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A generalized stretching model for the description of the ground band levels in even-even
nuclei is developed under the provision that the higher-order cranking corrections and Cori-
olis-antipairing effects, as well as the corrections due to quadrupole centrifugal stretching,
are all effectively included in the stretching term expressible in terms of a "generalized
stretching variable" t. A basic set of equations is derived by writing the nuclear moment of
inertia & as a function of t as 8pf(t) It is shown that practically all the successful two- and
three-parameter models advanced during the past few years can be obtained from this basic
set of equations through appropriate choices for f(t). For example, a linear cutoff in the
Taylor's expansion for f(t) gives the equations of the variable moment-of-inertia model. The
interrelationships, and the correspondence of respective parameters, in various models are
established. Further, it is shown that, for models in which f(t) is also an explicit function
of the nuclear spin I, the effective moment of inertia for excited states is renormalized from
the value &p f(t) by an additional spin-dependent term.

1. INTRODUCTION

During recent years the development of high-
precision detection equipment coupled with the
progress in heavy-ion reactions has resulted in
identification of high-angular-momentum states in
ground-band sequence of levels in practically all
even-even nuclei removed from the magic regions.
This, in turn, has led to a closer scrutiny of the
pronounced deviations from the I(I + 1) dependence
of the spacings between the energy levels of such
bands. Attempts aimed at a satisfactory descrip-
tion of these energy levels have been made over
the years in the form of several two-parameter' '
and lately three-parameter" '4 models based on
semiempirical, phenomenological, or semimicro-
scopic considerations. Judged by the "internal"
criterion of looking at the rms deviations of the
excitation energies calculated by employing the
model parameters evaluated through a least-
squares fit to all the known energy levels in com-
parison with the relative uncertainties of the ex-
perimental data, many of these models appear to
offer practically the same degree of acceptability.

In microscopic theories these deviations from
the rigid-rotator formula are attributed mainly to
inclusion of higher-order cranking effects, cen-
trifugal-stretching effects, and Coriolis-antipair-
ing (CAP) effects. "" The question has been
raised" as to "why the different parametrizations,
taking into account only one specific correction
term among others, are able to account for the
deviations from the I(I + 1) rule. " While trying to
examine this question, Ma and Rasmussen' ar-

rived at the conclusion that if the direct coupling
between the centrifugal-stretching effect and the
CAP effect is weak, then the fourth-order crank-
ing correction and the CAP effect can be treated
as modes of a generalized vibration in the same
way as the centrifugal stretching. Thus the prob-
lem reduces to a several-mode vibration-rotation
problem and the energy expression (we use the
unit @=1) can be written as

with the variational condition

=0, i=1, 2, 3, 4 at a fixed I,Bx.

where

X] — X~p X2~ X3p X4 —
q Vp q V~ ) 4)

represent various parameters on which the mo-
ment of inertia 8 depends; P represents quadru-
pole deformation of the nucleus, v~ and v„repre-
sent pairing parameters for protons and neutrons,
respectively, ~ is the angular velocity, and x;,
are the values of x; in the ground state (I=O) with

x4O =0. Constants C; are

C, —= (C„C„C„C4)=(CB,Cp, C„, C~2 j (4

and represent, respectively, spring constant,
pairing stiffness for protons and neutrons, re-
spectively, and adiabatic parameter appearing in
cranking-model formulation.

Ma and Rasmussen23 showed that Eqs. (1) and

(2) may be reduced by algebraic substitution to a

1294



UNIFIED DESCRIPTION OF PHENOMENOLOGICAL MODELS. . .

one-dimensional equation such that the total ener-
gy of the system (roiaiing nucLeus) can be ex
Pressed in a form resembling that of a centrifugal
sA etching model' ' 4 with the provision that the
correction term in the stretching model is looked
upon in a much broader sense than just being due
to quadrupole centrifugal stretching; it effectively
includes the CAP and the higher-order cranking
effects, as well, such that the problem is in effect
reduced to one mode only expressible in terms of
the "generalized stretching variable. "

