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The theory of multistep processes based upon the distorted-wave Born approximation as a
leading term is investigated. Iterative procedures in which the many-body Green's operator
for the complete system is replaced by a non-Hermitian or optical Green's operator are
shown to have some unappealing features. Alternative procedures using a nonlinear form of
the distorted transition matrix equation, corresponding to a dispersion-theory approach, are
discussed and appear to provide a more consistent iterative procedure. A generalized opti-
cal theorem is derived and used to sum the multistep amplitudes which conserve energy. The
summed result shows that the normal distorted-wave matrix element should be replaced by
a modified leading term unless the absorption in initial and final states is weak. Difficulties
with the theory involving multistep amplitudes off the energy shell and a new calculable form
for two-step processes are suggested.

I. INTRODUCTION

The possibility that multistep processes may be
important in direct nuclear reaction studies is a
topic of considerable current interest. It is inter-
esting from a fundamental point of view, since the
basis of "one-step" processes in terms of dis-
torted-wave Born-approximation (DWBA) matrix
elements has yet to receive a firmer basis than
its present semiempirical success. The calcula-
tion of higher-order terms is consequently impor-
tant in order to know whether or not the DWBA
method is really the first term in a divergent
series. More correctly we need to find out just
which series, if any, the DWBA belongs to, par-
ticularly in the case of rearrangement reactions.

In the next section two basic methods of iterating
are considered which produce two-step processes
in terms of DWBA matrix elements. The first
method involves the relatively obvious procedure
of replacing the total Green's operator by an ap-
propriately chosen distorted Green's operator.

The second method is based on nonlinear equa-
tions for the distorted T matrix and yields an al-
ternative iteration procedure. It also points out
some possible inadequacies of the first method as
an iterative procedure. The second method is
then rearranged so that a better understanding of
higher-order terms can be obtained. In particular
all those multistep processes which conserve en-
ergy can be summed using a generalized optical
theorem and leads to simple results in the limit
of strong absorption. Difficulties with the remain-
ing "off-shell" multistep processes are discussed
in Sec. IV.

II. TWO-STEP APPROXIMATIONS

We begin from the usual two-potential theory'
which allows the T matrix for a given transition
from channel a to channel P to be expressed using
a relatively obvious and standard notation as

T8„——( p~ V8 + V~G
~'~ V

~ n) = T@„+t~,
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where

T~=&x(,-)~ V, +V,G "V„(x(„'&

is the distorted-wave T matrix with V= V- U and
for En=EB =E,

T(()„)=(x(8)~ VSG')V
~
x„"), Ptn(U„), (6)

with multistep processes and to expect the "lowest-
order" terms to contain only two-step processes;

ta =Lim (i7))(x(8)~ Us(E+iq-H()) '~ n)
g~O

yields the "optical" t matrix. The distorting po-
tentials U„, U& are usually chosen to connect only
to a limited class of states, n(U„) and P(UB), re-
spectively; e.g. the simple potential U (r„)will
only connect the state

~
o.) to states

~

o. ') which dif-
fer in their relative motion, i.e., "elastic" scat-
tering stateg. With the further assumption that
the parameters of UB, U are chosen so that tN, ,
t„„,describe the observed scattering within the
limited classes of states P(U8), n(U ), respective-
ly, and that these two classes are each "fragmen-
tation conserving" then

sa (xk) I 81 o')6n(D~), 8(v()) ~ (3)

TB„——(x(8)~ VB+ VBG ')V~~ x(„'))(1 —6„(„)()(U )).
(4)

This result gives a complete separation of the
T matrix into a t matrix which describes the scat-
tering between the limited set of channels o.'(U )
or P(US} and the distorted T matrix which de-
scribes the scattering between all other channels
n, P. In most applications ta„arises from optical-
model potentials U8 or U and describes the elas-
tic scattering in each channel, respectively. The
distorted T matrix in this case describes all non-
elastic scatterings and has a leading term

TDwBA (x -)~ V
~

x+))

which is conventional DWBA. Recently there have
been calculations based on generalized optical po-
tentials which allow inelastic scattering to a small
number of target (or residual) nucleus states. In
this case tM, , t„,, represent coupled-channel cal-
culations for elastic and inelastic scattering in
the subspaces P(UB), o.(U }, respectively, and the
distorted T matrix describes all other transitions
usually via its leading term [which is termed a
coupled-channels Born approximation (CCBA)].

