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The equation of state for quark matter is derived for a nonlocal, chiral quark model within the mean field
approximation. Special emphasis is on the occurrence of a diquark condensate which signals a phase transition
to color superconductivity and its effects on the equation of state. We present a fit formula for the Bag pressure,
which is density dependent in the case when the quark matter is color superconducting. We calculate the quark
star configurations by solving the Tolman-Oppenheimer-Volkoff equations and demonstrate the effects of
diquark condensation on the stability of hybrid stars for different form factors of the quark interaction.
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I. INTRODUCTION

The investigation of color superconductivity in quark
matter[1,2] which was revived by applying nonperturbative
QCD motivated interactions[3,4] finds most of its justifica-
tion in the possible importance for the physics of compact
star interiors[5] and related observable phenomena like neu-
tron star cooling[6–8], gamma-ray bursts[9–12], gravita-
tional wave signals for compact stars mergers[13] and others
[14]. Since calculations of quark pairing predict values of the
energy gapD,100 MeV and corresponding critical tem-
peratures for the phase transition to the superconducting state
are expected to follow the BCS relationTc=0.57D for
spherical wave pairing, quark matter in compact stars should
always be in one of the superconducting phases.

The question arises whether conditions in compact stars
allow the occurence of quark matter and the formation of
stable configurations of hybrid stars. In order to give an an-
swer to this question one must rely on models for the equa-
tion of state which necessarily introduce free parameters and
therefore some arbitrariness in the results[15]. In particular,
the question whether color superconductivity shall be real-
ized in the 2-flavor superconductivity(2SC) or color flavor
locking (CFL) phase in the compact star interior has been
discussed controversely[16,17]. We will restrict our further
discussion to dynamical models of the NJL type with their
parameters adjusted by fitting hadron properties in the
vacuum before extrapolating to finite temperatures and den-
sities within the Matsubara formalism.

Within those models it has been shown that strange quark
matter occurs only at densities well above the deconfinement
transition, for chemical potentials which are barely reached
in the very center of a compact star[18–22]. The interesting
and much investigated CFL phase could thus play only a
marginal role for the physics of compact stars. The stability
of the so obtained hybrid star configurations, however, ap-
pears to depend sensitively on details of the model, including
the hadronic phase.

In the present paper we are investigating this dependence
in a systematic way by employing a nonlocal chiral quark
model which allows to vary the form factor of the interaction
kernel while describing the same set of hadronic vacuum
properties. We provide a polynomial fit formula of our quark
matter equation of state(EoS) which proves useful for appli-
cations to compact star phenomenology as, e.g., the cooling
[23] and rotational evolution[24] or the merging[13] of
neutron stars. In order to compare the results of the present
work for hybrid star configurations with observational con-
straints, we pick the example of the compact object
RX J185635-3754, for which limits for both the mass and
the radius have been reported[25,26]. A further restriction in
the mass-radius plane of possible stable configurations
comes from the constraint given by the surface redshift mea-
surement of EXO 0748-676[27].

II. EQUATION OF STATE OF HYBRID STAR MATTER
IN b EQUILIBRIUM

A. Quark matter with color superconductivity

We consider the grand canonical thermodynamic potential
for 2SC quark matter within a nonlocal chiral quark model

*Electronic address: hovik@darss.mpg.uni-rostock.de
†Electronic address: david.blaschke@physik.uni-rostock.de
‡Electronic address: deborah@darss.mpg.uni-rostock.de

PHYSICAL REVIEW C 69, 065802(2004)

0556-2813/2004/69(6)/065802(8)/$22.50 ©2004 The American Physical Society69 065802-1



[12] where in the mean-field approximation the mass gapf f
and the diquark gapD appear as order parameters and a
decomposition into color scP hr ,b,gjd and flavor sf
P hu,djd degrees of freedom can be made,

Vqshf fj,D;hm fcj,Td = o
c,f

Vc,fsf f,D;m fc,Td, s1d

whereT is the temperature andm fc the chemical potential for
the quark with flavorf and colorc.

