange of 1 and 2 is given by

W'
5' 1 Vf 1 k -k r

mn
2ke' 1- 2"(g +g )d'rB H.2 (6.11)

and that from the exchange of 1 and 3 is

h' 1
F g2 + ~gB(r13) gH. 2( 13)] I gB( 23) +gH. 2( 23)]

0 yk203

x[d ( )rrd(re „e)]e'" " ' " (()e,
" d'r„d'r„.

f1;
The total energy is

E = 7 +8'+5"~+U+ U~.

(6.12)

(6.13)

The results of liquid He calculations with Bose f having d =2r, are given in Tables IV and V. These
results are in very close agreement with those obtained by Monte Carlo calculations4 within the Wu and

Feenberg formalism. " When the present calculation is carried out with a spherically symmetric Bose f,
its assumptions are identical to those of the Wu-Feenberg formalism, and only the computational method

is different.
Calculations with the angle-dependent correlation functions obtained by solving Eqs. (2.13) and (2.14) can

be simplified by defining a k- and l- dependent effective interaction V (k, r),

V'(k, r(d) = A.', (k)

V'(r) d) = v'.

When d = 2r„ the lowest-order two-body contribution with these f 's,
(6.14)

(W+WF), .o.=2„.Z &V;V; S»ei e(II.Z-f' (k, r)V'(k)f'ii]la;V, &

5) s

(6.15)

is -10%%ug lower (algebraically) than that with the Bose f (Table IV).
The higher-order contribution (from more than two-body clusters) is only -25%%uo of the lowest-order con-

tribution, and it is calculated with the average f as defined in Sec. II. This average f is very similar to
the Bose f and hence higher-order contributions are almost identical in the two calculations (Table IV).

The U and U~ are both higher-order terms not involving v', and they can be easily calculated with the
average f and the functions k. However, particularly in neutron matter, the evaluation of higher-order
contributions to W+WF is nontrivial even when a single average f is assumed because of the I dependence
of the tw'o-body interaction. The effect of the many-body system is to push the two interacting particles
closer, and we assume that this effect is spherically symmetric. The (W+WF) including higher-order
contributions is then given by

(W+WF) =2„.Z (&9 (V i I~Zf' (k, r)V'(k)&';i](k +k, +k, ) ~q;pi&

—6ii&ei9; IIXf"(k, r)V'(k)a'„](k +k, ) IV, V,&+6„&e,ei l[Zf ™(k,r)V'(k)Z', ]k,.„ I V, 9 1&].
s

(6.16)
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0.8—

0.6—

0.4—

0.2—

-3

hC
0

-6-

-8
0.2

I
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SM2(MC)

~8M2
r

~ ~LJ (MC)

LJ

8Ml(MC)
o—Expt.

o
Cv(LJ)

h g h

I

0.4
p (p /cr~)

0

0.25
I

0.50 0.75

r(d=2r )

H, 2

l

1.00
I

1.25

FIG. 15. Contributions to the radial distribution func-
tion in liquid 3He at p =0.277 Atoms/0, d =2xo, with LJ
potential. Distance r in units of d.

FIG. 16. The E(p) for liquid 4He. The full and broken
lines give the results of present calculations with LJ,
BM1, and BM2 potentials (Ref. 5). The full squares,
circles, and hollow circles, respectively, give the re-
sults of Monte Carlo calculations with exponential f,
and BM2, LJ, and BM1 potentials (Ref. 5). The experi-
mental data (Ref. 5) and results of constrained variation-
al calculations (Hef. 6) are shown by hollow squares and
triangles.

Here h„, and h, represent the contributions of
diagrams H. l,„and H. 2. The above express~on
is correct in lowest order, and the errors in
higher orders involve only the differences be-
tween V' or f'. Table VI gives the contributions
to the energy of neutron matter with Reid potential
for d =2r, . The error due to the approximate
treatment of the state dependence of n-n inter-
action should be a few percent of the n (W +W~)„o
contribution. The numerical methods and errors
involved therein are discussed in the Appendix.