The result expressed by Eq. (4) involves a sum
of two terms,

Ten Tgn + Tgn

in which TB" is usually Te„". Presumably we are
to associate

hopefully via intermediate states other than those
of class (x(U„) or P(US).

The problem then is to find a consistent scheme
for obtaining Te", Te", etc. At the same time we
have to keep in mind the problem posed by Greider
and Dodd, ' namely that the iteration of G" via re-
lations of the form

G"=G"+G "V G"
with

G"=Lim (8+i@-H) ',
I)~0

G(„') =Lim (E+i7) H ——U„) ',
q~0

H=H„+ V =H + Vn=H~+ VB,

can easily lead to divergent series so that Tz",
Te", etc. , may be of similar magnitude and a cal-
culation of TB'„' would be meaningless.

It is instructive however to discuss two-step ap-
proximations via such iterated Green's operators
because calculations using this method are being
made' and the results obtained sometimes yield
rather large magnitudes for two-step processes.
Since the large contributions obtained for two-
step processes in reactions such as (h, t) between
analog states is very surprising to some of us, the
approximation G"= G ' is not above suspicion.
We therefore also study a more exact treatment
of two-step processes which can be compared
even at a formal level with the approximation
G

' =G '. We discuss each method in turn.
y

'

A. Iteration of Green's Operators

The -iteration

(+) G(+) +G(+)V G(+)

naturally leads to a set of multistep processes,
viz.

G(+) G( ) + G(+)V G(+) + G( ) V G(+)V G(+) + ~ ~ ~«+ x ~ « ~ +

and our physics intuition is invoked to decide just
which two-body fragmentations we regard as most
relevant to the intermediate states labeled here by

y, 5, ~. The first term presumably yields a two-
step mechanism via all intermediate states appro-
priate to the fragmentation labeled y, the relative
motion of the fragments being described by the
optical potential U» i.e.,

T" ( )(y) (x(-)~ V G(+)V
~

x(+)) (6)

All we have to do according to Eq. (6) is to cal-
culate a second-order DWBA integral, provided
we only consider bound pairs of fragments in the
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intermediate states y. Under these conditions and
the simplifying assumption of a central potential
for U, a typical intermediate state has the form,

(+) (+) (+)
&v &vr&-v2"v = &»2"»

where Qv, rjrv represent the internal states of the
y2

two bouncf fragments and u('~ represents the rela-
tive motion. The function u is a solution of the
equation

PC„+ U„- e,)u", =0

with relative motion energy ~ y, and K is the ki-
netic energy operator.

A typical two-step process is then given by

r(~2~(v„)=(x,(-'~ V, ~ y, )(Z-Z, -Z, —U, +ivy)

y12

u(') E-E +sq -' g')

with E =E +e .
Putting $(+) in place of Q u ' and assuming x'

is related to (", by

("=C x"
y yyp

we have

propagator in E(I. (7) can be expanded as an inte-
gral over all real continuum energies plus a sum
over discrete states necessary to provide the com-
plete set:

(Z -Z -Z —U +ivy)-'
y12

x&((, ~
V.~x(„'&), (7) rl"(r„r g. r„( =l'lr, l*' )(@-r',+ nr

'

where the propagator needs special emphasis be-
cause it involves a non-Hermitian (complex) po-
tential U . For such potentials the relative mo-
tion functions u" are not orthogonal and it is nec-

y

essary to use biorthogonal sets of states, i.e.,
sets defined by y12

p, T(8',) E-E,+sq -' "', (8)

(If, + U,
' —e„}u", =0,

(K + U —e„}u'=0,
and

u,"- C [e'k v'v +f (e )e'"v "v r '],
u'„'- C [e'"v'v +f (8v)e'~v "v v' '].