The contribution of quarks with given colorc and flavorf
to the thermodynamic potential is

Vc,fsf f,D;m fc,Td + Vvac
c =

f f
2

24 G1
+

D2

24 G2
−

1

p2

3E
0

`

dq q2hvfecsEfsqd + m fcd,Tg

+ vfecsEfsqd − m fcd,Tgj, s2d

whereG1 andG2 are coupling constants in the scalar meson
and diquark channels, respectively. The dispersion relation
for unpaired quarks with dynamical mass functionmfsqd
=mf +gsqdf f is given by

Efsqd = Îq2 + mf
2sqd. s3d

In Eq. (2) we have introduced the notation

vfec,Tg = T lnF1 + expS−
ec

T
DG +

ec

2
, s4d

where the first argument is given by

ecsjd = jÎ1 + Dc
2/j2. s5d

When we choose the green and blue colors to be paired and
the red ones to remain unpaired, we have

Dc = gsqdDsdc,b + dc,gd. s6d

For a homogeneous system in equilibrium, the minimum of
the thermodynamic potentialVq with respect to the order
parametershf fj and D corresponds to a negative pressure;
therefore the constantVvac=ocVvac

c is chosen such that the
pressure of the physical vacuum vanishes.

The nonlocality of the interaction between the quarks in
both channelsqq̄ andqq is implemented via the same form-
factor functionsgsqd in the momentum space. In our calcu-
lations we use the Gaussian(G), Lorentzian(L) and cutoff
(NJL) type form factors defined as

gGsqd = exps− q2/LG
2 d, s7d

gLsqd = f1 + sq/LLd2g−1, s8d

gNJLsqd = us1 − q/LNJLd. s9d

The parameter sets(quark massm, coupling constantG1,
interaction rangeL) for the above form-factor models(see
Table I) are fixed by the pion massmp=140 MeV, pion de-
cay constantfp=93 MeV, and the constituent quark mass
m0=330 MeV atT=m=0 [32,33]. The diquark coupling con-
stantG2 is a free parameter of the approach which we vary as
G2=h G1.

Following Ref.[28] we introduce the quark chemical po-
tential for the colorc, mqc and the chemical potential of the
isospin asymmetry,mI, defined as

mqc = smuc + mdcd/2, s10d

mI = smuc − mdcd/2, s11d

where the latter is color independent.
The diquark condensation in the 2SC phase induces a

color asymmetry which is proportional to the chemical po-
tential m8. Therefore we can write

mqc = mq +
m8

3
sdc,b + dc,g − 2dc,rd, s12d

wheremq andm8 are conjugate to the quark number density
and the color charge density, respectively.

As has been shown in Ref.[29] for the 2SC phase the
relation fu=fd=f holds so that the quark thermodynamic
potential is[30]

TABLE I. Parameter setssL ,G1,md of the nonlocal chiral quark model for different form factors dis-
cussed in the text. The last three columns show the critical temperatures at vanishing chemical potential and
the critical chemical potentials with and without diquark condensate at vanishing temperature, respectively.

Form factor LsGeVd G1 L2 msMeVd Tcsm=0dsMeVd mc
sSdsT=0dsMeVd mc

sNdsT=0dsMeVd

Gaussian 1.025 3.7805 2.41 174 965 991

Lorentzian 0.8937 2.436 2.34 188 999 1045

NJL 0.9 1.944 5.1 212 1030 1100
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Vqsf,D;mq,mI,m8,Td + Vvac=
f2

4G1
+

D2

4G2
−

1

p2E
0

`

dqq2HvFerS− mq +
2

3
m8 − mID,TG

+ vFerSmq −
2

3
m8 − mID,TG + vFerS− mq +

2

3
m8 + mID,TG + vFerSmq −

2

3
m8 + mID,TGJ

−
2

p2E
0

`

dqq2HvFebSEsqd − mq −
1

3
m8D − mI,TG + vFebSEsqd + mq +

1

3
m8D − mI,TG

+ vFebSEsqd − mq −
1

3
m8D + mI,TG + vFebSEsqd + mq +

1

3
m8D + mI,TGJ , s13d

where the factor 2 in the last integral comes from the degen-
eracy of the blue and green colorsseb=egd.

The total thermodynamic potentialV contains besides the
quark contributionVq also that of the leptonsVid,

Vsf,D;mq,mI,m8,ml,Td = Vqsf,D;mq,mI,m8,Td

+ o
lPhe,n̄e,nej

Vidsml,Td, s14d

where the latter are assumed to be a massless, ideal Fermi
gas

Vidsm,Td = −
1

12p2m4 −
1

6
m2T2 −

7

180
p2T4. s15d

At the present stage, we do include only contributions of
the first family of leptons in the thermodynamic potential.