In this paper we develop this generalized ap-
proach and discuss its applications. Section 2 in-
cludes an account of our mathematical formulation
leading to the basic set of energy equations of our
unified description. This is done by writing down
the dependence of the moment of inertia as 8
=8,f (t}, where 8, is the ground-state moment of
inertia, and the function f (t) is a function of the
"generalized stretching variable" t. In the basic
set of equations the functional dependence f(t) of
the moment of inertia is left undefined. In the fol-
lowing two sections it is shown how specific
choices for f(I) lead to the mathematical expres-
sions of practically every "successful" two- and
three-parameter model developed during the past
few years for description of the energy levels in
the ground-state bands of even-even nuclei. In
particular it is shown that a linear cutoff in the
Taylor' s expansion for f(t) gives the equations
for the "variable-moment-of-inertia" (VMI) mod-
el, as well as those in the two-parameter crank-
ing model of Harris (Sec. 3B1). A slight modifi-
cation of the above choice of f (I ) leads to the re-
sults of the centrifugal-stretching (CS) model
(Sec. 3B2}. In these cases the energy is given
through two parametric equations. Other models,
which explicitly retain I(I + 1) dependence in ana-
lytical expressions for energy, are derivable by
choosing f (I) tq be explicitly dependent on the
angular momentum I as well (Sec. 3 C). These
include, in addition to the earlier Bohr-Mottelson
two-parameter formula including I'(I + 1)' term,
the semiempirical approaches of Ejiri (Sec. 3 C2),
Sood (Sec. 3C3), Holmberg-Lipas (Sec. 3C4),
semimicroscopic result of Warke-Khadkikar (Sec.
3C 5), and nuclear-softness model of Gupta (Sec.
3C6). The concluding subsection (3D) in Sec. 3
describes certain other choices for f (t ) which re-
sult in only the limiting cases and hence not of
practical interest. Section 4 follows the same
procedure in arriving at the formulas of the var-
ious three- (and more-) parameter models through
suitable choices for f(t, I). These include the ex-
tension of the parametric equations of the stretch-
ing and cranking models (Sec. 4A), the I(I + 1)
power series expansion (Sec. 4B 1}, the "shape-

In view of the considerations outlined above the
energy of a rotational state in the generalized vi-
bration-rotation concept can be written as

I(I+1)Ei=
( )

+ —,
' C'(si-s, )', (5)

where 8(sz) is the moment of inertia depending on
a "generalized variable" sz (ground-state value
being s,). Constant C' depends on the C, s and has
the dimensions of energy. The equilibrium value
of the variable sz for each spin value I is deter-
mined by the minimization condition

QgI
(6}

The generalized stretching variable ti, which is
a measure of the deviation of generalized variable
s, from its ground-state value, is accordingly de-
fined as

I SI So .
In what follows we drop the spin subscript I. Sub-
stitution of (V) in (5) gives

I(I + 1)
(6)28(&)

and the application of minimization condition (6)
gives the parametric equations

Z-'"'" 1 I —"f28
2g et

I(I+1) s8
2g 8t

fluctuation" model of Satpathy and Satpathy, and
also the "anharmonic-vibration" model of Das,
Dreizler, and Klein (Sec. 4B 2) and "nuclear-
softness" model (Sec; 4B3). The last subsection
(4C) points out an extension of the generalized
model by inclusion of next-order correction term
in the potential energy. In Sec. 5 we bring out an
essentially unexplored, but significantly important,
feature of all such formulations based on the re-
lation 8 =8,f (&). Na'ively, one assumes 8 to denote
the moment of inertia. However, as mentioned
above, most of the models involve an explicit an-
gular momentum dependence of f as well; in all
such cases the effective moment of inertia also
includes, in addition to 8=8,f, a term arising
from the explicit dependence of f on I. This mod-
ified definition of the moment of inertia may lead
to a straightforward description of certain other-
wise puzzling features of rotational spectra; e.g.,
negative isomer shifts, back-bending behavior in
g-cv' plot, etc., which will be discussed in a sep-
arate communication.

2. MATHEMATICAL FORMULATION
AND BASIC SET OF EQUATIONS
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t
88/Bt 2C' ' (12)

One may explicitly write the dependence of mo-
ment of inertia on t as follows:

At this stage we shall introduce the semiclassi-
cal relation between moment of inertia 8, angular
momentum I, and angular velocity ~:

u&8= [I(I+1)]'"
which enables us to write Eq. (10) as follows:

somewhat more general dependence of f (t) on t:

f (t) =(1+b,t)", (20)

where n is some positive integer or fraction. A
positive n is required to ensure that the moment
of inertia increases with spin.

It may appear that we have a three-parameter
(8„C', and b, ) formulation for energy. However,
the structure of our basic equation (8) is such that
we can always scale the stretching variable t,
i.e., if we define a new stretching variable

(13) u=b, t, (21)

such that

(14)

gives Jp as the ground-state moment of inertia.
Equations (9), (10), and (12) can be rewritten in
terms of f (t) as follows:

Ct—-C.2 (22)

this will not change the structure of any of the
equations [(8), (15)-(17)]. The scale factor b,
can always be absorbed in the parameter C' by
redefining it as

I(I + 1)(2f + t &f /8 t )

28O 2f'
tf' I(I+1)

af/et 2C'8, '

(15)

(16) 8=8,f(u),
where

(23)

This is always permissible so long as the param-
eters are "free" which are determined by fitting
the experimental energy levels. Thus we write

@o(u

Bf/Bt 2C' ' (17) f (u) = (1+u)" .
With this choice energy equations are

(24)

Equations (15)-(17)constitute Qe basic set of
equations of our formulation. %e show in the fol-
lowing that practically all the successful phenom-
enological energy expressions can be obtained by
taking suitable choices of the function f(t).

