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We have developed a formulation of the theory of multichannel nuclear reactions which per-
mits practical and realistic numerical calculations in which a number of different reaction
channels are coupled, assuming a zero-range approximation for the effective coupling and

neglecting effects arising from the non-orthogonality of different reaction channels. A com-
puter program, JUPITER-4, has been written embodying this coupled-reaction-channel for-
mulation, and as a specific application we present analyses of the (h, o, )-(o. ,t) or pickup-
stripping contributions to (h, t) reactions, for the specific eases of 4 Ca(h t) Sc and 4 Ar-
(h, t)40K. We pay particular attention to the interplay and interferenee of direct and pickup-
stripping amplitudes, and try to identify general tendencies. Finally, we give simple sum
rules which aid in predicting the nature of the interference for specific spina of intermediate
and final nuclear states.

I. INTRODUCTION

The reactions (h, t) and (p, n) at reasonable en-
ergies have customarily been interpreted as oc-
curring through a. direct, one-step charge-ex-
change process. '~': Evidence for this mechanism
is the strong population of isobaric analog reso-
nances by such reactions. However, much re-
cent experimental evidence suggests that a simple
direct-reaction process is not necessarily the
dominant reaction mechanism, particularly for
(h, t) and that the usual distorted-wave Horn ap-
proximation (DWBA) is inadequate. ' " (The sym-
bol h. stands for the helion, the nucleus of the
mass-3 helium atom. )

For example, the angular distributions for (h, t)

population of the J' =0' antianalog state in a
variety of nuclei do not have an l=0 pattern, but

can be fitted in shape by an l= i DWBA calcula-
tion. ' A persistent shift, to backward angles, of
the experimental angular distributions relative
to DWBA calculations has been observed generally
for residual T, states of any J. ' A serious
anomaly in magnitude is observed, such that (h, t)

cross sections for 4' and 6' T, states have mag-
nitudes 1 or 2 orders greater than expected on
the basis of DWBA calculations, using microscopic
form factors. ' These discrepancies are not re-
moved by more sophisticated DNBA approaches
including a tensor force, exchange terms, etc.'
Further, a strong energy dependence is noted in
the microscopic or macroscopic form factor when

angular distributions are fitted at several ener-
gies." Finally, it is noted that arbitrarily intro-
ducing a complex part to the microscopic form
factor often improves the calculated DNBA angu-
lar distribution in shape, relative to the data. "

All such observations point to a multistep mech-

anism for (h, f)." " Toyama, "and the present
authors" have investigated the effect of the pickup-
stripping mechanism for (h, t), namely, (h, o.),
(n, f) processes. Toyama calculated cross sec-
tions for "Ca(h, f)"Sc leading to the (f», 'f», ),
0' to 6' states in "Sc, assuming a pure (h, n),
(o., f) mechanism. He was able to account for the
relative magnitudes of all four states, as well as
to obtain excellent shape fits to the available data
at two incident energies. He also found a negligible
contribution from (A, d), (d, f). We have previously
shown that to explain the angular shift in the ' Ar-
(k, f)' K 0'-antianalog-state angular distribution,
and the relative magnitudes of 0'-analog-state
and 0'-antianalog-state cross sections, one has
to assume both direct and pickup-stripping mech-
anisms, with careful treatment of the interference
between them. "

The (h, t) cross sections are generally l or 2

orders of magnitude smaller than typical inelastic
scattering cross sections for population of collec-
tive states, and typical single-nucleon-transfer-
reaction cross sections. It is then not surprising
if two-step processes can play an important role
in (h, f). Important contributions from inelastic
processes in entrance and exit channels have pre-
viously been found for (p, f) reactions, which have

cross sections comparable in magnitude to (h, f)

reactions. " The possibility of successive single-
nucleon-transfer mechanisms for two-nucleon-
transfer reactions has not to date been studied,
though (p, 8) and (d, u) reactions could have im-
portant contributions from such mechanisms.

It is of great interest to investigate in a systema-
tic way the contributions of successive specific
nuclear reactions to a given reaction. %e have

developed a program JUPITER 4 which solves a
set of coupled radial Schrodinger equations for
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different reaction channels and system mass
partitions. " " The purpose of the present work
is to present the multichannel formulation on
which the program is based, and to present a
specific application to the analysis of "Ar(h, t)' K
and "Ca(h, t)4'Sc reaction data.

In Sec. II we give the coupled-reaction-channels
(CRC) formalism, which is reduced to easily cal-
culable form" by neglecting non-orthogonality of
different channels and making a zero-range ap-
proximation for the effective channel-coupling po-
tentials, as in DWBA. ' In Sec. III we summarize
the effective channel-coupling potentials, or form
factors, needed for one-particle transfer, in-
elastic scattering, and charge exchange. Careful
attention is paid to relative phases, without de-
tailed knowledge of which a correct treatment of
competing mechanisms is impossible.