The conditions for the local extremum ofVq correspond
to coupled gap equations for the two order parametersf and
D,

U ] V

] f
U

f=f0,D=D0

= U ] V

] D
U

f=f0,D=D0

= 0. s16d

The global minimum ofVq represents the state of thermody-
namic equilibrium from which all equations of state can be
obtained by derivation.

B. Beta equilibrium, charge and color neutrality

The stellar matter in equilibrium has to obey the con-
straints ofb-equilibrium sd→u+e−+ n̄e,u+e−→d+ned, ex-
pressed as

mdc = muc + me, s17d

color and electric charge neutrality and baryon number con-
servation.

We use in the following, the electric charge density,

Q =
2

3o
c

nuc −
1

3o
c

ndc − ne; s18d

the baryon number density,

nB =
1

3o
f,c

nfc; s19d

and the color number density,

n8 =
1

3o
f

snfb + nfg − 2nfrd. s20d

The number densitiesnj occuring on the right-hand sides of
the above equations(18)–(20) are defined as derivatives of
the thermodynamic potential(14) with respect to correspond-
ing chemical potentialsm j,

nj = − U ] V

] m j
U

f0,D0;T,hmi,iÞ jj
. s21d

Here the indexj stands for the particle species.
In order to express the Gibbs free enthalpy densityG in

terms of those chemical potentials which are conjugate to the
conserved densities and to implement theb-equilibrium con-
dition (17) we make the following algebraic transformations:

G = o
f,c

m fcnfc + mene

=
1

3o
c

s3mqc − mIdsndc + nucd − meQ

= mBnB + mQQ + m8n8, s22d

where we have defined the chemical potentialmB=3mq−mI
conjugate to the baryon number densitynB in the same way
asmQ=−me is the chemical potential conjugate toQ andm8
to n8. Then, the electric and color charge neutrality condi-
tions read

Q = 0, s23d

n8 = 0, s24d

at givennB. The solution of the gap equations(16) can be
performed under these constraints.

The solution of the color neutrality condition shows that
m8 is about 5–7 MeV in the region of relevant densities
smq.300–500 MeVd. Since mI is independent ofm8 we
considermqc.mq sm8.0d in the following calculations.
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To demonstrate how to define a charge neutral state of
quark matter in 2SC phase we plot in Fig. 1 the electric
charge densityQ as a function ofmI for different fixed values
of mB, when the system is in the global minimum of the
thermodynamic potential andh=1. As has been shown be-
fore in Ref. [20] for the NJL model case, the pure phases
(D.0, superconducting;D=0, normal) in general are
charged. These branches end at critical values ofmI where
their pressure is equal and the corresponding states are de-
generate

P = PD=0smB,mI,me,Td = PD.0smB,mI,me,Td. s25d

In order to fulfill the charge neutrality condition one can
construct a homogeneous mixed phase of these states using
the Gibbs conditions[31].

The volume fraction that is occupied by the subphase with
diquark condensation is defined by the charges in the sub-
phases

x = QD.0/sQD.0 − QD=0d s26d

and is plotted in Fig. 2 for the different form-factor functions
as a function ofmB.

In the same way, the number densities for the different
particle speciesj and the energy density are given by

nj = xnjD.0
+ s1 − xdnjD=0

, s27d

« = x«D.0 + s1 − xd«D=0. s28d

The formulas(25)–(28) define a complete set of thermo-
dynamic relations and can be evaluated numerically. In the
next section we present the results in a form analog to the
Bag model which has been widely used in the phenomenol-
ogy of quark matter.

III. QUARK STAR EoS AND FIT FORMULAS

We calculate the quark matter EoS within this nonlocal
chiral model[12] and display the results for the pressure in a
form reminiscent of a bag model

Pssd = PidsmBd − BssdsmBd, s29d

where PidsmBd is the ideal gas pressure of quarks and
BssdsmBd a density dependentbag pressure, see Fig. 3. The
occurrence of diquark condensation depends on the value of
h=G2/G1 and the superscriptsP hS,Nj indicates whether
we consider the matter in the superconducting mixed phase
sh=1d or in the normal phasesh=0d, respectively.

According to heuristic expectations, the effect of this di-
quark condensation(formation of quark Cooper pairs) on the
EoS is similar to the occurrence of bound states and corre-
sponds to a negative pressure contribution(Fig. 3).

