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We analyze the energy dependence for two parity-nonconserving(PNC) asymmetries in the reactiongD
→np in the near-threshold region. First, we analyze the asymmetry in the reaction between a circularly
polarized photon beam and an unpolarized deuteron. Second, we examine the reaction between an unpolarized
photon and a polarized deuteron. We find that the two asymmetries have quite different energy dependence,
and that the shapes are sensitive to the PNC meson-exchange coupling constants. The constraints for the PNC
coupling constants and how to obtain them from future experiments are discussed.
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I. INTRODUCTION

For more than 40 years, the parity nonconservation(PNC)
in nuclear processes attracts attention as a unique tool for
studying the strangeness conservingsDS=0d weak nucleon-
nucleon interaction defined by nontrivial interplay of the
weak quark-quark interaction and the QCD dynamics of
composite hadrons at short distances[1,2]. Most of the
present theoretical studies of parity nonconservation in
nuclear processes are based on the finite-rangep-, v-, and
r-meson exchange potential of Desplanques, Donoghue, and
Holstein (DDH) [3]. Using the symmetry consideration and
the constituent quark model, DDH found the “reasonable
range” and the “best values” of the PNC meson-nucleon cou-
pling constants. Their predictions are related to the theory of
the weak interaction. Thus, the best values of thepNN cou-
pling obtained using the Cabibbo and Weinberg-Salam mod-
els correspond tohp.0.2 and 4.6(in units of 10−7), respec-
tively. The predictions for the vector meson-nucleon weak
coupling constants are also “theory dependent,” but this de-
pendence is not so strong. In case of the charge-current
theory, the transitionu→s responsible for thepNN interac-
tion is suppressed by tan2uC.0.05(uC is the Cabibbo angle)
as compared with the other transitions. This results in strong
reduction ofhp. The neutral-current theory is free from this
suppression which leads to a large value ofhp. The value of
hp depends also on the nonperturbative QCD dynamics of
interacting mesons and baryons. The predictions based on
the Skyrmion model[4], the QCD sum rule[5], the soft-pion
approximation[6], and the quark model with theD degrees
of freedom[7] give the value ofhp=s0.8–3d310−7 which is
in the reasonable range of the DDH prediction(in the
Weinberg-Salam model), being smaller than the correspond-
ing best value(see Ref.[8] for the review of the estimations).

Analysis of the available data from nuclear PNC experi-
ments suggests that the isoscalar PNC nuclear forces domi-
nated by ther- andv-meson exchange are comparable with
the DDH best values, whereas the isovector interaction
dominated by thep-meson exchange is weak by a factor of 3
[2]. For example, the measurement of the circular polariza-
tion of the photons emitted from18F results in the constraint

of 0øhpø1.8s310−7d [10]. However, this constraint is in
disagreement with the recent analysis of the133Cs anapole
moment [11,12] performed in Refs.[8,13]. Quite different
theoretical approaches result in similar conclusions: for ad-
equate description of the data on the anapole moment, one
needs to usehp which is a factor of about 2 greater than the
DDH best valuehp

best.4.6310−7. These experiments men-
tioned above call for the new measurements and theoretical
studies to resolve subsisting inconsistencies.

The studies of the PNC transitions in the nucleon-nucleon
are very attractive because the two-nucleon wave functions
are known reasonably well. Together with the PNC measure-
ments in pWp scattering[14,15], the reactionsgD�np are
particularly important. Up to now, great efforts have been
devoted to analyzing the thermal neutron capture by proton
in the reactions with unpolarized and polarized neutrons. In
this first case, the circular polarizationPg of emitted
2.23 MeV photons is analyzed. The experimental value
uPgu=s18±18d310−8 [16] is consistent with the theoretical
estimationsuPgu=s1.8–5.6d310−8 [17–19]. But poor accu-
racy does not allow us to obtain any definite conclusion
about the strength of the PNC forces. In the second case, the
subject of study is the spatial asymmetryAg of emitted pho-
tons. The experimental value ofAg=s6±21d310−8 [20] is
again too crude to check the theoretical predictions ofAg

,5310−8, (see, e.g., Ref.[21] for reference and quotations).
At present, a new PNC-asymmetry measurement for the ra-
diative neutron-proton capture is in preparation at LANSCE
[22] in order to reduce the experimental error ofAg.

Different aspects of parity nonconservation in deuteron
electrodisintegration were analyzed in Refs.[23–25]. How-
ever, the nuclear PNC effect in this reaction is found to be
insignificant compared to the contribution of theg–Z-boson
interference of the individual nucleons[25].