In Sec. IV, we study the "Ca(lt, t)"Sc reaction, "
extending work of Toyama to include both direct
and two-step mechanisms. Since the antianalog
0' state is not observed in the "Ca data, we also
have analyzed soAr(it, tt)"K data. ' Finally, general
and specific conclusions which can be drawn from
the analyses are summarized in Sec. V.

II; FORMULATION

A. Coupled-Reaction-Channels Formalism

The sort of reaction process considered in this
paper may be symbolized by a+A- b+B- c+ C. . .
where each step of the process, for instance
a+A- b+ B, can be any nuclear reaction, such
as one- or many-nucleon transfer, inelastic scat-
tering, etc. To follow the process from initial
state, through intermediate states, to a given
final state we introduce the label n =-fl, j, s„aA)
denoting the set of the usual channel quantum num-
bers I,j,s„as well as the particular mass parti-
tion, a+A, involved. No confusion will arise if
a label such as A is also used to specify the set
of internal quantum numbers of nucleus A.

The total state function for the system may be
written as

where y~ (r„) is the partial distorted-wave func-
tion and 4„"is the channel state function conven-
tionally defined as

H=Hn+ &n+ ~e

=H„+T„+U„+ (V„—U„) . (6)

Here, T is the kinetic energy of the relative
motion between a and A, and V is the interac-
tion potential between them. In the second line
in Eq. (6), the distorting one-body optical poten-
tial, U„has also been introduced. Inserting Eqs.
(6) and (I) into (6), we get

(a + r + U„-E)Qr, ty~t, (r, )4',"
J8

=-(V„-U„)gr, '&', (r,)e,'".
Js

The equation for y„ is then obtained by project-
ing out a given component 4„by multiplying it on
the left-hand side of the above equation and per-
forming an integration over all the internal vari-
ables in the channel e. A complication can arise
if effects due to the non-orthogonality of the chan-
nel wave functions 4 are important —one will not
then be able to project out a single term in the
sum over Z, P. In the present work, however,
we neglect the non-orthogonality of the basis
states and simply set

is the spin state function of the projectile
a. Also, p, and P„(or p~ ) in Eq. (2) are, re-
spectively, the spatial and isospin parts of the
internal state function of the projectile a and the
internal state function of the nucleus A.

If one now introduces the product of the internal
state functions y, „, Q„and ttt„, namely

(4a)

Then g „satisfies

&nba= ~m4m t

where H„may be called the intrinsic Hamiltonian
of the channel n.

The equation for the radia1. distorted-wave func-
tion, y~ (r„), is derived from the Schrodinger
equation for the total wave function 0 ';

HC '~ =E4~'~, (6

where H is the total Hamiltonian of the system,
which may be rewritten

Here p, „, is the spin-angle function,

&tsssjsm s=Z(Is~t.s &sttts lls t's&t Ftsmts Xssm

As usual, Y, , is a spherical harmonic and

(4„(H„+Tm+ U„-E(4 '~)

= (T + U„-E„)r„'y ~ (r„),
(6)

with E =E- e . Using this approximation, one
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gets

(f' +U —E )r 'X (r )

=-Z&c: I&.—U. Icl&r -'x;(.,).
Jg

This is the CBC equation for the distorted waves,
yJ, and has exactly the same form as obtained
for the coupled-channel equations for inelastic
scattering. "

A more rigorous derivation of the coupled-
channel equation, taking into account non-orthog-
onality, has been given by Omura et al. ,"and also
by Takeuchi-Goldfarb. " A numerical estimate of
the effects of non-orthogonality in pertinent cases
has also been given in Ref. 17, where it is indi-
cated that the effects are rather small.

To put E(I. (9) into a more convenient form for
numerical calculations, we introduce the usual
zero-range approximation, ' with V& = V& —Ue, in
the spirit of direct-reaction theory. In the zero-

range approximation, one can write'

«~.x.~,e;., I I .I e.x., e,„.„&

= r ( 'A„sj'„s(s„)Y,",(j„)5(ss—s )(ZMj (Z mMg(-)' (sm, s,—,m (sm)( (, msj(m),
ls j

(10)

where J is the Jacobian of the transformation of the final channel coordinates to those in the initial chan-
nel, and l,, s, and j are the transferred orbital, spin, and total angular momenta, respectively. Further
Aj,s~ and EB", are, resP. ectively, the sPectroscoyic amPlitude and the form factor. Inserting (10) into (9),
after a little algebra, one can show that

Ds(ps)X(j(ps) = ri+jjy(py)X)(py)

where

d '
L2(L2+ 1)

Ds(r) -=2—
2

—U ( B) rE+.B

The coordinate ps is a convenient choice because of the zero-range assumption. It is given by PB -= (A/B)r,
p~

-=(A/C)r, etc. Note that here A is used to denote specifically the mass of the target nucleus in the in-
cident channel. Also,

&s &(r) = g(B/C) A„,A(L2s2j2JB, l,s,jQc,' lsj J)F„j(r),
lsj

where
Bc g ABc J (2g~ I)1/2

and

A(L2s2j2ZB, L,s,j,Zc jlsj J) —= (4v)'-' ( )'2+ c- i e"2

lc

x l, l j,j,sj (l OL20ILO&W(j&j2~c JB jj ~)
~c Jc
s(s L2

s j)
A more explicit form for the spectroscopic amplitude, A.„,, and the form factor, E„., will be given in the

next section for the one-nucleon-transfer, inelastic, and charge-exchange reactions.