FIG. 1. (Color online) Electric charge density for the 2SC
sD.0d and normalsD=0d quark matter phases as a function ofmI

for different fixed values ofmB. The end points of the lines for
given mB denote states with the same pressure and represent sub-
phases in the Glendenning construction.

FIG. 2. (Color online) Volume fraction x of the phase with
nonvanishing diquark condensate obtained by a Glendenning con-
struction of a charge-neutral mixed phase. Results are shown for
three different form factors introduced in the text.

FIG. 3. (Color online) Bag pressure for different form factors of
the quark interaction in dependence on the baryon chemical poten-
tial for h=0 and forh=1. For the latter the superconducting phase
is realized.
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For phenomenological applications of the quark matter
EoS (29) we provide a polynomial fit of the bag pressure

BssdsmBd = 5o
k=0

10

ak
ssdsmB − mc

ssddk, mB . mc
ssd,

PidsmBd, mB , mc
ssd.

s30d

The coefficientsak
ssd as well as the critical chemical po-

tentialmc
ssd of the chiral phase transition depend on the choice

of the form factor(see Tables II and III).
The dependence of the diquark gap on the chemical po-

tential can be represented in a similar way by the polynomial
fit,

DsmBd = 5o
k=0

6

bksmB − mc
sSddk, mB . mc

sSd,

0, mB , mc
sSd,

s31d

where the coefficientsbk for the different form factors are
given in Table IV.

The volume fraction also can be approximated by polyno-
mials in the following form:

xsmBd =5o
k=0

6

cksmB − mc
sxddk, mB . mc

sxd,

o
k=0

1

cksmB − mc
sSddk, mc

sxd . mB . mc
sSd,

0, mB , mc
sSd.

s32d

The coefficientsck and the chemical potentialsmc
sxd are

given in Table V for different form factors.

TABLE II. Coefficients for the bag function fit formula for the
normal phase case, for different form factors, Eq.(30).

ak
sNdsGeV1−k fm−3d

k Gaussian Lorentzian NJL

0 7.2942310−2 9.0218310−2 1.1071310−1

1 2.5122310−2 7.6973310−2 3.0219310−1

2 −9.1152310−2 −6.8728310−1 1.2820310+0

3 1.6402310−1 3.7260310+0 −4.0634310+1

4 −5.9621310−3 −1.1862310+1 3.0828310+2

5 −5.1899310−1 2.2342310+1 1.2301310+3

6 9.0892310−1 −2.4464310+1 2.9441310+3

7 −6.5617310−1 1.4374310+1 −4.3677310+3

8 1.7810310−1 −3.5006310+0 3.9376310+3

9 0 0 −1.9774310+3

10 0 0 4.2442310+2

TABLE III. Coefficients for the bag function fit formula for the
superconducting mixed phase, for different form factors, Eq.(30).

ak
sSdsGeV1−k fm−3d

k Gaussian Lorentzian NJL

0 6.5168310−2 7.5350310−2 8.4897310−2

1 1.4638310−1 2.8766310−1 2.8604310−1

2 −1.8020310+0 3.2215310+0 1.0708310+0

3 9.8125310+0 1.6528310+1 −2.8157310+1

4 −3.0515310+1 −4.9352310+1 1.6904310+2

5 5.4888310+1 8.7023310+1 −5.4828310+2

6 −5.6610310+1 −8.9237310+1 1.0896310+3

7 3.1096310+1 4.9210310+1 −1.3643310+3

8 −7.0479310+0 −1.1275310+1 1.0518310+3

9 0 0 −4.5653310+2

10 0 0 8.5443310+1

TABLE IV. Coefficients for the diquark condensate fit formula,
for different form factors, Eq.(31).

bksGeV1−kd

k Gaussian Lorentzian NJL

0 9.33310−2 1.04310−1 3.30310−2

1 2.13310−1 1.63310−1 1.053100

2 −4.27310−2 9.19310−2 −3.423100

3 1.14310−2 −1.92310−1 6.133100

4 −5.27310−3 8.88310−2 −5.203100

5 0 0 1.553100

6 0 0 1.03310−1

TABLE V. Coefficients for the volume fraction Eq.(32) and
their valid ranges, for different form factors.

