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In a distorted-wave type of formalism, bvo mell-behaved integral equations have been ob-
tained for a general three-body rearrangement reaction. The inhomogeneous terms of these
equations may bs considered to provide mathsmatioally meaningful first approximations
(MMFA} to the reaction amplitude. In each of the above mentioned eases, the distorted-wave
Born approximation (DWBA) forms an integral part of MMFA. The extra terms in MMFA in-
volve multiple-scattering processes and hence, at least in some eases, their matrix elements
may be much smaller than those of DVPBA term. This suggests that the success of DWBA may
lie in the fact that DWBA is the dominating part of an MMFA. Some of the circumstances un-
der which it can happen are discussed,

The Born series, ' as well as the distorted-wave
Born (DWB) series, ' are based on Lippmann-
Sehminger type integral equations. For the three-
body rearrangement reactions the kernels of these
integral equations are pathological; they have 5-
function singularities over and above the eenter-
of-mass momentum conservation 5 function. As
a result the solution to these problems in terms
of Born series or DWB series is, in general, di-
vergent. Apart from the divergence problem, in.

case of the existence of tmo-body bound states,
the solution to the above mentioned integral equa-
tions is not unique. ' The reasons for these pathol-
ogies and methods for curing them have been dis-
cussed and explained in a variety of mays.

On the other hand, the distorted-wave method,
and the distorted-wave Born approximation (DWBA)
in particular, since the time it mas first proposed
by Francis and Watson'~ has worked mell in a va-
riety of nuclear reactions. Its successes include
the deuteron stripping reaction which is a three-
body problem. We, therefore, wish to discuss
the distorted-wave equation and compare DWBA
with two specific mathematically sound formal-
isms" in an attempt to see mhy it is so successful.
Formalisms which do not involve the troublesome
5-function singularities (other than the center-of-
mass momentum conservation 5 function), will be
referred to as mathematically sound or well be-
haved. A first-order approximation derived from
a mell behaved integral equation mill be called a
InRtlle111atlcRlly 111eRlllllgflll fil'st Rppl'ox1111Rtiotl,

abbreviated MMFA.

1. NOTATION

The complete Hamiltonian for a system of three
particles can be written as

II =80+ Vq+ V2+ Vs+ V„=HO+ V,

where Ho is the free Hamiltonian or the sum of
kinetic energy operators, V~ is the interactions
betmeen particles 2 and 3 and likewise for V2 and

V„while V„ is the possible three-body interaction
between the three particles. The Qreen's function
for the complete Hamiltonian is denoted by

G =(E'-H) '; E'=E+i~.

(Whenever not mentioned, it will be understood
that the Qreen's functions me are dealing mith have
outgoing-wave boundary conditions. )

In the scattering theory of the three-body prob-
lem, one is concerned with reaction channels in
mhich either all three particles propagate freely
or one particle propagates freely and the other two

are in a bound state. We shall label the various
channels by the label of the free particle when

there is only one particle that propagates freely.
For the case of all three particles propagating
freely, the channel shall be labeled by the sub-
script 0. With the definition

Vo =0,

we express the asymptotic Hamiltonian and the
corresponding Qreen's function for any channel a,
unambiguously, as follows:

e =If, +V„G =(E'-H„)-'.
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v] =H -H] = V- Vg,

v~=H -Hg = V- Vy ~

(7)

(6)

Notice the distinction between (capital) V, and
(lower case) v, . They are not equal but are rath-
er complementary, in that their sum equals the
sum of all potentials in the problem.

In the following, we shall deal with U&, alone
[Eq, (6)], The corresponding equations for Uj(
can easily be derived in an analogous manner or
even written down by comparison.

The essence of the distorted-wave method is to
take into account parts of g, and g& in such a way
that one obtains for the on-shell matrix elements
of the transition operator an expression given by
the following equation

&f(Z) I Ug~ I i(z)& =&f(z) lw j'Oyg'( li(Z)&

=&xj I ops I xO

where the new transition operator Uz, is

Uy; =(vy -wy)[I+G(v( -w()l ~

In short the initial and final waves are replaced
by some distorted waves and the new transition
operator as compared to the original transition
operator [Eq. (6)] has vz replaced by (v~-w~) and
v, replaced by (v, -w, ). Here w, andw& are the
initial- and final-state distortion potentials and
are now taken care of through the wave operators

Wj =1+

wiggy,

gy =(Z' Hg -w~)-

W~ =1+gp'i ~ g& =(Z

Thus the distorted waves X& and X', are scattering-
state solutions to H&+ so& and H, + av „respectively,

Equation (9) follows from the operator identity, '

U~, =W~ t(vy -w~)W(

+Wg (vg —wy)G(v( —w ()Wg + wygyG( ~ (12)