B. Transition Amplitude and Cross Section

The transition amplitude for the reaction can be given in terms of the C matrix Ca,"which is deter-
mined from the asymptotic form of the partial wave Xs.'

=
X - l,e"j E, LI. ..L), j i)„+l,[k, /k, ][v, /v, ]'"e'"2C() „(6, + lE, ),
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where ya is denoted by g &
in order to express explicitly the boundary condition of an incoming wave in

the channel a. I', and G, are the regular and irregular Coulomb functions, k is the channel wave number,
and o, is the Coulomb phase shift.

With the C matrix, the transition amplitude can be given as"

Tosmoss, aAmos& =Xi CoBmoss, aAm+s&Pt ~mt I

cos8) I
L

where

C"~' „=P (I/u, )(2I+ I)s"oi( )&~+~~~~ »'[(I- lm, l) i/(I+ lm, l) i]'"
Jjh

x(jom, ZsMslZM)(lm, somoljom, ) Q (1,0s,m, lj,m, )(j,m,J„Af„lJM)C~q „.
&a&a

The cross section is then written as

—=[(2Z„+1)(2s,+ I)] ' Q l Too~, s, .~,s„l'.
m, AEAmb NB

C. First- and Second-Order Solutions

The lowest-order approximate solution of the
CRC equations is obtained if they are solved by
iteration and the iteration is stopped after the
first. For a one-step direct reaction a+A- b+ B,
this first-order solution gives a transition ampli-
tude equivalent to that of the usual DWBA. For a
two-step process, a+A-c+C-b+B, the first™
order solution gives a transition amplitude cor-
responding to the second DWBA (second-order
DWBA), and so on.

An alternate way to generate such a first-order
solution is to solve the coupled equations exactly,
but to include only couplings such as '0&~ and '0&»
ignoring the "backward" transitions induced by

U„z and U&s [see Eq. (11)].
Both methods of obtaining the first-order solu-

tion have been used in our calculations. We have
also, of course, solved the coupled equations ex-
actly to all orders for certain cases. We have
constructed a CRC program using a compact ver-
sion of Tamura's JUPITER-1" as a starting point.
our CRC program, JUPITER-4, contains, however,
the additional iterative method as an option, un-
like JUPITEH, -l.

In the sections to follow we apply the CRC for-
malism to the (h, t) reaction. The intermediate
channels considered in the (h, I) are those reached
by (h, o.) and depopulated by (n, t) processes. As
we will demonstrate in Sec. 5, the second DWBA
is found to give results in good agreement with
exact CRC calculations, and many of the calcula-
tions reported here were made in second DWBA
to save computation time.

III. FORM FACTORS AND SPECTROSCOPIC
AMPLITUDES

1

)
o for@

—,for p

ld) =e,...lo),

(20a)

(20b)

(20c)

= i
I o') =

~2 f&io&xo] oooo I 0) (20d)

It will already have been noticed from Eg. (10)
that the zero-range channel-coupling potential is
identical to the effective transition potential of
the familiar DWBA amplitude, so that the form
factor and spectroscopic amplitude have their
usual meaning. Methods of computing such form
factors and spectroscopic amplitudes have been
discussed by many authors, for one-nucleon or
many-nucleon stripping and pickup reactions, in-
elastic scattering, and charge-exchange reac-
tions. ' ' The only new feature is that now, in
CRC, one must pay careful attention to phases
and signs of these quantities, which have common-
ly been ignored. In CRC, interference effects are
tremendously important.

For purposes of the numerical calculations pre-
sented here and elsewhere, we have paid particu-
lar attention to the spin-isospin-state-function
overlap integrals which occur in Eq. (10) and we
show an explicit calculation here. To have a fixed
phase convention, we have consistently used for
all reactions the following spin-isospin state
functions:
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TABLE I Do(Qb) factor for various one-particle-
transfer processes. In columns 2 and 3, the values of
Do and the spectroscopic overlap integral are also shown.

where D,(bc) is the product of the overlap integral
between the spin-isospin wave functions of the
projectiles, and the zero-range constant D„ i.e.,

Do Do(ab)
(a, (I) (10 Mevfm~ ) s (s ff (~V)J/s&) (10 Mevfm~ )

csvII (Ic}-=D (s,
*' s,) .
S T

(24)