cksGeV−kd

k Gaussian Lorentzian NJL

mc
sxdsMeVd 995 1054 1095

For mc
sSd

,mB,mc
sxd

0 1.29310−1 8.56310−2 7.00310−3

1 1.66310+1 1.15310+1 8.513100

For mc
sxd

,mB

0 6.28310−1 7.17310−1 5.60310−1

1 3.36310−1 2.83310−1 2.473100

2 −3.94310−1 −3.43310−1 −7.673100

3 6.57310−2 −1.19310−2 1.06310+1

4 −8.78310−3 2.50310−2 −5.343100

5 0 0 −6.25310−1

6 0 0 7.45310−1
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IV. HADRONIC EQUATION OF STATE
AND PHASE TRANSITION

At low densities, quarks will be confined in hadrons and
an appropriate EoS for dense hadron matter must be chosen.
For our discussion of quark-hadron hybrid star configura-
tions in the next section, we use the relativistic mean field
(RMF) model of asymmmetric nuclear matter including a
nonlinear scalar field potential and ther meson(nonlinear
Walecka model), see Ref.[34]. The quark-hadron phase tran-
sition is obtained using the Maxwell construction, see Refs.
[35,36] for a discussion. The resulting EoS is shown in Fig.
4 for the caseh=1 (left-hand panel) when the quark matter
phase is superconducting and forh=0 (right-hand panel)
when it is normal.

When comparing the three quark model form factors un-
der consideration, the hardest quark matter EoS is obtained
for the Gaussian, and therefore the critical pressure and cor-
responding critical energy densities of the deconfinement
transition are the smallest, see Table II. The same statement
holds for the caseh=0, when the quark matter phases are
normal, see right-hand panel of Fig. 4.

According to the Maxwell construction of the deconfine-
ment phase transition, there is a jump in the energy density,
as is shown in Fig. 4.

The corresponding jumps in the baryon densities at the
critical chemical potentialsmB

sHd are given in Table VI, see
also Fig. 5 for the behavior ofnBsmBd for all three form
factors and both cases of the diquark coupling,h=1 (left-
hand panel) andh=0 (right-hand panel).

The EoS of hybrid stellar matter for temperatureT=0 is
relevant also for calculations of compact star cooling, since
the star structure is insensitive to the temperature evolution
for T,1 MeV.

V. CONFIGURATIONS OF HYBRID STARS

In this section we consider the problem of stability of cold
sT=0d hybrid stars with color superconducting quark matter

core. The star configurations are defined from the well-
known Tolman-Oppenheimer-Volkoff equations[37], written
for the hydrodynamical equilibrium of a spherically distrib-
uted matter fluid in general relativity, see also[34],

dPsrd
dr

= −
f«srd + Psrdgfmsrd + 4pr3Psrdg

rfr − 2msrdg
, s33d

where the mass enclosed in a sphere with distancer from the
center of configurations is defined by

msrd = 4pE
0

r

«sr8dr82 dr8. s34d

These equations are solved for a set of central energy densi-
ties, see Figs. 6–9. An approximate criterion for the stability
of star configurations is that masses should be rising func-
tions of the central energy density«s0d.

Our calculations show that for the Gaussian and Lorentz-
ian form factors one can have stable configurations with a
quark core, either with(Fig. 6) or without (Fig. 7) color
superconductivity whereas for our parametrization of the

FIG. 4. (Color online) EoS for strongly interacting matter at
zero temperature under compact stars constraints for the coupling
parameterh=1 (left-hand panel) and h=0 (right-hand panel).
Dashed line, relativistic mean-field model for hadronic matter;
solid, dashed-dotted, and dotted lines correspond to quark matter
with Gaussian, Lorentzian, and NJL form-factor functions,
respectively.

TABLE VI. Limiting densities of the coexistence region be-
tween quarksQd and hadronsHd matter phases for different form
factors(n0=0.16 fm−3 is the nuclear saturation density) in the first
two columns. The third column shows the critical baryon chemical
potential at the phase transitionmB

sHd=mB
sQd, see Fig. 5. The subcol-

umns indicate the cases of superconductingsh=1d and normalsh
=0d quark matter.

nB
sQdsn0d nB

sHdsn0d mB
sHdsMeVd

h=1 h=0 h=1 h=0 h=1 h=0

Gaussian 1.84 2.14 1.20 1.68 1005 1059

Lorentzian 3.16 3.66 2.25 2.79 1149 1252

NJL 4.79 5.76 3.02 3.71 1303 1455

FIG. 5. (Color online) Baryon number density in units of the
nuclear saturation density as a function of baryon chemical poten-
tial mB. Left-hand panel,h=1. Right-hand panel,h=0. Line styles
correspond to the Fig. 4.
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NJL model(cutoff form factor) the configurations with quark
cores are not stable. For the Gaussian form-factor case the
occurence of color superconductivity in quark matter shifts
the critical mass of the hybrid star from 1.04M( to 0.62M(

and the maximal value of the hybrid star mass from 1.83M(

to 1.79M(. For the Lorentzian form factor the branch of
stable hybrid stars with 2SC supercondcting quark cores lies
in the mass range between 1.55M( and the maximum mass
1.72M(.

