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The normalization constants for two-nucleon-transfer reactions are determined by the di-
rect and parametrization methods. The results are compared between themselves and with
experiment. Both methods give rise to calculated values which fall short by at least a factor
of 3.

1. INTRODUCTION

For the direct reaction A+a-b+B (b =a+x),
there appears in the zero-range distorted-wave
Born-approximation (DWBA) expression for the
amplitude, ' a universal normalization constant
which depends only on the structure of the incident
and outgoing projectiles and on the nucleon-nucleon
interaction. Although this constant is available
theoretically from a microscopic formulation of
the transfer process, general reluctance to in-
clude the strength and exact form of the interac-
tion potential as well as the detailed structure of
the projectiles in the direct-reaction analysis of
data is the reason why absolute magnitudes of the
predicted cross sections are undefined. ' A di-
rect quantitative comparison between theoretical
predictions and experimental data is, in principle,
possible, but in practice, this has seldom been
done. The effective normalization factor, wherever
required, as in the development of two-particle
sum rules, ' is extracted empirically.

Recently, normalization constants for some
single-nucleon-transfer reactions (SNTR) have
been computed accurately, via a number of meth-
ods' ' and were found to agree quite closely with
the empirically determined values. The same has
not been done for the two-nucleon-transfer reac-
tions (TNTR). Because of the wealth of spectro-
scopic information available from a quantitative
analysis of TNTR cross sections and because the
single-step direct-reaction theory has to be tested
as comprehensively as possible (since its ultimate
value depends on how well it accounts for experi-
mental observation of reaction phenomena), ab-
solute normalization of cross sections should
be attempted and expected. This point is under-
scored by the sometimes large differences in
magnitude obtained with various optical-model
parameters and nuclear wave functions in the
analysis of experimental data. The inherent pur-
pose of this work therefore, is to spotlight atten-

TABLE I. Values of the spectroscopic factors of the
1s-shell projectiles.

Reaction

(p, d), (d, p)
(n, d), (d, n)

(d, t), (t, d)
(d, 3He), (3He, d)

(t, n), (m, t)
(3He, e), (G. , 3He)

(p. t). (t p)
(n,3He), (3He, n)

(p, He), ( He, p)
(n, t), (t, n)

(d, n), {0., d)

3
2

tion on a detailed consideration of absolute cross
sections of TNTR analyzed through DWBA.

In SNTR, two methods are frequently employed
to evaluate the normalization constant theoretically,
viz. (i) the empirical parametrization method of
Thompson and Hering' and (ii) the direct method
of Rook' and Lim. ' By (i), estimates of the nor-
malization factor are obtained from a Hulthen pa-
rametrization of the abx vertex function. The long-
and short-range parameters, commonly labeled
o. and P, respectively, are derived by fitting the
threshold and asymptotic behavior of the light
clusters. In Ref. 7, Thompson and Hering postu-
lated that for SNTR involving Is shell projectiles,
there exists a universal shape parameter P =1.36
fm ', linked to some fundamental nucleon-nucleon
parameter. Because this assumption gave striking-
ly good agreement with experiment, Hering et al,.'
ventured to extend this parametrization method to
TNTR. Their calculations with P =1.36 fm ' lead
to normalization factors more than an order of
magnitude too small when directly confronted with
experiment. In method (ii) the wave functions of
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the projectiles and the internucleon force must be
known so a direct evaluation of the constant can
be made. It is therefore obvious that the direct
method is tied in with a microscopic formulation
of the transfer reaction, wherein effects of the
finite range of the nucleon-nucleon interaction and
of the light-particle wave functions are explicitly
included in the analysis. By appealing to the direct
method, we find agreement with experimental TNTR
constants to be substantially improved but still a
factor of 4 too low, e.g. in the (p, t) reactions.

2. DVfBA, THE DIRECT METHOD AND

HULTHEN PARAMETRIZATION

The theory of TNTR is well covered in other
papers. " " In this section, we develop enough
of the microscopic analysis of TNTR to show the
relationship between the direct method and the
parametrization method.