(d~P)
{p, d)
(d, n)
(n, d)
(t d)
(d, t)
(A, d)
(d, h)
(n, h)
(h, n)
(n, t)
(t, n)

-1,257

—1.257

-1,836

—1.728

-4.796

-4.796

(3) i/2

(3) i/2

(3) i/2

(f)1/2
(3)1/2

(3)1/2

(3)1/2

(3)1/2

-1
1
1
1

-1.540
-1.540
+1.540
-1.540
+2.249
-2.249
+2.117
+2y1 17
+4.769
-4.769
-4.769
-4.769

(25)

Using the spin-isospin wave function given in Eq.
(20), we have calculated D,(bc) parameters and
the results are summarized in Table I, together
with the D, values assumed. The spectroscopic
amplitude A.„& can then be obtained from

CA".-=a '~" Clsj
ls) r

where c~~„,„and c„, ,„are the single-particle
creation and annihilation operators of the single-
particle state (ls jv =-,') and

where
( )j+m+ v'+ v

Sigma t7 c~sg-m~-v ~ (2(0

( q1/2+fat+1/2+ V
mp ~ I ~fft ~p

Here, c~„ is the creation operator of a particle
with spin and isospin projection m and v. Thus,
Ec(s. (20a)-(20d) give the spin and isospin wave
function of the nucleon (N), deuteron (d), triton
and helion (T), and the n particle (n).

(22)

A. One-Particle Stripping
and Pickup Reactions

Qv, „=~2
Q(-s'm, —,

' m, ( sm)(-,' v, —,
'

v, ~
r v) cv „cv „,,

(2l)

for constructing the form factor for inelastic and
charge-exchange reactions. Since the calculation

I I I I I I I I

IO
0 Ca(h, t) Sc O' IAS

B. Inelastic and Charge-Exchange Reaction

We assume the effective two-body force given
schematically by

V= V(B, r){a»(5 o)(v v)+ a»(o o)+ am(v ~ v)+ a«j

The form factor I' appropriate to the one-nucleon
pickup and stripping reactions can be given in
terms of a single-particle bound-state wave func-
tion Q„.. We write this as'

y„(r) (for stripping)
F~„(r)= 0 'D(&(bc).

for pickup,

C)
E

el

-I
l0

(23)

TABLE II. Values of the spectroscopic overlap in-
tegrals for inelastic and charge-exchange processes.

-2
IO

Reaetio~

(P n)

(d, d')

(n, n')

v 's '&s, v, ff(g+ f-Js, v-, )

0~0 [$(s +3)(2 —s)]v2

46 5 —(-)

I I I I I I I I I I I I

lO 20 50 40 50 60
ec m (deg)

FIG. 1. A comparison of the results of a test calcula-
tion solving the coupled-reaction-channels (CHC) equa-
tions exactly (dashed line), with results of a calculation
using the same parameters and the second Born approxi-
mation, as discussed in Sec. II (solid line).
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of the form factor has already been shown in detail in Ref. 3, we only summarize here the necessary re-
lations for numerical calculations. The produce of A~~~ and Fs(~&(x) can be written as

A,",,F,",,(r)=2VY g a„(-) "&-,'v, —,'v,
I rv&( )"-'(7" 's '&s,7;IIGit, IIs,r, &

T V yl/g

&&(-)"' "&~.v. ~~- v~l»& Z g i (~)e)'.;i '&~sll~g(i'm) Il~o& s

2112
(26)

and

g,"(R)=&q, I v, (ft, r) I qg,

(', (ss, r) = J o(rs, r)p, (coos )S(coos ),
(31)

e(!g =&idyll(i''I'(o. ), II i2&. (32

The reduced matrix element &s,7,IISt, II s,r, & with
respect to the projectiles were calculated, again
using the wave functions given by Eq. (20). The
results are contained in Table II.

IV. RESULTS OF THE (h, t) ANALYSES

The CRC formulation of Sec. II. embodied in the
program JUPITKH, -4, has been used to study the
two-step process via n-particie channels [i.e.,
the pickup-stripping (h, o(), (n, t) mechanism] as
it contributes to the "Ar(h, f)"K and "Ca(h, f)"Sc
reactions. Angular-distribution data are available
at 35-MeV incident helion energy for the 0' analog
state (IAS) (4.38 MeV) and 0' antianalog state (AAS)
(1.65 MeV) in "K,' and at 23-MeV incident helion
energy for the 0' analog state (6.67 MeV), and the
2' (1.14-MeV), 4' (0.25-MeV), and 6" (ground)
states in "Sc.'