Recently Miller et a/. "have suggested that the
Hamiltonian for neutron matter could be written

H = Q V,.'+Q v,-, + Q (Q v'„P' —v,,),
i ici i&i i

where V;,. is a state independent interaction. They
define

(6.18)

and choose C, such that the last term of Hamil-
tonian [Eq. (6.17)] gives zero contribution in low-
est order. Its higher-order contributions are
neglected and approximate Nu-Feenberg calcula-
tions are carried out for the first two terms of
[Eq. (6.17)]. Thus, in effect, the state dependence
of v;& is treated correctly only in lowest order.

TABLE IV. The contributions to E(p) of liquid 3He

with LJ potential in HNC/4 approximation, with the
mass-3 Bosef, and state-dependent correlation func-
tions (S.D.f). The sum of all higher-order contributions
is simply E-T-(9'+ W&)& o

TABLE V. The E(p) of liquid 3He with LJ potential.
The four columns list the results for mass-3 Bose
fluid, Fermi 3He energy with the f for Bose fluid, then
with state-dependent f in HNC/4 approximation, and
finally the S.D.f energy in HNC approximation.

p
(Atoms/0 3) T

Energy per atom ('K)
( W+ Wz)L. O. ('K) All H.Q. ('K)

Bose f S.D.f Bose f S.D.f
p

(Atoms/0 3)

Energy/atom ('K)
HNC/4
mass-3
Bose

HNC/4 HNC/4 HNC
Bosef S.D.f S.D.f

0.187
0.217
0.247
0.277
0.307
0.337

2.31 -4.01
2.56 -4.68
2.79 -5.34
3.01 -6.00
3.22 -6.68
3,43 -7.33

-4.47
-5.18
-5.88
-6.58
-7.26
-7.94

0.49
0.79
1,19
1.72
2.41
3.23

0.44
0.72
1.10
1.62
2.28
3.12

0.187
0.217
0.247
0.277
0.307
0.337

—2.78
-2.95
-3.01
-2.92
-2.66

2 022

~2 1
1\33

-1.35
-1.27
-1.05
-0.67

-1.72
-1.91
-1.99
-1.95
-1.75
-1.39

—1.70
-1,86
-1.91
-1.82
-1.58
-1.16
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TABLE VI. The contributions to E(p) of neutron gas with Reid potential in HNC/4 approximation. A(W+ 8&) is the
higher-order contribution to W+ W&.

P
(N/fm3) (W+ W~)„o

Contributions to energy (MeV/neutron)

A( W+ Wp) All H.O.

0.2
0.6
1,0
1.4
1.8
2.2
2.6
3.0
3.4
3.8
4.2
4.6
5.0

40.7
84.6

119.0
149.0
176.0
201.0
225.0
248.0
269.0
290.0
310.0
329.0
348.0

-21.4
-26.4
-11.0

21.9
70.6

133.0
209.0
296.0
394.0
502.0
618.0
743.0
875.0

-0.6
+0.6
16.3
44.5
82.5

129.0
182.0
241.0
307.0
378.0
456.0
538.0
625.0

0.6
11.3
30.8
54.5
79.8

106.0
133.0
160.0
189.0
216.0
246.0
273.0
300.0

0.5
6.9

14.6
22.4
29.9
37.3
44.6
51.8
59.0
66.2
73.5
80.8
89.9

0.5
18.7
61.8

121.0
192.0
272.0
359.0
453.0
554.0
661.0
773.0
892.0

1015.0

19.77
77.00

169.7
292.0
438.8
606.8
793.4
997.4

1217.4
1452.4
1701.6
1963,4
2237.6

The energies obtained by Miller et al. are up to
30% higher than those with the constrained varia-
tion method for k~&2.5 fm ' (p=0.53 fm '). The
maximum density in their calculations is k~ =3.5
fm ' or p =1.4 fm ', and their energy for it is
approximately half of that given by constrained
variation. They discuss improvements in their
calculations with V;& which may decrease the dif-
ference.