In DWBA and following the formalism of Towner
and Hardy, " the differential cross section for the
pickup reaction A(a, b)B can be written as

l, f2L

( =F2'@a",2 „2 '
1 Q Q bSrS~S'"(~S&S~&l]~A&~) 2 2 S Blla,'a, (1)

j1 j2

In this formula, p. , k, s, and cr are, respectively, the reduced mass, the momentum, the spin, and the
z projection of spin of the projectile. b~~ arises from the spin and isospin overlaps between projectiles
and the transferred pair of nucleons (Table I contains the values of bsr2 for a number of TNTR and their
counterparts in SNTR) and S»'" is the spectroscopic amplitude which is a measure of the overlap of wave
functions of the target nucleus and final nucleus with two nucleons. The Clebsch-Gordan coefficient couples
the isospin of the residual nucleus T~ to that of the transferred pair T to form the target isospin T„. The

quantity B~, describes the kinematical aspects of the reaction and is defined by

BFF (8) =+G(l,j„l,j„v„cr„IJM)P.. .(cose)I'"2 'a a'&'()

where the sum runs over all incoming and outgoing partial waves l,j„ l,j, and

AQ (XQ 0 ~a

G(l, j, , I,j2, o, , o» IJM) involves various coupling coefficients and I'&' ~2' 'a&a'& s r, the radial integral over
distorted waves and form factor, is

I )1125laFalalaS1' D($ )TlIll2L
A

The factor D(S, T) allows for different strengths in singlet and triplet states in the interaction potential
and is given by

D(0, 1) = 1-0.5(b+ h),

D(1, 0) = -1 + 1.5 (b+ Il),

(3)

where 5 and A. are the Bartlett and Heisenberg exchange components in the nuclear force. The matrix ele-
ment

~A X. b rb 5 rl& r2& ra ~al 2 A 1& r2 X aA aA r12 aA b (4)

With

1

y,'&'"(r„r,) =-2'g g (i,~,i,~, ~LJ].) g (-) P y",1'1'1(r,)ya )»2(r, ) . (5)
X1X2 m=p

P» is the operator which makes m interchanges between transferred nucleons 1 and 2. (n„ l„j,) and

(n„ l2, j,) characterize the orbits of the two transferred nucleons when they were bound in the target nu-

cleus. If (n„ l„j,) =—(n„ l„j,), then the constant g=1, otherwise it is v 2. Removing the P» operator by
commuting it with the interaction terms, then letting it operate on p, and finally summing over m, we have

X'x'*'=]( If X', '"(F) ),"(F„F F)t[F.,+F.,]a r„, () X ) X]XX)FF,' ' (F),ap,
' '* ) '((FX). F

X1X2

We focus attention on I~&'2 since it contains the theoretical normalization factor we desire.
The coordinates we have used are r„r„r„r„and R„which are, respectively, the coordinates of the



1290 T. K. LIM

incident particle, the two picked-up nucleons, the center of mass of the emitted projectile, and the center
of mass of the target nucleus A, all referred to the center of mass of the residual nucleus B as origin.
p f is the internal wave function of tt and y~2

~ and y~'„~ are the distorted waves in the exit and entrance
channels.

If we specialize to the (p, t) reaction for clarity, assume Gaussian forms for the light particle wave func-
tion and nuclear force, and define the new variables

R = —,'(r, + r,), (7)
p=rp- R

y

yp=y (tr tr2, rp}=&te "t ~» +"1p "2p

y10(3q 2~ 2) y10(4q 2p2)

g 3/4
y10(eg) e -0x /2

and

so

2 2

Vpj = V0e "»

y + y =y e @&2 +"» ~ ~(e +I' '12+ e+F' '12).Pl P2 0

(10)

Two approximations are usually made in regard to the form of the interaction terms in Eq. (11}. In the
Glendenning or "zero-interaction range" approximation the r» dependence is dropped and Eq. (11) is
written as

Vp~+ Vp2 =2V0e

while in the Chant-Mangelson approximation

V +V =2Ve-~("'"~")
P1 P2 0 0

The bound-state wave functions @~1'1'1(r,) and p"„2'2'2(r2) are usually expanded as a series of eigenfunctions
of an harmonic-oscillator potential and then transformed into relative and center-of-mass coordinates.
Thus, in the Chant-Mangelson approximation

fttt2'= g C„,C„,(t I. tt. I,i~}g(nt, ~l.'. I.~n, t„n,g:I)
tlat yf2

nlrb,

(-)~ M 3 2 2 zo 4 2~2 2V -P(p2+~z2 /4)