In Figs. 8 and 9 we demonstrate that these models fulfill
the observational constraints from the isolated neutron star
RX J185635-3754[25,26] and from the observation of the
surface redshift for EXO 0748-676[27].

The Lorentzian model with normal quark matter has mar-
ginally stable quark cores with radii less than 2 km, in the
mass range 1.91–1.92M(, see Fig. 9.

VI. CONCLUSION

We have investigated the influence of the diquark conden-
sation on EoS of quark matter and obtained the critical den-
sities of phase transition to hadronic matter for different form
factors of quark interaction.

We find that the charge neutrality condition requires that
the quark matter phase consists of a mixture of 2SC conden-
sate and normal phase. The volume fraction of the conden-
sate phase amounts to 65% –85% depending on the form-
factor function of the interaction. In the present work we did
not consider muons in the quark matter phase. Their oc-
curence would increase the volume fraction of the supercon-
ducting phase by about 5%, helping to stabilize the 2SC
phase.

We have shown that for our set of form factors the NJL
model gives no stable quark core hybrid stars. The occurence
of the superconducting 2SC phase in quark matter supports
the stability of the quark matter phase.

Comparison of the quark core neutron star mass-radius
relation with the mass and radius of the recently observed

FIG. 6. (Color online) Mass-radius and mass-central energy
density relation for compact stars configurations according to the
EoS shown on the left-hand panel of Fig. 4. Hybrid stars with
Gaussian or Lorentzian quark matter models give stable branches.

FIG. 7. (Color online) Same as Fig. 6 for the EoS of the right-
hand panel of Fig. 4.

FIG. 8. (Color online) Radius-mass relation for Gaussian form
factor including the mass dependence of the quark core radius in
both cases, one with and the other without 2SC phase.

FIG. 9. (Color online) Same as Fig. 8 for Lorentzian form
factor.
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small compact object RX J185635–3754 and with the con-
straints from the observation of the surface redshift for the
object EXO 0748-676 shows that our model perfectly obeys
those constraints.

These studies can be viewed as a preparatory step before
more fundamental nonperturbative interactions can be pro-
vided, e.g., by QCD Schwinger-Dyson equation studies
[38–40].

ACKNOWLEDGMENTS

We thank our colleagues for discussions and interest in
our work, in particular during the NATO workshop in Yer-

evan, Armenia. Special thanks to M. Buballa and D. Rischke
for important remarks on a previous version of this work.
The research of D.N. Aguilera has been supported by DFG
Graduiertenkolleg 567 “Stark korrelierte Vielteilchensys-
teme,” by CONICET PIP 03072(Argentina), by DAAD
Grant No. A/01/17862, by the Harms Stiftung of the Univer-
sity of Rostock, and by Landesgraduiertenfoerderung
Mecklenburg-Vorpommern. H.G acknowledges support by
DFG under Grant No. 436 ARM 17/5/01 and by the Virtual
Institute of the Helmholtz Association “Dense Hadronic Mat-
ter and QCD Phase Transitions” under Grant No. VH-V1-
041.

[1] B. C. Barrois, Nucl. Phys.B129, 390 (1977).
[2] D. Bailin and A. Love, Phys. Rep.107, 325 (1984).
[3] R. Rapp, T. Schafer, E. V. Shuryak, and M. Velkovsky, Phys.

Rev. Lett. 81, 53 (1998).
[4] M. Alford, K. Rajagopal, and F. Wilczek, Phys. Lett. B450,

325 (1999).
[5] D. Blaschke, N. K. Glendenning, and A. Sedrakian,Physics Of

Neutron Star Interiors, Springer Lecture Notes in Physics 578
(Springer, New York, 2001).

[6] D. Blaschke, T. Klähn, and D. N. Voskresensky, Astrophys. J.
533, 406 (2000).