Clearly if u' is a solution of an absorptive poten-
tial (ImU & 0) then the conjugate solution u(v' is a
solution of a "creative" potential (ImU & 0}. The
solutiozs u ' are solutions of the same equation
as u("' but satisfy different boundary conditions, '

u '-C*[e'"v'v+f*(v-8 )e '"v "vx ']
y y y y

The conjugate solution to u is u' ', and it sat-
isfies the same equation as u ' but different bound-
ary conditions:

u(-) C i,[eik v'rv yf 4(vv 8 )e-ikvrvvr -r]
y y y

The orthogonality and completeness relations
are then

u() g() ] g(*) g( )

y

in which

for bound states and

(u' ~(e }~

u(", (e,)) = 5„,5 (e —e,)

for continuum states. Consequently, the optical

in which p„= ~
C ~' is the density of states. Notice,

however, the occurrence of the operator Q"'
rather than T "which are not equal for a non-
zero value of. Uy. The state x ' is not equal to
x ' even for a real potential. For a real poten-
tial $" and $' ' are related by a unitary transfor-
mation, but for a complex potential the transfor-
mation is nonunitary. Using our completeness re-
lations and assuming C is real hereafter, we de-
duce that

q( ) . (-(+)i-(-))f( &

y(x y y' y'0(
y'(U )

"(1)S /T
vent

v '(v)

where

is the scattering (s) matrix for the optical poten-
tial U*. Since U* is a creative operator then we
expect

[s's] & I

will occur and consequently Q
' can have a mag-

nitude which exceeds the magnitude of T"' by a
large factor if the U potential is strongly absorp-
tive.

In order to see this creation process more clear-
ly it is instructive to use a formalism where s is
diagonal, e.g. eigenchannels or more obviously
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partial waves for spinless fragments. A given
partial wave of angular momentum l is studied
via the expansions in Legendre polynomials:

Bes~el functions, one easily deduces the relations

y y+

where

~') =g(2l+1)i'f "(r)P (k r)
l

g(' =Q (2l+ 1)i'f "(r)P, (j'p ~ r),
Evaluating a partial wave amplitude Q,

' thus in-
volves the substitution

~(z)=s*T j =s ~T '
l l l l l

f(-) [f(+))s f (-) [f(+)]g

according to the known time-reversal relations.
The states f,( ' and f,(') are both regular solutions
of the same radial equation and consequently they
can only differ by a complex constant which arises
because f,( ' and f,(' satisfy different boundary con-
ditions asymptotically. Using the relations

f(') -y, P,*-s,a, ],

f,"-y, [k,*-s,k, ],
and

f (-) f (+)g c f (+)

where h. ,* and h, are ingoing and outgoing spherical

Expressing s, in terms of its complex phase 6, = A. ,
+i p, , (with p. , & 0 for ImU & 0) yields

e2 f X.l e -2 Pl
l

and

-I gg e -2 j (5l e -2l ple+2lll
l l

corresponding to a creative process via the term
e+2&l

It is interesting to ask why the leading term
TB' itself does not suffer from the "creativity"
problem because after all the distorted wave is
related to the initial unperturbed system by an in-
tegral equation, e.g.

~
x„")=

~
n) + (Z+i)) -a.—U„}-'U.

~
n)

involving an optical Green's operator. The

leading term then involves

T(8') =(x(8)( Vz( n) +(x(())) V8(E+ir) H„—U )-'U ( n)

in which the second term accounts for all the
multistep processes via the U interaction. In
this case however the creativity via s and the
matrix element ( $(, ),

~
U„~ n) correspond to the

same scattering potential. Moreover the term
(x(8)

~ VB~ n) belongs to the same unperturbed Ham-
iltonian II„as the term involving the optical oper-
ator in the asymptotic region. This self-consis-
tency is best expressed using the original integral
equation for

~
x,") to give

(((),
~ n) -((& ),

~

x(+)) (g+i7/ g „) (((),
~

U
~

n)

so that all the multistep scattering terms are ex-
actly canceled off and we are left with

(-) V

=(x(,-)~ V, ~

x". ),
where s„„=($'),

~
$") =C ($(,),

~

x('). Since clear-
ly we also have s ts = 1 we see that the creativity
is exactly nullified by an equal absorptivity.