Two comments on the separation of the Hamil-
tonian [Eq. (6.17)] may be appropriate here. When
the interacting particles are very close the inter-
action must be mostly in relative S state, irre-
spective of the order of the contribution. However,
for an average of v' of type (6.18) the higher-
order contributions to the interaction at small x
will involve the potentials in high-L states. This

TABLE VII. The E(p) of n gas with Reid potential in
HNC, and HNC/4 approximations.

difficulty is partly avoided in the approximation
(6.16). Secondly, the partial lowest-order con-
tribution is very sensitive to the range of f (see
Sec. VII for more details) while the total energy
is not. This may introduce a significant uncer-
tainty in the parameters C, .

The smallness of the difference between ener-
gies calculated in HNC and HNC/4 approximations
(Table V for 'He, and Table VII for n gas) indi-
cates that all relevant direct diagrams have been
summed by HNC/4 integral equation. The energy
change on inclusion of complicated exchange dia-
grams like H. 3 and H. 5 of Fig. 14 is less than
half of E„„c~4-EHN& and justifies the truncation
of the exchange diagram sum.

VII. CONCLUSIONS

Results of the constrained variational calcula-
tion in lowest order and of accurate energy cal-

P
(n /fm3)

E/n (MeV)
HNC HNC/4

0.2
0.6
1.0
1,4
1.8
2.2
2.6
3.0
3.4
3.8
4.2
4.6
5.0

19.77
77.08

170,5
293,5
440.4
607.3
790.5
987.9

1197.5
1417.8
1647.3
1885.3
2130.6

19.77
77.00

169.7
292.0
438.8
606.8
793.4
997.4

1217.4
1452.4
1701.6
1963.4
2237.6

0

UJ

BM2
Qr

LJ

fXPT
+& cv(LJ)
h

I

0,2 0,5

p (A/a )

FIG. 17. The E(p) for liquid 3He (see caption of Fig.
16 for notation). The + .shows experimental ground-state
data.
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Experimental
LJ (CV)
LJ
BM1
BM2

3He

0.277
0.342
0.256
0.276
0.245

2,52
-2.87
-1.99
-3.02
-1.98

3.5-3.8
2.56
3.86
2.73
3.88

0.6—

04—

0,2

Experimental
LJ (CV)
LJ
BM1
BM2

4He

0.365
0.425
0.344
0.349
0.317

-7.2
-7.58
-6.01
-7.43
-5.86

1,02
1.13
1.31
1.11
1.62

0 I

2 4 5

r(A)

g3e r in 4He liquid at p =0.365 Atoms

f experimental S(k), and the poin s
with BM2 potential.
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TABLE IX. The contributions to E(p) of neutron gas
with Reid potential in HNC/4 approximation for various
values of d/ro.

P
(N/fm3) 1.6 2.0

1,0

3.0

Total
L.O.
H.O.

Total
L.O.
H.O.

204.4
156.3
38.1

1174.0
982.5
191.5

177.3
.123.7

53.6

1037.7
710.6
327.1

169,7
108.0
61.7

997.4
544.3
453.1

5.0 Total
L.O.
H.O.

2467.7
2117.5
350.2

2266.0 2237.6
1595.0 1223.0
671.0 1014.6

BM1 and BM2 potentials. The equilibrium prop-
erties are given in Table VIII, and BM1 potential
appears to yield a remarkably close description.
The authors (Bruch and McGee"), however, point
out that the BM2 potential gives the best fit to
dilute gas properties. The radial distribution
function g(r), and its Fourier transform, the liq-
uid structure factor S(k) as computed with BM2
potential are compared with the experimental
analysis of Achter and Meyer" in Figs. 19 and 20.
The differences in g(v) and S(k) as calculated from
LJ, BM1, and BM2 potentials are smaller than
that between the experimental and calculated.

The distribution functions as calculated from
integral equations have been criticized as in-
accurate' or unreliable" for energy calculations.
The decent convergence as well as the close agree-
ment with Monte Carlo calculations obtained here
with integral equations can be attributed to the
following. First, HNC/4 is a better integral equa-
tion than HNC or PY used in Bef. 5. Second, the
present method of calculating energies from an
approximate g(r) is less sensitive to the errors
in g(x) than the Jackson-Feenberg method used
in Refs. 5 and 19. Third, the effective potential
V is small with the present choice of f. With the
exponential correlation functions used in Bef. 5,
the VJF goes to+, while V goes to -~, making
E too sensitive to g at small x. The range of our
f(-2r, ) is also smaller than for the exponential

f, and the magnitude of higher-order cluster con-
tributions is smaller.