3. TWO-PARAMETER APPROACHES

A. Possible Choice of f(t) and Its Special Cases

In the absence of any knowledge about the func-
tional dependence of moment of inertia on the
generalized stretching variable t, we make Tay-
lor's expansion for 8(t) and get

and

I(I+ 1) 1+u(1+ —,
' n)

28, (1+u}""

(
„~i nI (I + 1)

28,C

(25)

(26)

In principle, u may be eliminated leaving one
equation for energy as a function of spin I. The
solutions depend parametrically on the coefficients
8, and C. Combining equations (25)-(26) we get
an alternative expression for energy:

E = —[1+u(1+ —' n}] . (27)

=8 (1+b t+b t2+b t~+ ~ ~ } (18)

Relation (17) between the stretching variable and
frequency becomes

S4f 4)

(1+u)" ' 2C (28)

Thus

The relative increase of moment of inertia with
angular momentum I can be derived from Eqs.
(24) and (26):

f(t)=1+b,t+b~t'+b t'y ~ ~ (19)

Retaining the first two terms in the expansion (19)
we have the linear dependence for the moment of
inertia on t. However, we take the following

~d8 f ~sf su
dI ~u I

(2 I + l)n'
(1 y u)" "(1+2u+ nu)(28, C)

(29)
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and for the particular case I =0 we get

dI I =o 2@DC
(30)

where we have defined the "softness" parameter

28,C (31}

Equation (26), which determines stretching for
each spin state I for a given set of parameters
g, and C, can also be written in terms of the soft-
ness parameter as follows:

the P" dependence of the moment of inertia [this
is clearly related to our choice f (u}= (1+u)" ] pro
vided the other parameters are adjusted accord-
ingly.

Treating n as a free parameter to be determined
for each nucleus, we essentially have a three-pa-
rameter description. However, two of the success-
ful phenomenological models adopt constant values
of n equal to 1 and 2, respectively, and we discuss
them below.

1. n =1 Case and Vj/II and Harri Models

u(l + u)""= onI (I + 1) . (32) Defining relation for the moment of inertia for
n = 1 becomes

B. Range of Validity of the Model 8=8,(1+u) . (39)

Z, (o -0)= I (I+1)/28„ (33)

The two limits of this generalized stretching
model are obtained by considering the limiting
cases for the softness parameter o.

In the adiabatic limit, we have o = 0 and hence
u=0 through Eq. (32). In this limit, energy ex-
pression (25} assumes the simple form

The corresponding energy equations can be ob-
tained by putting n= 1 in Eqs. (25}-(2V}. We now
show that the equations thus obtained are VMI
model' equations written in simplified form and
are also equivalent to Harris equations. ' Equa-
tions (25) and (26) with n= 1 and substitution for u
from Eq. (39) become

giving the energy ratios for a rigid rotator

R, (o-o) = Z, /Z, ~. , = ', I(I+1). - (34)

I(I+1)8,'
2C (40)

(35)

Equation (25) then becomes

On the other hand, in the limit of very soft nuclei,
we have c-~, and from Eq. (32) we obtain

u —[no I(I +1)] '/"+'.

I(I+1) I(I+1)8.'
2g 4g'C

Similarly Eqs. (26) and (2'7) become after substitu-
tion for u from Eq. (28)

E, ((r -~) =
2

(1+ —,
' n),

I(I + 1) Sco gE= g 4P go+ 4C (42)

which leads to the following expression for the en-
ergy ratios RI in this limit:

R (o' -~) = [-' I(I + 1)]' " ' ' (36)

and

QP Jo[I(I+1)]'/'=(u 8 +
2C (43)

[&I(I+1)]'/""&R, -', I(I+1), (3'l)

Equations (34) and (36) define the range of validity
of Eqs. (25) and (26) in terms of the energy ratios
as follows:

Comparison of Eqs. (40) and (41) with Eqs. (8)
and (9) of Ref. 9 and of Eq. (42) and (43) with two-
parameter equations (24') and (25') of Ref. 3 shows
their exact equivalence with the following corre-
spondence of parameters:

which in the case I = 4 becomes

( LQ. )& /" + & & R & lk (38)
Our description: 80 C/80' o'