The coupled channels Born approximation 1~ "
is just a special case of f~, consequently calcu-
lations involving "multisteps" due to inelastic
scattering (in either the initial or final distortions)
will not suffer from creativity in the intermediate
states. It is not clear, however, that a perturba-
tive treatment of the inelastic scattering distor-
tions such as envisaged by Bindal and Koshel' will

avoid the creativity problem. The point is that
when inelastic scattering is treated by perturba-
tion theory the self-consistency discussed above
will no longer be valid and consequently the can-
cellation effects may not occur with sufficient ac-
curacy.

The iterative method based on the replacement
of G' by G' leads to two-step processes of the
form

(9)
and in general the occurrence of a creative inter-
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mediate stage with no self-consistency, since
ye n(U ) or P(US) which leads us to seriously
question the accuracy of such an iterative proce-
dure. We now investigate these suspicions more
quantitatively by the use of an alternative scheme
which appears to be more accurate.

step term is then possible by assuming 5 belongs
to the same class as y(U ) which corresponds to
a particular class of intermediate states as before.
The first iteration of our nonlinear equation above
yields then the two-step approximation:

B. Nonlinear Equations

The nonlinear equations for the T matrix are
well known when plane-wave bases

~
o.), ~ P ) are

used, ' but the equivalent equations for T do not
appear to have been seriously discussed as yet.
The appropriate nonlinear equations are obtained
by the introduction' of complete "orthonormal"
sets:

y (+) y (+)

X, y

&+';,'I +I&", & =&» &(E.-E.),
where the states 4'~' are eigenstates of the total
Hamiltonian H with eigenvalues E „, y indicates
the particular channel containing incident waves
and 5 runs over a/l open channels at a given ener-
gy E„. The completeness and "orthonormality" of
these states are fully discussed by Goldberger and
Watson and need not be repeated here. In general
the sets 4 („') will include some bound states 4 ~
which we formally include above via the 5 sign.
Of course 41 is common to both the (+) and (-)
sets and is independent of the sign.

The multistep term in EII. (5) above can there-
fore be written as

r', )= x(,-) V, e",) E-E,+gq
-'

& &e',"',
~ v.

~

x'„'& .

The 8 matrix for the complete system at energy
E~ is defined' by

S,, =&+';, , ~

e",,) =I~{El,-E,)[a,, -2™T„C,C~],
where

TI~=&yl I', l~~'~&c~ '

is the fu'I T matrix. Relating &4"'~ to &4' '~ now
involves a unitary transformation via S~ and we
find

y
E -E~+iq 8 ~ E~ T~~ „C C~

y

This equation can be iterated by substitutions
T = T ' which at least ordinary DWBA phenomenol-
ogy suggests is a good guess. Picking off a two-

y, (U ), y,2(0 3z2 y
' x2 y

gCC„, ,

where S~ is replaced by s~, since the potential U

is assumed to have the same scattering matrix as
the many-body interaction V zoith&s the subspace
of channels y(U ).

A conlpal'lsoll of EII. (11}wl'tll EII. (9) 1111111edla'te-

ly shows that for continuum energies ~ in the
sum the only difference' is in the replacement of
s by s. In EII. (9) there is also a sum over bound
states (6 & 0) wlllcll does Ilo't occul' i11 EII. (11) hilt,

at high energies corresponding to "direct reac-
tions" we expect such differences to be unimpor-
tant. In any event there is no reason to believe
the bound state contribution in EII. (9) will in any
way compensate for the replacement of s by s in
the continuum part.

The replacement of s by S is a large effect for
certain partial waves. In particular for a central
potential Uy and spinless particles we obtain

s,*=e'»s+ =(1 —K, ) 's+

with g, being the optical transmission coefficient.
For strongly absorbed particles transmissions
very close to unity are often obtained so that par-
tial wave cross sections obtained from EII. (9) and
EII. (11}may differ by several orders of magnitude.
It is perhaps worth pointing out that although 8
can be replaced by [S ']» via unitarity of the f»ull

S matrix it does not follow that [S '] (corre-
sponding to a definite intermediate state) is at all
related to 8 „'=s '=s* unless 8 is diagonal cor-
responding to zero absorption. In the case of
strong absorption 8 goes to zero along the diagonal
and such a replacement is clearly invalid.