The "Ar(h, t)"K analysis is discussed in an
earlier note" and relevant features will only be
summarized here. A "Ca(h, t)"Sc analysis using
the second Born approximation and assuming the
mechanism is entirely (h, n ), (n, f} has also been
made previously by Toyama. "

We first want to comment upon the accuracy of
the second Born approximation, which was used
by Toyama' and also is used in the majority of

where

, „=Z&r~,2WI~&&rv, rv, l»&c' „c-„-,
(29}

y (ix2s) -=Z&ii~i22~2 IJ~&cg

(30)

In Eq. (29) we only include the spin-isospin part of
the wave function, while in Eq. (30) also the radial
part is included. Finally, g(,2(R) and q",,&

are the
radial and spin-angle parts of the single-particle
matrix element, defined, respectively, by

the calculations described here. We have carried
out a fully coupled reaction channel calculation
for the 4'Ca(A, f)"Sc reaction to the 0' analog state
The result is compared with that obtained by
using the second Born approximation in Fig. 1.
It is seen that the calculated cross section given
by the second Born approximation is not much
different from that given by the exact calculation.
This implies that the second Born approximation
is indeed a very good approximation for calcula-
tion of the two-step processes considered in the
present work.

The most important aspect of the problem when
two or more reaction mechanisms contribute is
the interference between them. No investigation,
excepting ours in Ref. 14, has so far been made
of this effect. Thus the main interest of the pres-
ent calculation is to study this interference.

A. Ar(h, t) K

Turning to the specific case of '0Ar(h, f)"K (0',
IAS, 4.38 MeV and O', AAS, 1.65 MeV), we con-
sider four intermediate states in "Ar. These are
the f„,ground state and three d„, two-particle-
three-hole states. The first of these d» states
is taken as the d, &, state at 1.52 MeV, the second
is taken to have an excitation of 3.9 MeV, roughly
the centroid of the higher d, ~, hole strength in
"Ar,"and the third, with T=-,', is assumed to lie
at around 9.0 MeV in excitation, in the continuum.
Spectroscopic amplitudes for the (h, o.) transitions
to, and (o.„ t) transitions from these states are
given in Ref. 14. The uppermost —,

"state cannot
contribute by stripping to the AAS, and the small
stripping contribution of the 3.9-MeV —,

"state to
the IAS was neglected. The separation-energy
procedure was used to compute the form factors
appropriate to these transitions, and also those
considered in "Ca(h, t)"Sc.

Results of the calculations, for "Ar(h, t)"K
using h and $ optical parameters from the survey
by Bechetti and Greenless" and the higher-energy
a potential adopted by Toyama, "are presented in
Fig. 2. The data are those of Hinrichs et al. , at
35 MeV. In Fig. 2(a) are shown the conventional
DWBA calculations (as dashed lines) and the pure
pickup-stripping calculations, in second DWBA
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(as solid lines). The microscopic form factor for
the conventional DWBA calculations used a Gauss-
ian two-body interaction with T'=3 MeV and P
= 3.0 fm, and included configuration mixing. '
The D, value for (h, c.) and (o., t) is based upon
that suggested by Stock et al. ,~' namely Do=-4.8
x10' MeVfm'~. It will be noted that the pickup-
stripping calculation is the only one agreeing with
the shape of the O' AAS angular distribution.

On the other hand, the relative magnitudes of
conventional DWBA and second DWBA are quite
different and the AAS/IAS ratios for the pickup-

stripping cross sections are much too small. One

would expect, a priori, that both the simple direct
and the pickup-stripping mechanisms (among
others) contribute to the observed angular distri-
butions. Figure 2(b) shows the result of a summa-
tion of the amplitudes for both processes. In these
calculations, D, was reduced to -3.9 @10' MeVfm'~
for (h, n} and (o., t), while V, for the microscopic
(h, f) form factors, was reduced to 1.2 MeV. The
resulting cross sections have magnitude agreeing
well with the experimental cross sections.

B. Ca(h, t) Sc

For the two-step process in the "Ca(h, t}"Sc
reaction we take into account only the ground state

of 4'Ca as the single intermediate state in the n

channel. It is assumed that the final and the inter-

mediate states are pure (f,» ', f,~) and f„, 'con-
figurations, respectively. The target state is also
assumed tobe aclosed-shell core /he. spectroscop-
ic amplitude, (Zs If (g] fJ J'„},for the (h, o.) and' (n, f)
processes are then easily calculated and the re-
sults are summarized in Table III. The form fac-
tor for the direct process was calculated by using
the procedure summarized in Sec. III. The spec-
troscopic overlap integrals required, (Zs )(t&18„),
were evaluated from the wave functions of the pure

f», particle-hole configurations and are given for
4aCa(h, f}"Scalso in Table III.

The sets of optical-potential parameters used
in the present "Ca and "Sc calculations are listed
in Table IV. The parameters for h and t channels
are taken from the work of Bechetti and Greenlees, '
but the strengths of the imaginary parts of the po-
tentials are reduced for "Ca and "sc so that the
calculated cross sections, iricluding only the two-
step processes, agree with the observed magnitude
of the experimental (h, t) cross sections. The pa-
rameters used for the n-particle channels are
taken from Stock et al.'