VMI model: 8, C v (8 —8,)/8,
One can see that the lower limit for R4 depends on
the value of n in Eq. (24}. At this stage we may
mention that Draper, McCauley, and Smith" em-
ployed a general relation 8 = P ", where n is a non-
integer parameter to be determined for each nu-
cleus. Their results show that the best n values
range from 0.'7 to 2.8. In all the cases, the nu-
merical least-squares fit to the experimental en-
ergy levels are good, showing that the energy
levels are not very sensitive to the value of n in

Harris model: 8, 1/(4C„) ~ ~ ~ 2' e'/8,

( ~)R/3 & R (44)

The limitation of the above formulas is easily
seen in our approach. The linear approximation
for f (u) cannot be a satisfactory choice for the

Equation (38), which defines the range of validity
of the energy expressions, gives for n= 1 the fol-
lowing interval for R,:
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2. n=2 Case and CS Model

This choice of n gives centrifugal stretching
(CS) model of Moszkowski and Sood. ' Defining
relation for the moment of inertia is'

tt =a,(1+u)'. (45)

Energy equations obtained by putting n =2 in Eqs.
(25)-(2V) are equivalent to those obtained in the
CS model with the following correspondence of
parameters:

cases wherein u is large (i.e., when the relative
change in the moment of inertia with respect to
that in the ground state is large). In such cases
one should consider next term in the Taylor's
expansion (18). Now this situation arises at high-
spin states for deformed nuclei; while for "soft"
nuclei, this is true even at low-spin values. This
explains why in the QMI model the fit is not as
good for the transitional and nearly spherical nu-
clei as that for the well-deformed nuclei; even
for the latter the deviations are large at high-spin
values.

VMI model has later been removed' by allowing
the ground-state moment of inertia to have nega-
tive values,

C. Other Acceptable Forms for f(t) and

Corresponding Energy Expressions

Function f (t) appearing in the defining relation
(13) for the moment of inertia is normally ex-
pected to satisfy the following two basic require-
ments:
(1) [f(t)l, .=1;
(2) it is an increasing function of t. (49)

Bohr-Mottelson Formula

Earlier we have discussed how in the absence of
any criterion for the choice of f (t) one may use
the Taylor's expansion and obtain good agreement
with experimental data by retaining the linear
term (and its slightly generalized form). Now we
investigate some other forms of f (t) which are
consistent with Eq. (49) and which give some of
the other successful phenomenological models.

Cs model: ti, D 1/(2D) v/(I —v)

Our description: 8o C 8o Consider the choice

f (t) =(1 -at)-', (5o)

%e next show' that the expressions given by the
CS model (our description: n=2) are equivalent
in the "restricted" sense to those given by Harris
model. Equations (26)-(28) with n= 2 can be put
in the form:

(46)

where a is some parameter which may, or may
not, be spin dependent. Equation (16) which de-
termines t for a given spin I becomes

t s(r+1)
2g, C' (51)

and the energy expression is no longer paramet-
ric. In fact, one gets from Eq. (15)

Comparison of these equations with Eqs. (24')-
(25') of generabzed Harris model' shows their
equivalence with the following correspondence:

r (I+I) a'I'(s+1)'
28, 88,'C

Equation (52) is the well-known equation

E =As (I + 1) —BI '( I+ 1)' (53)
Our."

rrxs: ~o

It is clear from the above what we mean by "re-
stricted equivalence. " In our expressions, terms
to all orders in ~' are included in a two-parame-
ter description, whereas the Harris formulation
needs an infinite parameter set for the purpose.

For n= 2 the range of validity (38) of the energy
equations is given by

(~)1/2 ( st ( (48)

The interval defined by Eq. (48) is thus larger than
that for the VMI model. This deficiency of the

of Bohr and Mottelson with the correspondence of
parameters

a
2S, ' 8g, 'C' ' (54)

This equation constitutes the earliest prescrip-
tion for explaining deviations from rigid-rotator
spectrum. The inadequacy of this equation for
high-spin states is easily seen from Eq. (51)
which brings in too rapid an increase in stretch-
ing parameter with spin resulting in an overcor-
rection. Only &cay to damp this rise is to assume
that "a" is spin dependent. Now several choices
are possible and a few of them leading to existing
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successful phenomenological models are dis-
cussed below.