As is common practice, we shall use subscripts
i and f for the initial and final channels, respec-
tively. Then, for actual reactions, i can be 1, 2,
or 3, while f can be any of the four channels 0, 1,
2y and 3o

The prior and post form of the transition opera-
tor can now be written as

U~, =(1+v~G)v, ,

Uyg
= vg(1+Gv(),

where the initial and final state interactions v, and

gz are

provided that

ljm je(f(Z) Iw~g~li(Z)) =0,

In case of rearrangement collisions (such as deu-
teron stripping and breakup), i and f are distinct
channels. Therefore, the overlap (f(Z) li(Z)) is
identically zero. The above condition can then be
written as

(f(Z) IWq
t

Ii(Z)& =finite. (13b)

The condition (13b) is usually satisfied by choos-
ing for so& a pseudopotential which produces only
elastic scattering in the final channel and hence
cannot lead to rearrangements, although other
choices are also possible. Note, however, that
there is no restriction, whatsoever, on the choice
of initial-state distorting potential m, . In the cor-
responding equations for U&, the roles of so, and
so& are interchanged.

Once e& has been properly chosen, we need con-
sider only the first two terms in Eq. (12). The
second term involves the full Qreen's function G
and is difficult to evaluate with the present day
techniques. The DWBA completely neglects the
second term. Thus

Ug, (DWBA) =Wq t(vq -w~)W;, (14)

which approaches exact result when w, - v, [cf.
Eq. (12)]. However, the choice w, =v, is not prac-
tical as we are lead back to the same problem of
having to evaluate the full Qreen's function G. The
hope of DWBA being a good approximation, heuris-
tically, lies in the possibility that one can choose
asv, close to v, and yet practical enough for effi-
cient numerical calculations.

3. VALIMTY OF DWBA AND INTEGRAL
EQUATIONS PATH DNBA AS

INHOMOGENEOUS TERM

From another point of view, based on a compari-
son of Eq. (14) with Eq. (12), it is clear that the
validity of DWBA depends on the relative magni-
tudes of the matrix elements of the two terms of
Eq. (12) between energy conserving states of 0,
and H&. One way to answer this question is to set
Eq. (12) in the form of an integral equation of
which DWBA wiQ be the inhomogeneous term and
to check if an iterative solution to such an equa-
tion is possible. If the iterative solution exists
then the rate of convergence of such a solution
will be a direct measure of the validity of the
DWBA. However, the nonexistence of the itera-
tive solution to an integral equation which one may
obtain does not constitute a conclusive proof that
the DWBA is not a good approximation. We there-
fore proceed to obtain integral equations with com-
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pact kernels and therefrom infer about the validity
of D%'BA.

for the Green's function. We then use the follow-
ing result which is a special case of Eq. (12) for
the transition amplitude, when one chooses the
arbitrary initial-state distortion potential sv, to
be zero

Uq( =W~ t(v( -(v~)(1+Gv() +(o(g~G( '

to set the second term of Eq. (12) in the proper
form mentioned above. However, in general, this
leads to an integral equation with a noncompact
kernel involving a 5-function singularity. One way
to overcome this difficulty is to use a "subtrac-
tion" (the meaning of this terminology will soon
become clear) and thereby change the term which
is to be cast in the form of homogeneous term
(Uz(K} plus an extra term (I). For this purpose,
we use an arbitrary Hamiltonian H„correspond-
ing Green's function Q, and v, =H -0,. Then using
the identity 0 =G, +Gv,G„ the second term of Eq.
(12}becomes,

Wj {v( -(vg)G~(v( (v ()W(-
+W( (vy -(v( )Gv~G~(v( -(v ()W ( ~

The new term [second term of Eq. (17)] to be set
in the desired form is just the same old term but
with G replaced by Q —C, =av, Q,. This is what we
mean by subtraction.

Once again, substituting Eq. (15) for G into Eq.
(17) and making use of Eq. (16}to recognize the
homogeneous term, we obtain the foQowing inte-
gral equation corresponding to Eq. (12) for the
transition amplitude:

Uy( =W~ t(vy -(v~)w;+W(, ~(v( (vy)G, (v( --(v(}W(

+ (vyggG( [1—G(v~G~{v(.-(v ()W( ]

Uf (G( vcG c(v( (18)

The obvious choice of a v, that does not involve
any of the two-body potentials in (v, -(v(), insures
that there are no troublesome 5-function singulari-

4. INTEGRAL EQUATIONS PATH

COMPACT KERNELS

The process of obtaining an integral equation
corresponding to Eq. (12) for the transition ampli-
tude, consists of expressing the second term in-
volving the full Green's function 6 in the form
U&,K+I. The operator K will then be the kernel
of the integral equation. The simplest way to
achieve this is to use the identity

5. COMMENT ON COMPARISON

BETYfEEN EQUATIONS
FOR Uy'~ AND Uyl

Perhaps it is worthwhile to remark that even
when the condition (13) is satisfied, so that

&f(E}l U~(I({E}&=&f (@IUg l((E)& (2o

nevertheless, the first-order approximations [the
inhomogeneous terms of Eqs. (18) and (19)]differ
by the quantity

&f(E) l~g ggv. G.(v( ~()W(l((E}& (21)

which is not always zero. Thus the iterative solu-
tions to Eqs. (18) and (19) will have different con-
vergence properties. In particular, one of the
series may converge while the other does not.