The calculated cross sections for the 0', 2',
4', and 6' states are shown in Figs. 3 and 4. For
each case, three theoretical curves are drawn,
which are obtained, respectively, by taking into
account: (i) the two-step process only (full line),
(ii) the direct process only (dot-dashed line),
(iii) and both processes simultaneously (dotted
line). The parameters used in calculation of the
two-step process are given in Table IV and the
strength of the two-body interaction for the direct
reaction is taken as 7= 5.8 MeV (with P =2.3 fm).
These parameters are chosen so that either the
two-step process or the direct reaction alone can
explain the magnitude of the experimental 0' cross
section. Therefore, the direct-plus-two-step cal-
culations also shown in Figs. 3 and 4 are not ex-
pected to fit the experimental data, but are in-

10 20 30 40 50 60 10 20 30 40 5060
c.m.

(deg�)
FIG. 2. The Ar(k, t) K (0+, 4.38-MeV IAS and 0+,

1.65-MeV AAS) cross sections at 35 MeV. The experi-
mental data are taken from Ref. 6. The calculated
curves in the upper half of the figure are the results
of direct {dashed line) and pickup-stripping (full line)
calculations, as discussed in the text. The lower half
of the figure showers the result (solid line) of taking both
processes into account simultaneously. See also Ref. 14.

Process Spectroscopic amplitude

4'ca o+-4'Ca f
"ca $--48sc z+

48Ca 0+ Sc J+

2J+1)in

TABLE III. Values of the spectroscopic amplitudes
for the direct and the pickup-stripping processes in Ca-
(b, t) Sc reaction.
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FIG. 3 Cross sections for Ca(k, t)4 Sc reactions at
23 MeV, populating the 0+ (6.67-MeV, IAS) and 2+ (1.14-
MeV) levels. Experimental data are taken from ref. 20.
Theoretical predictions are shown fox' the direct process
(dashed cuxve), the pure pickup-stripping process (dot-
dashed cux've), and for both processes simultaneously
(full cuxve). The parameters are those given in Tables
I-IV, with a direct interaction strength of V=5.8 MeV,

I I 1 I I I I I I I

l0 20 50 40 50 60
ec.~.(deg~

FIG. 4. The interpretation is as in Fig, 3, except that
the experimental cross sections and calculations for the
4+ (0.25-MeV) and 6+ (ground) states are shown.
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tended to illustrate the trends of the interference
between the direct and two-step process for this
case. As is seen, the interference is destructive
for all four final states.

A pure (h, n), (n, t) process has previously been
assumed in second Born-approximation calcula-
tions by Toyama" for the same reaction as we
consider here. Our calculation confirms the re-
sult of Toyama, that the two-step process can
explain both the relative magnitude and shape of
the cross sections for 0', 2', 4+, 6' states. How-
ever, the parameters used by Toyama are not
strictly compatible with existing data at E„=15
MeV for the "Ca(h, n)"Ca reaction. " In Fig. 5
we have plotted the absolute "Ca(h, n)"Ca cross
section for the ground state, calculated with the
optical-model parameters used by Toyama, "in
comparison with experiment. It is seen that the
theoretical result is larger than the experimental
data by about a factor of 1.7. Therefore if one
readjusts, for instance, the D, parameter so that
the (h, n) cross section is reproduced, the theoret-
ical (h, t) cross sections are reduced by a factor
1.7' =2.9, which destroys the agreement in mag-
nitude obtained by Toyama. " One can also re-
produce the (h, n) data by increasing the strength
of the imaginary parts of the optical potentials. In
this case, one obtains roughly the same amount
of reduction of the (h, t) reaction cross sections.

One might therefore consider that a better ex-

planation of all the experimental data would be
obtained if both the direct and indirect processes
are taken into account simultaneously as in the
"Ar(h, t)"K case. This is indeed possible, at
least for the 0+ cross section. If one assumes a
direct process about 2.5 times as strong as before,
the experimental cross section can actually be
reproduced as is indicated in Fig. 6. Assuming
the stronger direct process is equivalent to as-
suming V=14.5 MeV for the effective force. To
assume such a large V, however, leads to a 2+

cross section about 1.5 times larger than experi-
ment, as seen in Fig. 7. The shape of the 2' curve
is, however, considerably improved, illustrating
the importance of the interference between direct
and two-step processes.