2. Eji i I"oxmula

with the identification of parameters

1d-C, b-
p

(65)

The choice

2= 1
(I+1)' (55)

5. Wacke -EA,adkikax I'ormula

Next we take the following functional dependence

The choice

3. Sood Formula

gives the following expression for the energy

I (I+1) I'
38, 8g, 'C' '

which can be identified with Ejiri formula'

Z=ks(I +1)+qs

with the correspondence of parameters

1 1
k+g = 2'

(56)

(5V)

(58)

f(t) =(1-at) '.
From Eq. (16) we get after simplification

t= a I (I+ I)/C 'tj,
1+a'I (I + I)/C'8,

Energy expression (15) is given by

I(I+1)
(1 )

2$p

A I (I+ I)
1+{IS/A) S(s+1) '

(66)

(68)

8Ci2~ 2

a p

1+x(2c'a, }s(I+I)

leads to the following expression for energy

(59)
where

1 a
2gp ' 2C'g ~ (69)

a=As I+1 ( 1+N(B/A)J(I+1)) '

where

1 B
p

(60)

(61)

Equation (68) is the one derived by Warke and
Khadkikar22 from a microscopic approach.

6. Gupta's Nuclear-Softness Model

In the relation (66) for f (t), assuming a simple
spin dependence for a' of the type

Equation (60) is the semiempirical formula of
Sood' obtained by summing an infinite series in
I(I +1) and is one of the most successful de-
scriptions for nuclei in the deformed region with
the choice Pf =2.85 -0.05I.

4. Holrnbexg-Lipas Eonnula

results in the following energy expression:

AI (I+1)
1+v~I

(VO)

(Vl)

(63)

which may be compared with the energy equation
of Holmbejg and Lipas'

E =d([1+bI(I+1)]"'-I), (64)

Next we take the following spin dependence for
a

8g, 'C" I (I+1) I (I+1) "'
sm(s+ I)' 2g.c' g,c'

(62)

It may be noted that, for I=O, a' has the limiting
value equal to unity. Energy expression (52} with
the choice (62) for a' becomes

where

1 1
2 gp gpC

(V2)

f(t)=(1 —«') '. (V3)

Substituting Eq. (V3) in Eq. (15) results in the en-
ergy expression for the limiting rigid-rotator

Equation (Vl) is the two-parameter nuclear-soft-
ness model NS(2) of Gupta. "

D. Nonacceptable Choices for f(t)

Although several choices of f (t) can be made
satisfying the requirements (49), not all of them
lead to physical" spectra of practical interest.
This can be seen by taking the following functional
form:
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case only:

I (I+1)
2g (V4)

This strange result can be understood starting
from the basic equation (16). With the choice (73)
and the application of minimization condition we
get the following expression for the determination
of t

Energy expression (15) becomes

(77)

where t is to be determined from Eq. (16), which
becomes

which, for a constant C', can be satisfied only if
the stretching variable is zero for all spins, i.e. ,
there is no variation in the moment of inertia with
spin and hence the occurrence of the rigid-rotator
spectrum.

Another such "unphysical" spectrum results
from the choice

(V6)

tainly has not been achieved so far -there is an
inherent shortcoming with all the two-parameter
approaches. For all of these models, energy
ratios Ez/E, depend on one parameter only; the
other parameter simply fixes the energy scale.
Thus for energy ratios we have a one-parameter
description in each case and a plot of the energy
ratios E~/E, as functions of E,/E, gives smooth
curves in each of these descriptio9s. However,
the corresponding experimental points do not fall
on a single smooth curve. Thus one cannot simul-
taneously obtain exact numerical agreement for
all nuclei (having same E,/E, but not the same
E,/E„E,/E„. . . , etc. ) using any two-parameter
description. One has to introduce further param-
eters (extra freedom) to achieve this. We now

discuss the various three-parameter approaches
in the following.

A, Extension of VMI and CS Equations

We have seen earlier that a linear cutoff in the
Taylor's expansion for f(t) gives the equations
for VMI model which constitutes one of the more
successful descriptions available so far. It is
therefore natural to expect that the inclusion of
the. next-order term in the expansion may improve
the quality of fits. Thus we take

f (t) =1+b,t+b, t'. (81)

0
(78)

Equations (7V) and (78) can be combined to give
the following equation for energy:

Since b, and b, are spin independent, we, as be-
fore, scale the stretching variable t [Eq. (21)] and
take the function f (u) [Eq. (23)] to be of the form

f (u) =1+u+bu'. (82)

where we have put

r=0, (VS}
Thus b = b, /b, ', and instead of C' we shall have C
in our equations. Now with the choice (82) energy
expression (15) becomes

(80) E= I(I+1) 2+3u+4bum "
28, 2(l+u+bu')', ' (83)

Equation (VS) also corresponds to a limiting spec-
trum only and cannot describe energies of a wide
range of nuclei, because it implies that the ratio
(Ez E,)/(Ez, E,-) is the sam-e for all nuclei
under consideration which certainly is not true.