4 x'(2 ~12'}eA"I »(rt+ ppn ~p'(~ rt+ ~p)d rt@d r».
where v is the oscillator constant and

(16)

H =rg+ pp rp~=yrg+ pp

B 2 A+I

The integration over r» can then be carried out and noting that l must be zero for the integral to be non-
zero, we have

I~&&'2m= y,
* r, E„r,+ pp

' 4g, 'p' 2V0e yp+ yr, + p,p dr, dp,

where

E,(r) =QA~yA" (2vr')
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with

A~=QC„,C„,Q„g(no, NL: I, ~n, l„~fp: L) .

(no, NL:L~n, l„n f, :L) is the generalized Talmi coefficient. The overlap factor 0„is given by

[2(n —1)!]'
( d)3/Q(l )»2»-1( l) ~

(20)

2v

6g, +0+v

It should be realized that the Glendenning formulation results in a factor Q„which differs from Q„ in not
having the k term. Finally, using the zero-range approximation, we find

IA""(z r ) =D.(P, &) X', '*(,)&.(,)X,"(r r, ) dr,

The terms in p in E, and y!~"! are dropped before the integration over p. The constant D,(P, t) is given by

4~q 2 —3/4

Do(P t)=2l'o
(2 p '!,p)p

jt

and is the normalization factor by the direct method.
In the corresponding parametrization method, "

(22)

rt Q, r, + pp — —& e gp pr, + pp A'rglp (23),

and

~P'v'~(* ~ ~ =»..~du, » fx.
' '"(~ )».(~,)x,"(H,) &~„ (24)

where

Sg 3 1/2

Dp ~„(P, t) =- 2wo. 1+—
FBpf P

(25)

and

mS„
D P 3N2 2q 2+y2 (28)

The parameter n is obtained from the separation
energy of the clusters a and x while P is deter-
mined from the requirement that the low-momem-
tum components of the a-x interaction are properly
fitted.

An oft-used approximation to simulate finite-
range effects is the LEA method of Buttle and
Goldfarb. " The analysis is, in first order, ex-
actly as in the zero-range approximation with a
modified normalization factor, '

DLEA(P& t) It Do(P& f) (26}

with

where S~, is the separation energy of p from t.
For (d, n) reactions, the expression for the nu-

clear matrix I~A&'&~ differs from that for (P, t) only
by the introduction of a second multiplicative fac-
tor, 0„, defined by

0 = y"(47) 'r, '}e "p4 'y~(r )dr (29)

The deuteron wave function is P' while p"(4q '~„')
is the ~34 factor in the Q. -particle wave function,
which is assumed to be of Gaussian form. The
normalization and R factors for such TNTR are,
for the direct method:

8TH — 1-—, 8~g '
Dp(d, o-') = 4Vp, 4 p "~„,

'gfx +~ )
(30)
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mS~~
D P 2+2 4 2+y2 (31)

and TNTR. These were extracted from

The form of these factors in the parametrization
method are unchanged except for the replacement
of the appropriate (d, o.) quantities.

3. RESULTS AND DISCUSSION

In Ref. V, a common short-range parameter p
=1.36 fm ' was derived from SNTR and this value
was utilized in the computation of the normaliza-
tion constants labeled TH displayed on Table II.

In the direct method, the results quoted are ob-
tained using the following' "":

dg empt dg (s5)

where, in (dv/dQ) o~a„, D,' is taken to be 10 MeV'
fm3. A direct comparison with our theoretical
values cannot be made as yet since these analyses
were conducted using the Glendenning formulation,
i.e., Q„and Q„were used rather than Q„and A~.
As the overlap factors Q„and Q„are dependent
upon n, we have defined the factors

(36)
n

Vo =-62.2 MeV, k' =0.379 fm

Q„=N~(e "& +0.3Ve

(32)

(33)
[for (p, t)]

Q, 0.6V [for (d, n)]' (3V)

with

and

0.28 fm

q, '=0.0635 fm ',
g,'=0.039 fm ',

g~' =0.140 fm
2

DI 2 cKPt
lÃPt,'(K IK )2

'

We have arbitrarily assumed

(33)

We have inserted in a separate column on Table
GI the values of D pt where

TABLE II. SNTR and TNTR normalization factors
and the finite-range constant.