The iteration of the nonlinear equations appears
to have several redeeming features:
(i) The substitutions 4I'I = t't' corresponding to
T = T") in 7.'") are the same as that which yielded
T(" as the leading term.
(ii) The S matrix S, is automatically given by
s~, for the optical potential U„ if the states y, y'
belong to the same subset y(U ) because S, and
s, are made "equal" by parameter adjustment.
(iii5 No creative processes occur in the intermedi-
ate states so that the iterated series is more like-
ly to converge.
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(iv) In the sum over y in Eq. (10) all possible frag-
mentations occur so that all two-step mechanisms
can be calculated as a coherent sum over a set of
two-step matrix elements derived from the same
propagator.

There is however a nontrivial difficulty associ-
ate6 with all the results discussed as yet. It has
often been argued that the use of DWBA in place
of PWBA (plane-wave Born approximation) corre-
sponds to summing all the multistep processes in-
volving elastic scattering in either the initial or
final states. A careful examination of Eq. (10)
shows that such a philosophy is simply not correct
"off-the-energy-shell" because, as we shall show,
T can no longer be related to the full T matrix via
Eqs. (1)-(4). Even worse the "on-shell" multistep
process can be summed to all orders using unitar-
ity relations and in the case of strong absorption
is directly proportional to the T matrix element
itself. A full discussion of these problems is giv-
en in the next sections and need not concern us in
comparing Methods A and B as reasonable itera-
tive procedures because both methods are subject
to these general criticisms.

Returning to the question of the validity of the
iterated Green's operator method we can make
three further arguments which suggest that it is
not an accurate procedure. First the substitution
G ' =G ' is not consistent with DWBA itself. The

y
plane-wave expression [Eq. (1)I with the substitu-
tion G ' =G' or G' =G8 yields,

or

(Pl ~8+ ~8GS ~al &) ~

which does not yield T~~" as the approximation
for the leading one-step process. Indeed DWBA
philosophy relies on treating channels n and P on
an equivalent basis. All substitutions of the type
G ' =—G ' are therefore contrary to this philosophy,
since they select a definite channel fragmentation

ps
Second if one looks at the expansions of G ' and

G" and compares terms of the same type then one
is effectively substituting

Of course it could be argued that the term ($ z'l
is supposed to "globally" account for all fragmen-
tations other than y and its creative nature is in
accordance with this requirement. The problem
which arises however is that the "creativity" in-
duced by U* represents only the coupling between
the state y and all other open channels 5 (or com-
pound states if an energy average is performed).
It does not follow then that U*„ is in anyway repre-
sentative of the coupling between the missing inter-
mediate states 5 and the states of real interest
(o. and P). In particular the number of intermedi-
ate states 5 which will simultaneously connect
strongly to states n and P (c.o P) is expected to be
considerably less than the number of states 6

which connect strongly to a single state y. Con-
sequently we expect s~ will overestimate the cre-
ativity for a two-step process o. -y - P and pre-
sumably the error gets worse as the strength of
the absorption potential is increased.

Finally we point out that the method of approxi-
mation based on G ' = G ' is likely to fail because

y
the s matrix in the limit of strong creativity is
very poorly determined by elastic scattering. The
point is that elastic scattering involves the linear
combination (I -s), or some similar combination,
and for lsl & e, where e is some small value, the
value of s could equally well be replaced by zero
(as indeed it was in some of the earlier strong ab-
sorption theories). Unfortunately, the two-step
processes with G"= G" involve s ' and the differ-

y

ence between e and 0 becomes a large number ~ '
versus infinity which is catastrophic.