Previous best variational calculations gave a
minimum at -1.35'K' for 'He with LJ potential
and spherically symmetric f. We obtain the same
result with Bose f (Table V). The much lower
energies in Fig. 17 are a direct consequence of
allowing angular variation and state dependence

in the correlation function. In the present work,
this dependence is averaged over in the calcula-
tion of many-(&2) body clusters, and hence we can
only conclude that energy gains of the order of
0.6'K may be obtained by allowing state dependence
in correlation functions. The BM1 and BM2 po-
tentials, respectively, overbind and underbind
'He liquid.

Table IX shows the total energy, the lowest-
order, and higher-order contributions to it for
the neutron gas at d/ro =1.2, 1.6, and 2.0. The
total energy is much less sensitive to d than its
decomposition into lowest and higher cluster con-
tributions. The higher-order contributions in-
crease by a factor of 1.5-3 whereas the total
energy decreases only by 10-15% as d is increased
from 1.2 to 2r, .

The value of d is -1.2r, in constrained varia-
tional calculations. Thus correlations with d
=1.2r, are mainly two-body correlations because
on the average there is only one neutron within
the correlation volume of any. The small higher-
order cluster contributions at d =1.2r, come from
events in which two (or more) neutrons come
within the correlation volume of a neutron. In
lowest-order calculations, these are neglected
assuming that they cancel events in which the
neutron can have larger correlation volume be-
cause there is nothing within 1.2r, from it. It is
remarkable how well the lowest order for d =1.2x,
agrees with the total energy for d =2~,.

A product of two-body correlation functions is,
of course, only an approximate way to express
correlations in events in which many (&2) parti-
cles are simultaneously correlated. Hence the
result of our accurate energy calculation can at
best be interpreted as an upper bound. Effects
of introducing an explicit three-body correlation
in liquid 'He have been estimated by Davison"
with the correlated basis perturbation theory'4
to be --0.76'K. Thus the total estimated energy
of 4He with LJ potential is -6.76'K, which agrees
very well with -6.63'K as estimated by Kalos"
from a direct solution of a 32-body Schrodinger
equation plus corrections for finite ¹ This ener-
gy is also closer to the -7.58'K given by con-
strained variation (CV).

In conclusion, we find that the CV method is
fairly accurate for dense systems like neutron
gas interacting via a soft-core potential. In liq-
uid He, it overestimates the binding energies
because the events in which two or more atoms
come within the correlation volume of an atom
give a substantial repulsive contribution. The
estimate of this contribution with a product wave
function could be as much as twice the true value.
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APPENDIX' NUMERICAL METHODS

The contribution of diagram E.9 of Fig. 8

j+ j+j2+ 3+ 2d rjd r2 (A1)

can be trivially written as

S = mp' I",F,r,'r, 'dr, dr,
&& sin0~ jFnjd 0m j sxngm2En2deng Ejadpje

(A2)

by choosing r „as the Z axis, and

(A3)

For chosen values of r j 2 0 j ~ 2 the yj
integration is independent of r „and hence it is

very economical to evaluate S(r ) simultaneously
for various values of r „. The integral is zero for
r & 2d and was evaluated at 20 points between 0
and 2d.

The integral equation (4.4) is highly nonlinear,
and it is very desirable to have a good initial input
for solving it by iteration. All the calculations
were initiated at rather small densities (-0.15
Atom/o' in liquid He) where it is simpler to solve
it with g =f' as the initial input. The density is
gradually increased in steps of -10%, and the con-
sistent g(r) of the previous density is scaled with
respect to r, and used as the initial input. The
standard averaging over input-output solutions is
used to improve the convergence.

In Fermi systems Eq. (2.13) is solved for I =0,
1, and 2 at seven values of k. The f(l, k) for high-
er values of l is approximated with the f (1,k) and

f(2, k). The over-all numerical accuracy of the
presented results is estimated to be -2% of (W+W~),
or -0.1'K in liquid helium.
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