The interference effects for the 4' and 6' states,
on the other hand, are less important as a con-
sequence of the fact that the direct transition
amplitudes for these states are much smaller
than those of the two-step processes as seen in
Fig. 4. Even if the direct amplitude is doubled,
the dominant process is still the two-step process.
The effect of interference, however, is not com-
pletely negligible, particularly for the 4' cross
sections. %hen 7 is increased to 14.5 the cross
section changes by a factor of 1.5, and therefore
the direct process is important for the purpose

I I I I I I I I I

IO
0

Ca (ha) Ca 7~2

Eh = l5 IVleV

eSCa(h, t)4SCa 0+ IAS

Eh = 25MeV

V = I4.5 MeV

-I
IO

E

b~a 10

E

biC

-2
IO

"2
IO

I I I I I I I I I I I I

IO 20 50 40 50 60
ec.m. (deg)

g s ~ I I I I I I I I I

IQ 20 50 40 50 60
ecIn (deg)

FIG. 5. Comparison of the experimental cross section
for Ca(h, ~) 7Ca (ground state), at 15 MeV, with the
predictions of DWBA using the optical parameters of
Toyama, Ref. 13. Data are from Ref. 25.

FIG. 6. Cross sections for the 4 Ca(h, t)4 Sc reaction
populating the 0+ (6.67-MeV, IAS) state, the data being
from Ref. 20 and the calculation a direct plus pickup-
stripping CRC calculation, with the direct interaction
strength V=14.5 MeV.
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of quantitative discussions.
It should be remarked, also, that in the pres-

ent "Ca(h, t) 'Sc calculations we as well as
Toyama" neglected configuration mixing in the
nuclear states involved in the reaction. In this
respect it is interesting to consider the effect of
configuration mixing in the «OAr(Pi, t)"K calcula-
tions, due to the fact that the analog and antiana-
log states are a linear combination of two com-
ponents. This in turn leads to the necessity to
consider three intermediate states. In Fig. 8
we show, . for example, the two-step cross section
for the O' AAS if the "Ar ground state only is in-
cluded as the intermediate state. It is seen that
the calculated cross section is completely changed
both in shape and magnitude. We thus conclude
that the interference of intermediate paths is very
important in the two-step processes.

An analogous effect can be expected in the "Ca-
(&, t)«'Sc reaction. Consider, for example, the 2'
state. It is well known that in many nuclei configu-
ration mixing of particle-hole states with T = 0 leads
to low-lying 2' states, which carry most of the tran-
sition strength, and which are strongly excited in
inelastic scattering. Similarly in the (h, t) reaction
the final states are particle-hole states with T =1,
but because the T =1 force is repulsive, the collec-
tive 2', T=1 state is expected to have higher en-
ergy. Therefore, the transition strength to low-
lying 2', T=1 states should be strongly reduced,
as actually observed for the T =1 dipole transi-

tions." This reduction is brought about by de-
structive interference due to configuration mixing.
A possibility thus exists that we can further im-
prove the fit to the «'Ca(h, t)«'Sc, 2' cross sections
by considering configuration mixing effects, and
such a calculation is in progress.

V. CONCLUDING REMARKS

Using the CRC formalism of Sec. II and the form-
factor conventions of Sec. III we presented in Sec. .

IV a study of the two-step (h, n), (n, f) contribu-
tion to ()t, t), and particularly the interference of
this reaction mode with the familiar direct (h, t)
process In b. oth reactions studied, «OAr(h, f)«K
and «8Ca(h, t)"Sc, the interference is destructive,
except if the final state is the O' AAS.

Two ingredients are crucial in determining the
nature of the interference: the distorted wave
functions for the intermediate n-particle channels;
and, the relative phase of the dynamic spectros-
copic amplitude of the direct process, (sall&q Il~~)~
with respect to that of the product of the ampli-
tudes for the pickup-stripping process, (Js ii cJ, iiZc)
(J.ii c„,iles.

The first of these ingredients arise in a very

IO I I I I
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I I I I I I I I I I I I I

CG(h t) Sc 2

E& =25MeV
V = i4.5 MeV

---- V=ii.e MeV Ch

E

b g
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IO

E

bC "I
IO

-4
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Ar (h, t) K AAS

Eh =35 MeV

P-S, with f qqq

intermediate state only
-- Ful l P-8

IO
1 I I I I I

I I I I I I I I I I I I s

IO 20 50 40 . 50 60
ec.m.

FIG. 7. As in Fig. 6, but for the cross section to the
2+ (1.14-MeV) state in Sc.

I 0 20 50 4P 50
c,m (deg)

FIG. S. Cross section for the 4 Ar(h, t)4 K reaction to
the 0+ (1.65-MeV, AAS) state, as in Fig. 2, The dashed
curve is the pickup-stripping calculation, also shown in
Fig. 2, with three intermediate 39Ar states. The full
curve is a similar calculation in which the only inter-
mediate state included is the ground state of Ar.
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TABLE IV. Optical and binding potential parameters
used in the present analysis of Ca(h, t)4 Sc. The
strengths of the binding potentials were adjusted to re-
produce the experimental separation energies.