4. THREE-PARAMETER APPROACHES

In Sec. 3 we have seen how several forms for
f (t) in the defining relation (13) for the moment
of inertia give various two-parameter descriptions
for the energies of ground-state band levels in
even-even nuclei. Even if we had a two-parame-
ter description which gave agreement to the same
accuracy for nuclei in various regions (e.g. well-
deformed, transitional, nearly spherical, etc.)
and for very high spin states as well -which cer-

where u is to be determined from the equation

M(1+u + bu')' I (I+1)
1 + 2bu 280C

(84)

I ~ 0 2CQO
(86)

Using Eqs. (82)-(83) we get the relative increase
of moment of inertia with angular momentum

d8 Bf sQtt-j y
-1

dr eu ar

1 (1+2I)(1+2bu)'
28,C (1+u+bu')'(1+3u+Sbu'+8b'u'}

(85)

which for the particular case I=0 becomes



UNIFIED DESCRIPTION OF PHENOMENOLOGICAL MODELS. . .

where 0 is the softness parameter defined earlier
through Eq. (31).

Thus energy is given by the parametric equa-
tions (83)-(84) in terms of three parameters go,
C, and b or equivalently@„o, and b. For a
given nucleus (characterized by the set Q„o, and

b) one can calculate stretching variable u for each
spin state I making use of Eq. (84) and the excita-
tion energies are then determined through Eq. (83}.
The ground-state moment-of -inertia parameter
gp serves as a scale factor, but now the energy
ratios depend on the remaining two parameters b
and o. Thus nuclei having same Z, /E, but differ-
ent ratios Ez/E, (I&4) will be characterized by
different sets of parameters b and cr.

sidering terms to all orders in ~2, our formula-
tion gives a three-parameter expression, where-
as Harris approach presents an infinite parame-
ter set up with the inherent necessity of an arbi-
trary cutoff.

It is obvious that b =0 gives results of VMI mod-
el and its equivalent two-parameter Harris model.
Furthermore, Eq. (82) with the choice b =0.25 be-
comes

f (u) = (1+-',u)',

which, except for the factor of —,', is the defining
relation (45) for f (u) in the CS model. This scale
factor of 2 therefore will renormalime the parame-
ter C and o(which depends on 1/C) by a factor of
4. Thus the extended equation with the choice

2. Kaxxi s Formula Including
Hi ghee-Order Corrections

With the choice (82) for f (u) we get from Eq.
(17) the following relation between the generalized
stretching u and angular velocity ~:

g pcs & pcs b 0

will reproduce the QS model results.

B. Other Three-Parameter Formulas

(92)

&o+
1+2bu 2C ' (8V)

which can be rewritten in the form

~2

2(C-b8, aP)
' (88)

(89)

Energy equations (83) and (84) using. Eq. (88) be-
come after simplification

In Sec. 3 we have seen that taking suitable spin
dependence for the parameter a appearing in the
function f (t) leads to various successful two-pa-
rameter phenomenological models. We now show
that tQis approach can be extended in the sense
that the spin dependence for a containing one (or
more) additional parameter results in three (or
many) parameters expressions for energy.

Bohr-Mottelson Series Formula

Consider the functional dependence (50) for f (t}:

[i(t+))]"'=S,~ )+g ~4 ~'"( ') ())0)
n=&

f(t)=(1-at) '.
Taking

a'=1+bI(I+1)

(50)

For b =0 one gets only two terms [Eqs. (42) and

(43)] instead of the infinite series [Eqs. (89) and

(90)] . These expressions may now be compared
with those obtained by Harris [ Eqs. (24') and (25')
of Ref. (3)] . lt is seen that the equations in the
two descriptions are identical with the following
correspondence of the respective parameters:

g 2 b 3
Extended model: gp

4C 4b C 4b C

Harris model: Qp H D jp e ~

Thus our expressions include terms up to all
powers in &2, but ratio of various successive
higher-order terms (&u'", n ~ 3) is simply related
to the ratio of first -(n = 1) and second -(n =2)
order contribution. Considering only the first
three terms in the infinite series the two models
yield identical description. However, when con-

and its substitution in Eq. (52) gives the following
equation for energy:

8 =A I(I + 1) —BI'( I+1)'+C I '(I+1)',
where we have put

1 1 -b
2g 8g 2C Sg 2C

(94)

(95)

It is obvious that one can get the many-term
power series in I(I+1) for energy by taking an-
other power series in I (I+1) for a'. As shown by
Sood' such a power series in E may give improved
agreement for "nearly rigid" nuclei for which the
series may be convergent, but as one goes to
"softer" nuclei the corrections overshoot the mark
quite rapidly and the calculated results become
even worse than those for the rigid rotator. Semi-
empirical formula (60) of Sood' adopted a summa-
tion procedure of the alternating power series
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[extension of Eq. (94)] under the plausible as-
sumption that successive coefficients of higher-
order terms bear a constant ratio. It is not diffi-
cult to see that the functional form (59) for a' is
obtained from the obvious extension of Eq. (93) on
exactly the same consideration.