Some argument could perhaps be presented that
in the strong absorption case T'" in Eq. (9) occurs
quadratically and becomes zero at a rate which
more than cancels the creativity in s~. In conven-
tional optical-model calculations this simply is
not a possibility because in most cases of interest
the DWBA matrix elements have nonnegligible con-
tributions from radial distances beyond the range
of the optical potential. Beyond the optical poten-
tial the distorted partial waves approach a fixed
nonzero solution independently of the optical po-
tential, i.e.,

f,"-y, (h, -s,h, )-y,h,*.

y'

whereas the integral equation for (@~~'
l

and its
relation to (4'~~~

l suggests the substitution

Clearly then, T " also approaches a constant finite
value in conventional DWBA calculations no matter
how strong the absorption gets in the optical-mod-
el region. Consequently, the product matrix

ned in the limit of strong
absorption because s~ is singular in a poorly de-
termined manner which is essentially unrelated to
the channels o., P of physical interest.
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III. ON-SHELL MULTISTEP PROCESSES

It is important to try and understand the impor-
tance of multistep processes for those components
where summation of the series is feasible. The
"on-shell" part of the multistep processes is de-
fined by

Equation (12) allows us in principle to eliminate
the multistep "on-shell" contribution entirely.
For simplicity we shall indicate the method only
for Eq. (13) wherein the sets p(U()) and ().(U ) are
single-valued as in conventional DWBA. We find

Tl '(QN)= —iw Cj ll(z E„)fs~s T'c c
yy'

x [i(, —T(()"„)(ON)—s()s (T~() —T~g)(ON))']y

This is easily summed using the "unitarity" rela-
tion

which has a "leading term"

T-(~) 3(I l l l
!2)-~(T ~) T()g] (15)

T() —Tg~
——(x() l V8[G' —G ]V~! x„'&

=2Ts(s~)(ON),

which yields after a little algebra the result

T ()~ (ON) = 2 Te„—2 [Cs C~]
'

8' a' 88' ea' n' fV ~

In the simplest case of spinless particles and par-
tial waves with a central potential we have

T(„)(ON)=—'T(') ——'s s [T„')]* (»)
which is to be compared with the full T-matrix
relation

T(~N)(ON) & T(+) & [T(+) ]g

In the limit that U() and/or U„ involves strong
absorption so that lss! and/or ls l

«1 occurs then

T()()(ON) T(+)
)s~ O

which points out the vital importance of including
multistep processes in the limit of strongly ab-
sorbing projectiles being used.

corresponding to a "renormalized DWBA. " The
usefulness of Eq. (15) is limited to situations
where multistep off-shell scattering is weak and
the absorption is nonnegligible in either channel
()( or channel p. [Clearly when ls()l = ls l

=1 one is
trying to calculate zero over zero in Eq. (15) and
the procedure is meaningless. Presumably when
absorptions become weak enough the standard
DWBA should be used as a leading term. ]

Equation (13) represents a sort of generalized
unitarity relation or "optical theorem" which can
sometimes be used as an estimate of the multi-
step scattering contribution. In particular for
charge exchange reactions where isospin is taken
as a good quantum number the states P and n are
related by vector coupling coefficients and in the
total isospin representation one would obtain

T(z"„)(ON) = —2(T() -s()s TL)

—z(TBa —sss~TIC )

so that one expects
l
T(()")(ON)l' cannot exceed

l
T(()')l' unless T(()"„)(OFF)(corresponding to "off-

shell" multistep scattering) is important.

IV. OFF-SHELL MULTISTEP AMPLITUDES

In general the off-shell amplitude involves a sum over bound states and an integral over continuum
states:

in which P indicates that the principal value of the integral is to be taken. The energy variable 8 „ is
assumed to be continuous over the range beginning at the threshold for the particular channel fragmenta-
tion (contained in the ) label) to infinity. The matrix elements T()~, Tz, „are off-shell, since E ~ vE
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(although E =E„=zs is assumed) and are given by

=(x',-&Iv, +v, (z„+i&I-H)-'v, Ix'
&

T„,.(z„)=&q';&, , Iv.Ix."&

= &x&„-&I V„+V, ,(Z „„+i&&-H)-'P„Ix'„'» .