Projectile V 'c

h

t

n

p

156.2 26.8 0.72 0.88 1.2
161.5 21.8 0.72 0.84 1.2
183,7 26.0 0.56 0.56 1.4

0.65 1.25
0.65 1.25

1.4 1.3
1.4 1.3
1.48 1.4

1.25

complicated way. But the distorted waves are
relatively insensitive to target mass and channel
energy, so that the character of the interference
is a slow function of mass and energy. Thus we
feel that the similarity to, or difference of, our
present results and similar analyses applied to
other nuclei can generally be understood by a
study of the spectroscopic amplitudes involved.

Without specifying the amplitudes explicitly it
is possible to ascertain the nature of the inter-
ference with the help of a sum ru1e,

&xAs lie,'(j„j„)ll o&

=-jp '5&p,.„Z&fASllc,, ll&c=j.&«cllcj-„llo&.
~c

(34)

Very often, we have the situation where only one
intermediate state is allowed for the two-step
process [as in the case of 4'Ca(h, t}4'Sc considered

x9 llc,', ll& &« Ilc;„II& =o&,

(33)

where the left-hand side is the spectroscopic
amplitude for the direct charge-exchange process,
j„-j~, multiplied by a factor Js '. The right-
hand side of the equation is essentially the sum
of the products of the spectroscopic amplitudes
of the successive pickup (of a neutron in a j„orbit)
and stripping (of a proton to the j~ orbit} processes.
Note that the relation (33) was derived assuming
explicitly that the spin of the target nucleus is
zero (J'„=0).

The usefulness of the relation (33) may be seen
by applying it to the (h, t) reaction populating the
IAS. Since J~=o for this case, the relation re-
duces to

here]. Then, the relation is further simplified, to

&lASllca,'(j,j„)llo&=-j 5... &lAsllc,', ll jg&j„llc; lfo&.

(35)

If we define

fl =«, II, 'll& &/[« llc,', flic&«clio;, f1& &],

(35)

it is seen from Eg. (35) that R is negative, irre-
spective of the orbit j„(=j~)and the nucleus in-
volved. Thus we will observe a very similar in-
terference between the direct and the two-step
processes, for all the possible j„-j~, transitions
contributing to the excitation of the IAS in any
nucleus. This conclusion does not change, even
if more than one intermediate state is contributing,
since the relation holds for the net contribution.
Summarizing the preceding arguments, one may
conclude that for the IAS, we will observe de-
structive interference over a wide range of nuclei
and intermediate a-particle energies. In a simi-
lar way, one may use the sum rule (33) to dis-
cuss the character of the interference in other
cases.

In interpreting some of the experimental data,
as for instance the OAr(h, t) K reaction leading
to the AAS and the 4'Ca(h, t)48Sc, 2' cross section,
it is important to include realistically the con-
figuration mixing in the nuclear states involved
in the reaction. It is generally much easier to
predict the effects of configuration mixing for
the direct process, than for the two-step process.
In this connection, it is interesting to note that
the sum rule also gives us some information on
this point. For instance, consider the excitation
of the 2' state in the 4'Ca(h, t)48Sc reaction, and
suppose that the f„, 'p», state is mixed into the
final 2' state consisting mainly of the f», 'f„,
configuration. The 2' state can then be excited
either though the f,&, -f„,transition or though
the f„,-p», transition. From Eq. (33), it is
easy to see that the values of R for both cases
are the same. This implies that the nature of the
interference between the direct and the two-step
process is the same in both cases: If one ob-
serves destructive interference between them
for the f„,-f„,transition, one also observes
destructive interference for the f», -p, ~ tran-
sition.

It would be desirable to conclude with some
very general statements concerning the importance
of two-step-transfer processes in charge-ex-
change reactions. However, we do not fee1 that
this is presently possible, and instead we want to
stress the theoretical ambiguities inherent in the
present, and earlier, calculations for both the



d1rect a d two-step process. The effective force
which is responsible for the direct process is
obviously not well known, because it is usually
obtained from experiment without taking two-step
px'ocesse8 into conslde1'Rt1OD Rnd cleRx'ly these
may not be neglected in general. On the other
hand, the way to calculate the two-step process
is far from established. The neglect of non-
orthogonality corrections between channels with
different mass partitions„as weQ as the use of
the zero-range approximation, could weQ intro-
duce considerable error. Also, the zero-range
parameters D, for the (A;, n) and (c., t) reactions
are not well known, nor does one know the syste-
matic behavior of opticai potentials in the h and t
channels. At the present stage we are not yet

able to separate clearly the influence of these
various possible sources of ambiguity, especially
because 1D many ca8es the RngulR1' dlstx'lbutlons
for the direct and two-step processes have the
same shape (see e.g., Fig. 3). A search of avail-
able data for reactions presenting a more crucial
test of the two-step mechanism, or new experi-
ments constituting such a test, will be needed to
clarify many of the thorny issues we have en-
countered in the present work.

Note added in proof: A study of interference be-
tween direct and multistep processes has also
been made x'eeently by Toyama and co-workex's.
We are indebted to Dr. Toyama for his kind com-
munication of prepublication x'e suits.
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