Z. Shape -Fluctuation Model and
Anhannonic- Vibration Model

We next consider the following spin dependence
for a'.

spin dependence (70) for a' as follows:

1+s,I
(I+1) '

we get the following energy expression:

AI (I+1)
1+ O, I+@,J'

where

1 1 2

2g & 1 g gl & 2 g gl

(103)

(104)

(105)

5+I
(I+1)'

in the functional dependence (50) for f (t ). Substi-
tuting Eq. (96) in Eq. (52) gives the following en-
ergy expression:

Equation (104) is the three-parameter nuclear-
softness model NS(3) of Gupta. " It is easily seen
that the many-parameter nuclear-softness model
can be obtained by obvious generalization of the
spin dependence (103) of a'.

I(I+1) b, 1
2g 8g 2+I 8g 2+I (97)

C. Extension by the Inclusion of Higher-Order

Perturbation Term

which can be compared with the energy equation

E =BoI (I+ 1) + 4' E ' I + O' B'I'(I + 1) (98)

— 1 1
0 2g 8C/ig 2

in the shape-fluctuation (SF) model of Satpathy
and Satpathy" with the correspondence of parame-
ters: I (I+ 1)

2a(t )

with the minimization condition

(106)

Another possible three-parameter extension of
our "generalized-stretching-model" equations can
be made by adding the anharmonic term to the po-
tential energy. Thus we write the energy as

C'E'= 8, , (b -1),1

0
(99)

BE—=0
Bt (107)

4, 1 pI'— 1
The parameter C' must be positive as a condition
for stability. As before we explicitly write the
dependence of the moment of inertia as

Furthermore, Eq. (97) is also equivalent to the
energy equation

S(t) =II,f(t}. (13)

E = d, I+d, I(I —2)+d~I(I -2)(I —4) (100)
Equation (106) combined with Eqs. (107) and (13)
gives a pair of coupled equations:

in the anharmonic-vibration (AV) model of Das,
Dreizler, and Klein" with the following corre-
spondence of parameters:

d, = —8, , (2b+4),— 3 1

0 0

and

I(I+1) 2f +t sf/at Dt'
2g, 2f' l2 '

f f'[1+(D/2C')t] I(I+1)
sf /s t 2C '

So

(108)

(109)

1 1
d, = -8, , (b+6),

1
2gp

It is easy to verify that

(101)
In principle, t may be eliminated leaving one

equation for E depending parametrically on the
coefficients g„C', and D.

5. EFFECTIVE MOMENT OF INERTIA FROM
THE GENERALIZED STRETCHING MODEL

d, -2d, +8d, = 1
2g (102)

3. Nuclear-Softness Model

Consider the choice (66) for f (t). Extending. the

We have seen in earlier sections that taking
suitable choices for the function f (t) in the defin-
ing relation (13) for the moment of inertia one
gets practically equations of all the successful
phenomenological models of even-even nuclei
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8 =8,f(t, I) . (110)

from the basic set of equations (15)-(IV) of the
generalized stretching model. It has also been
seen that many of the models involve an explicit
angular momentum (spin) dependence of f. Thus,
in general, we can write Eq. (13) as

and 8 =8,f. It is to be noted that in comparing the
inertial Parameters of different models one should
comjare the resPective effective moment of in
ertia and not simply 80f.

We illustrate the use of Eq. (115) for one partic-
ular case, say, Ejiri model. From Eqs. (50), (51),
and (55) we get

We now show that in such a formulation, the ef-
fective moment of inertia g'" includes, in addition
to 8,f, a term arising from the explicit functional
dependence of f on spin. From the canonical re-
lation for an axially symmetric rotator

1 4 1(l+1)(1—t f1 t())
28'" sl (I +1} 2@0

28, 28,(2I+1) ' (116)

dE
d[I(I+I)]„"''

and Eq. (11)which gives the relation between mo-
ment of inertia 8, angular velocity cu, and angular
momentum I, we obtain the following expressions:

Substitution for t from Eqs. (51) and (55) and mak-
ing use of the correspondence (58} of parameters
we get

1 2lq
28'" (2I+1) '

1 dE
2 dI (I+1) (112)

such that

=k+q ~

290
(118)

tt4 (l1)t(4 1 } .dE (113)