Notice in these expressions that x ', x,' are eigenfunctions of their respective Hamiltonians with eigen-
values E ~, whereas

x~s
&, x~' are eigenfunctions (of different Hamiltonians in general) with eigenvalues

E 8, E (=E), respectively.
It is worth emphasizing that the usual two potential formula relating T to the full T matrix, i.e.,

T=T-t

no longer holds in a useful way off the energy shell. We find instead the relations,

Ti&(EX&) =Tsy(z) y) —&xs'I UBIy&6& &U, &, KUSI

-(E)& E),„)&x-s&I U8(E8+iq-Hs) '(E& +iq-H8) VSI@(~&„&

-(z„-z,„)&e(„-&,,
I v„,(z „,+i» -H„)-'(z.+i» -H.)-'U„I x(„'&&,

in which

T8„(zz )=&plvs+Vs(z& +i&} —H) V ly),

T, .(z„)=(y'I v. + v, ,(z„,+I»-H)-'v„Io»

defines the corresponding T matrix "half-off-the-
ener gy-shell. "

In the above equations the terms &x~8&I U8Iy&,
(y'I U Ix'„'& appear to be the appropriate continua-
tions of the optical t matrix off-the-energy-shell.
However the terms involving (E s -E„„)or
(E„E~„)are ne-w contributions which, as far as
we can see, need not be small. Another related
facet of the off-shell amplitudes is the breakdown
of the conventional postprior relations, ' i.e., for
rearrangement col],isions:

&iiI V —V, Iy& =(E, Es}&&ly&, -
&x&8&Iv'8 —v Ix(;» =(z -Es)&x(8&Ix(;»,

which yield zeroes explicitly only when E8 =E t.e-
cause the various states are not orthogonal.

We return now to the evaluation of Eq. (16) via
iterative procedures. The sum over A. correspond-
ing to bound eigenstates of II is expected to lead
to small contributions at high energies correspond-
ing to direct reactions. It can in many cases be

I

calculated using a model Hamiltonian H" which ap-
proximately reproduces the properties of the phys-
ically observed bound states (we ignore electro-
magnetic interactions in this discussion). The
continuum contribution is more difficult to deal
with since at high energies there are many possi-
ble channels (y) open and the principal value inte-
gral necessitates a wide range of energies being
used. Clearly we must invoke our physical intu-
iti.on.

The most appropriate definition of a two-step
process via the continuum appears to be to re-
place T in Eq. (16) by T~" and to use the relation

St =1+2mi6(z -E'}(T+t)t= s" +2wi5(E -E')Tt

in which C is suppressed and the relation T= T
+ t is valid because 8 is always on-the-energy-
shell. Terms involving TT~T are third-order in
T and consequently should be ignored to yield the
sum over all continuum "two-step" processes as

i,"„'(oFF)= C&S f dz„ iso. ,„)

„8,(z„}T,„(z„}cc, .
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Equation (17) appears to be the most tractable
definition of the two-step mechanisms and has the
nice feature that s (E ~ ) vanishes as E„-~due
to strong absorption occurring as the energy is
increased. Since 1' " is expected to also vanish
at high energies due to poor overlaps occurring
the range of energies required is reasonably finite.

Unfortunately (and unlike the on-shell situation)
performing the sums over y, y' via a "generalized
optical theorem" for the off-shell amplitudes does
not lead to a useful iterative procedure because
the first-order term T@'„ is independent of the en-
ergy variables in the principal value integral. It
appears therefore that we are forced to consider
the evaluation of Eq. (17) as the next step in the
DWBA "series." The question of whether such an
approach will have convergence properties is un-
known and no doubt the initial thinking will have to
be based on empirical successes of the numerical
calculations.

SUMMARY

In the foregoing sections we have attempted to
understand the role of multistep processes rela-
tive to the usual one-step DWBA process. We
have shown that the most obvious method' of iter-
ating to produce two-step processes is very likely
to be misleading due to the "creativity" and diver-
gence.properties of the approximation O' -G '.

A better treatment allows the energy conserving
multistep processes to be summed and leads us
to suggest the use of a "renormalized DVfBA."
Calculations using this method wil1. be investigated
and reported on in a later communication. In the
situation where off-shell multistep scattering is
important we have obtained a "calculable form"
[Eq. (17)]for two-step processes,

Until now the use of DWBA (or CCBA) has been
justified by phenomenological successes. The
possibility of testing its validity by calculating
in a consistent manner the next order approxima-
tions is a formidable but an exciting one. Hope-
fully the present work will provide the necessary
stimulation for correct calculations aimed in this
direction.
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