[7] D. Page, M. Prakash, J. M. Lattimer, and A. Steiner, Phys.
Rev. Lett. 85, 2048(2000).

[8] D. Blaschke, H. Grigorian, and D. N. Voskresensky, Astron.
Astrophys. 368, 561 (2001).

[9] D. K. Hong, S. D. H. Hsu, and F. Sannino, Phys. Lett. B516,
362 (2001).

[10] R. Ouyed, eConf C010815, 2002, p. 209.
[11] D. N. Aguilera, D. Blaschke, and H. Grigorian, Astron. Astro-

phys. 416, 991 (2004).
[12] D. Blaschke, S. Fredriksson, H. Grigorian, and A. M. Öztas,

Nucl. Phys.A736, 203 (2004).
[13] R. Oechslin, K. Uryu, G. Poghosyan, and F. K. Thielemann,

Mon. Not. R. Astron. Soc.349, 1469(2004).
[14] M. Alford, Annu. Rev. Nucl. Part. Sci.51, 131 (2001).
[15] M. Alford and S. Reddy, Phys. Rev. D67, 074024(2003).
[16] M. Alford and K. Rajagopal, J. High Energy Phys.0206, 031

(2002).
[17] A. W. Steiner, S. Reddy, and M. Prakash, Phys. Rev. D66,

094007(2002).
[18] C. Gocke, D. Blaschke, A. Khalatyan, and H. Grigorian, hep-

ph/0104183.
[19] M. Buballa and M. Oertel, Nucl. Phys.A703, 770 (2002).
[20] F. Neumann, M. Buballa, and M. Oertel, Nucl. Phys.A714,

481 (2003).
[21] I. Shovkovy, M. Hanauske, and M. Huang, Phys. Rev. D67,

103004(2003).
[22] M. Baldo, M. Buballa, F. Burgio, F. Neumann, M. Oertel, and

H. J. Schulze, Phys. Lett. B562, 153 (2003).
[23] D. Blaschke, D. N. Voskresensky, and H. Grigorian, “Cooling

evolution of hybrid stars with two-flavor color superconductiv-
ity,” astro-ph/0403171.

[24] G. S. Poghosyan, H. Grigorian, and D. Blaschke, Astrophys. J.
551, L73 (2001).

[25] M. Prakash, J. M. Lattimer, A. W. Steiner, and D. Page, Nucl.
Phys. A715, 835 (2003).

[26] R. Turolla, S. Zane, and J. J. Drake, Astrophys. J.603, 265
(2004).

[27] J. Cottam, F. Paerels, and M. Mendez, Nature(London) 420,
51 (2002).

[28] M. Huang, P. F. Zhuang, and W. Q. Chao, Phys. Rev. D67,
065015(2003).

[29] M. Frank, M. Buballa, and M. Oertel, Phys. Lett. B562, 221
(2003).

[30] O. Kiriyama, S. Yasui, and H. Toki, Int. J. Mod. Phys. E10,
501 (2001).

[31] N. K. Glendenning, Phys. Rev. D46, 1274(1992).
[32] S. M. Schmidt, D. Blaschke, and Y. L. Kalinovsky, Phys. Rev.

C 50, 435 (1994).
[33] J. Berges and K. Rajagopal, Nucl. Phys.B538, 215 (1999).
[34] N. K. Glendenning,Compact Stars: Nuclear Physics, Particle

Physics, and General Relativity(Springer, New York, London,
2000).

[35] D. N. Voskresensky, M. Yasuhira, and T. Tatsumi, Phys. Lett.
B 541, 93 (2002).

[36] D. N. Voskresensky, M. Yasuhira, and T. Tatsumi, Nucl. Phys.
A723, 291 (2003).

[37] J. R. Oppenheimer and G. M. Volkoff, Phys. Rev.55, 374
(1939).

[38] A. Bender, D. Blaschke, Y. Kalinovsky, and C. D. Roberts,
Phys. Rev. Lett.77, 3724(1996).

[39] C. D. Roberts and S. M. Schmidt, Prog. Part. Nucl. Phys.45,
S1 (2001).

[40] A. Maas, B. Grüter, R. Alkofer, and J. Wambach, hep-ph/
0210178.

H. GRIGORIAN, D. BLASCHKE, AND D. N. AGUILERA PHYSICAL REVIEW C69, 065802(2004)

065802-8