Thus effective moment of inertia and angular ve-
locity are both related to the spin derivative of the
energy. Let us use Eq. (112) to write down the
expressions for the effective moment of inertia in
the generalized stretching model. Differentiating
Eqs. (15) and (16) with respect to I (I+1) and com-
bining the resulting equations we get

dE 1 8 I (I+1)
dI(I+1) 28'" si (I+ I) 280f (t, I )

(115)

which clearly brings out the distinction between
effective (renormalized) moment of inertia 8'"

dZ 1 1 I(I+1) & 1
dl(I+2) 24'" 21),f 2lt, 41(I+1) f(tl)),

(114)

In second term on the right in Eq. (114) differenti-
ation is done for the explicit spin dependence of f
(which in our formulation appears through the spin
dependence of the parameter a). Equation (114)
shows that the relation 8 =8,f (t ) gives the com-
plete spin dependence for the moment of inertia
for only those models for which the function f (t)
does not contain explicit spin dependence, e.g. ,
the VMI and the CS models, etc. For other models
(having explicit spin dependence in f ) an extra
term contributes to the moment of inertia, thus
modifying it. It may be noted that the ground-
state moment of inertia 9, is not effected by this
"renormalization. " Equation (114) can also be
written as

On the other hand, using Eq. (110) we obtain

2Iq—= (h+q)—28 (I+1) '

Thus we find that, while the ground-state moment
of inertia g, remains the sa.me whether we use
Eq. (110) or Eq. (115), the moment of inertia for
higher-spin states is not the same from the two
equations. The effective moment-of -inertia ex-
pression includes the additional term specified in
Eq. (114).

6. CONCLUSIONS

In this paper we have presented a unified formu-
lation which reduces to any particular two-, three-
(or more) parameter model with an appropriate
choice of the functional dependence f (t, l) of the
nuclear moment of inertia g. The interrelation-
ships, as well as the correspondence of model
parameters in various successful models, as
summarized in Table I, is clea.rly brought out in
such a. presentation. Naturally, we have not dis-
cussed any quantitative data or numerical results
which already have been included in respective
studies; nor have we attempted to sit in judgement
trying to determine the relative merits or short-
coming of the particular models. In fact our study
brings out that, notwithstanding the claims and
counterclaims of the proponents of the various
phenomenological models, there is, as yet, very
little to choose between them on physical grounds.
The respective models may, with due caution and
with certain established credibility, be used to
guide the experimentalists in their search for as
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TABLE I. Summary of the inter-relationships of various phenomenological models as brought out by the generalized
stretching formulation and the correspondence of the respective model parameters. We have put 1/(880 C ) = g.

Functional
dependence Explicit spin dependence in f Correspondence of model parameters

2

~0-~o'
0

Harris 0g 2b 2

0 =~0, Ca

(1+bgt)2
C'&0

80 =8'0, D =
bi'

Bohr and
Mottelson

(1-at) ~

(1-at) ~
1

a (I +1)2

1
A, =—.

0

1-——g; q=g
2e0

Sood (1-at) ' g 2CI2
a2 0

1+%(2N0 C') I (I +1)
1A=; B =C'

280
'

Holmberg
and Llpas

(1-at) 88 'C" I(I +1)
I2(I + 1)2 2&0C'

I(I+1) '

g CI

1d=C', b=
0

Povrer
series in
I (I +1)

Shape
fluctuation

(1-at) a2 = 1+bI (I + 1) +. . .

b+I
(I +1)2

B=g; C=-gb ~

B'4' =(b —1)g
+I@1 g

Anharmonic
vibration

(1-at) b+I
0+1)2 d

&
=——(2 b + 4) g=3

1
d2 = ——(b+6) g

280

Warke and
Khadkikar

(1-at) 2 a 1 1 1
280' 2f 2C'

Nuclear
softness
NS(2)

(1—at) 2 1a2= I +1
1 1

280 ' ~ 80C'

Nuclear
softness
NS(3)

Rigid
rotator

(1-at)

(1-at2) ~

1+syI
I+1

1A=-
2g I

1A=—
28'0

S2
g Cr& 2 g0 0

C'B=—
2
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yet unidentified levels in nuclei in various regions.
In addition, and perhaps more significantly, the
models may, as suggested above, result in spec-
ifying the functional dependence of the nuclear
moments of inertia on angular momentum and on
the stretching variable for guidance of the pure
theorists in their attempt to develop a microscopic
theory of nuclear rotation. Qf course one has to
always remember that this generalized stretching
is an "effective" concept whose description will
not adhere to the hydrodynamical or irrotational

flow motions, since it effectively includes also the
higher-order cranking, as well as the Coriolis
antipairing effects.
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