Reaction Method R2 D 2
0

2
D~A

(d, t) TH 1.26 2.59
Direct 1.40 2.88
Peripheral 5.0

3.3
4.0

v=0.20 fm '.
Our results indicate that the D,' from the two

methods differ by a factor of 6 in TNTR although
agreeing in SNTR. The peripheral model of Borbe-
ly, Baryshnickov, and Blokhintsev" "allows the
extraction of D,'. Their value for D,'(d, o.) agrees
with that from the direct method.

In LEA, the agreement between methods (i} and
(ii) is improved for (d, n) reactions. However,
the discrepancy remains for (p, t) TNTR. Besides,
the improvement in (d, n) is achieved with an un-
comfortably large R»' = 15.2.

Table III lists the experimental values of the
normalization constants for representative SNTR

4K,Q, +K,Q, 0.5 [for (p, t)]
4Q, +Q, O.V [for (d, n)]

(s9)

TABLE III. Experimental values of the normalization
constants for SNTR and TNTR.

Reaction 2
expt

I 2
Dexpt

(d, t), (t, d), ( He, d),
(d, 3He) a

(3He, e), (n, 3He), (t, n),
(& t) a'b

Zr(p, t) ~

Ca, Sn, Pb(p, t) d

Ca, Sn, Pb(t, p) e

Bi{p, 3He) ~

P(3He, p) &

Cl(3He, p) &

Bi(d, 0;) ~

Pb(d ~) h

22
39
22,5
12,9
16
20

120
102

28

88
156
90
52
64
80

480
408

as a suitable average value of K„. The weights
used in its definition are based on a "guesstimate"
of the relative contributions of 0, and 0, terms in

(p t) TH
Direct

1.39 1.51
1.31 8.5

TH 15,2 7.6
Direct 2.36 50.5
Peripheral

(3He, n) TH 2.6 7.3
Direct 2.9 12.8
Peripheral 26

19
37

2.1
11.3
115
120

a Reference 6.
b Reference 7.
c Reference
d Reference 4.
E. R. Flynn et a/. , Nucl. Phys. A195, 97 (1972).
J. J. Kolata, L. S. August, and P. Shapiro, Phys.

Rev. C 3, 296 (1971).
0 H. Nann, B. Hubert, and R. Bass, Nucl. Phys. A176,

553 {1971).
"M. B. Lewis and W. W. Daehnick, Phys. Rev. C 1,

1577 (1970),
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the angular distributions.
On comparing our constants with D'

&,
', it is

clear that D,'(IP, f) and D«~'(p, f) are an order of
magnitude too small and that D, T H'(p, f) and

D&E„T„'(p, f) are even worse off. The compari-
son with IP(d, ot) values is better but our computed
direct-method numbers are still short by a factor
of 4.

Within the limitations of the approximations
made in the direct method, the first place to look
for a possible resolution of the disagreement is
in the retention of the dot term in the interaction.
If this is carried out specifically for the (P, t) re-
actions, the direct method gives"

Do
0 {I y4/f2(y2+ 2~ 2))3/2

with

f =k'+6q, a+ v.

The Q, t) normalization constant is now off by a
factor of 3-4. It is interesting to note" that an
elaborate exact calculation of the angular distri-
bution for (p, t) reactions is also deficient by a
factor of 3. For (d, n) a corresponding improve-

ment would lead to better agreement between
theory and experiment.

To explain these developments, it should be
pointed out that the normalization factor depends
upon many computational parameters used in the
direct-reaction analysis. These parameters, such
as are in the optical potentials, the form factors,
the nuclear wave functions, and the transfer inter-
action, can quite easily affect our conclusions. On
the other hand, if the theoretical factor and the
DWBA analysis are correct, the discrepancy sug-
gests that the parameters now being used must be
changed.

Finally, it appears clear that the parametrization
method is unreliable for TNTR with the present
prescription of selecting the values of n and P.
Kok and Rinat' have criticized the uniform para-
metrization of the vertex functions, maintaining
that their values of P from scattering data and
dispersion relations deviate significantly from the
constant of Thompson and Bering. We have varied
the value of P, without improving matters. It
seems proper to ask whether the restriction of
relating n to the separation energy should not be
dropped. Variation in both o. and P may provide
the stability and agreement we require.
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