Under the circumstances being considered (when

U and U equations both have the same so„mz, and

v, ), we know the equality between the complete ma-
trix elements of U&, and U~, to be a fact. There-
fore, we conclude that in the iterative series solu-
tion, the sum of extra subseries generated by the
extra inhomogeneous term of Eq. (18) must vanish
identicaOy. Thus the convergence of the iterative
solution to Eq. {18)as compared to that of Eq. (19)
will further depend on the rate at which the above
mentioned subseries eonverges to zero. However,
it is conceivable that these subseries may cancel
out the oscillatory character of the rest of the
iterative solution and thereby improve the conver-
gence of the over-all iterative solution.

ties in the kernel of Eq. (18). As a result it has a
chance of being a Hilbert-Schmidt integral equa-
tion,

In Eq. (18) both the initial- and final-state di's-
tortion potentials are completely arbitrary. If one
restricts the choice of (vz to satisfy condition (13),
then the term m&g&Q,

' can be completely dropped
from Eq. (12) . The modified transition operator
then satisfies the equation

U,', =W (v, -m, )W;+W (v, -(v, )G,(v( -(v()W('

+ U('(G(V, G, (v( -(v ()W;, (19)

which is identical with Eq. (40} of Ref. 11.
Although Eqs. (18) and (19) appear to be rather

complex, yet a judicious choice of sv, ., so&, and v„
in many cases, can considerably simplify the final
integral equation. In Ref. 11, Dodd and Greider
discuss several applications of an equation for U&,
which is analogous to our Eq. (19). The present
authors'+ (5 have used Eqs. (18) and (19) to obtain
simple integral equations for deuteron elastic scat-
tering, stripping, and breakup reactions on recoil-
less targets.
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In general, since Eq. (19) is a well behaved inte-
gral equation, its iterative solution will not be os-
cillatory and hence it should be preferable to use
Eq. (19).

6. ON THE VALIDITY OF DWBA

If the iterative solution to, say Eq. (19), were
convergent then the inhomogeneous terms give a
mathematically meaningful first approximation to
the full transition amplitude. It is interesting to
note that the first inhomogeneous term is the
DWBA operator. The second inhomogeneous term
involves one extra scattering process and hence,
at least in some cases, its matrix elements may
be much smaller than those of the DWBA opera-
tor. Thus, even though on the basis of pathologi-
cal integral equations which have DWBA as their
inhomogeneous term, DWBA has been written off
by some authors' as mathematically unsound, yet
in some cases it may not differ much from the
mathematically meaningful first approximation
which Eq. (19) provides. Therefore, so long as
physicists remain content with first-order approx-
imations, the objection to DWBA on the grounds
that the DWB series diverges is purely academic
when the relevant matrix elements of correction
terms are negligible compared to DWBA. For

example, in the context of Eq. (19), the correc-
tion to DWBA can be written as (i c) =eigenstate
of 0,) S,&X~ I vy -weal c) &cl v& -w&

I X&&/(E' —E.) T»s
is negligible compared to DWBA under any one of
the following conditions:
(a) Initial-state distortion potential w, simulates
v, very closely such that (v, -w, ) is a very weak
potential.
(b) A less stringent condition is to require that
(v, -w, ) connects the initial distorted wave to
eigenstates of H, very weakly, i.e., &ci v, -w;ig)
«(E+ E ).
(c) &yz ivy wz-ic) and(civ; —w&iyz) are peaked
functions of F., with peaks in different parts of the
spectrum away from E, =F..
(d) A condition similar to (b) for (vz -wz). How-
ever, unlike mr, the choice of so& is restricted by
Eq. (13). This condition (d), therefore, is less
likely to be satisfied.

In conclusion we would like to add a note of cau-
tion. Although this paper may appear to be build-
ing a case in favor of DWBA, yet the best we have
been able to demonstrate is that DWBA is closely
related to some mathematically meaningful first-
order approximations. One must check to see that
it dominates the mathematically meanginful first
approximation one constructs, in order to have a
good level of confidence in its validity.
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