With the advent of the high-intensity polarized photon
beams, investigation of PNC effects in thegD→np reaction
becomes very important[26], because one can expect to ob-
tain complementary information on the PNC interaction. In
fact, the study of the PNC asymmetries as a function of the
photon energy(contrary to the radiativenp capture, where
the photon energy is fixed:Eg.2.23 MeV) allows us to ob-
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tain additional information which might reduce the ambigu-
ity induced by uncertainties of the parity-conservingNN
forces at short distances. Thus, for example, the constraints
on the PNC meson-exchange coupling constants are usually
obtained from the data compilation from various experiments
[8]. This analysis includes a model-dependent estimation of
the PNC matrix elements in quite different observables such
as two- and few-body systems, and light and heavy nuclei
with their own assumptions and approximations. The energy
dependent asymmetries in thegD→pn reaction allow us to
give the similar constraints using only one simplest nuclear
system.

In this paper, we discuss two PNC asymmetries. One is
the asymmetryARL in deuteron disintegration in the reaction
between the circularly polarized photon and an unpolarized
deuteron. This asymmetry is mainly defined by theDI =0,2
PNC interaction and is equal toPg at Eg.Ethr, whereEthr is
the threshold energy. The second one is the deuteron spin
asymmetryAD in the reaction between an unpolarized photon
and a polarized deuteron(polarized along-opposite to the
beam direction). It depends also on the isovectorDI =1 PNC
interaction, and therefore may be used for examininghp. The
ARL asymmetry was analyzed previously in Refs.[27–29]. In
Refs.[27,28], the calculation has been done only with repul-
sive hard-coreNN potentials which seem to be obsolete com-
pared to the more sophisticated realistic potentials with a soft
repulsive core. Energy dependence ofARL in the regionEg

−Ethr,0.5−5 MeV was skipped. In Ref.[27], the contribu-
tion of the PNCpNN transitions were completely ignored.
On the other hand, they were included in Ref.[28], and the
extraordinarily big contribution of the weakpNN transitions
to ARL at Eg−Ethr=1–30 MeV hasbeen reported. This result
was used by other authors(e.g., Refs.[6,31]) to discuss a
possibility for extractinghp from theARL asymmetry.

However, in Ref.[29], it is shown that the consistent de-
scription of all transitions defined by the spin-conserving
DI =1 interaction results in the mutual cancellation which is
a disadvantage of usingARL as a tool for studying the weak
pNN transition [30]. In Ref. [29], the PNC asymmetry is
calculated on the basis of zero-range approximation where
the short-range behavior of the proton-neutron wave func-
tions is modified phenomenologically, and therefore this re-
sult may be considered as a raw qualitative estimation. The
PNC asymmetryAD is analyzed in Ref.[32] in the frame-
work of the same model as given in Ref.[29] and therefore
its result remains at very qualitative level.

In our study, we use two realisticNN potentials. One is
the Paris potential[33,34] with a soft repulsive core at short
distances and another is the Hamada-Johnston(HJ) potential
[35] with a hard repulsive core. The long-range meson-
exchange part of theNN interaction in these potentials coin-
cides, and the difference appears at short distances. Our re-
sults with the Paris potential may be useful as a prediction
for possible future experiments, because the Paris potential
was designed specially for proper description of the short-
range phenomena. The results with the HJ potential are
rather illustrative, and we show them in order to link our
calculation with the previous works and to show explicitly
the effect of the short-range correlation as an example of the
extreme hard repulsion.

In calculations of the PNC asymmetries, the usage of
models motivated by QCD(e.g., the effective chiral pertur-
bation model(ChPT) [36,37]) seems to be interesting and
important. In the present status, the ChPT is, however, useful
only for the processes dominated by the long-rangeDI =1
PNC forces(such asAg asymmetry[36]), and it cannot be
applied to the considered case where the short-rangeDI
=0,2 transitions are important. Therefore, we perform the
present calculation only in the framework of the potential
description.

This paper is organized as follows. In Sec. II, we define
observables for the regularM1 andE1 transitions. The for-
mula for the PNC interactions and expressions for the odd-
parity admixtures are given in Sec. III. In Sec. IV, we discuss
the results and report some predictions for the future experi-
ments. The summary is given in Sec. V.

II. REGULAR TRANSITIONS

Near the threshold withEgø10 MeV, the deuteron disin-
tegration gD→np is dominated by theM1 transition D
→ 1S0 and theE1 transition D→ 3PJ. The amplitudes of
theseM1 andE1 transitions read

TlsM1d =
± ieÎk

2M
E drc f

*smsS+ mvS + lpdfn 3 «lgci ,

s1d

TlsE1d =
± ieÎk

2
E drc f

*r«lci , s2d

wherek =nk is the photon momentum,«l is the photon po-
larization vector,l is the photon helicity,M is the nucleon
mass,ms=mp+mn=0.88, andmv=mp−mn=4.71 are the iso-
scalar and isovector nucleon magnetic moments, respec-
tively; e is the electric charge,a=e2/4p=1/137, r is the
proton-neutron relative coordinate,r =r p−r n, lp is the proton
orbital momentum,lp=−ir p3=p=−ir 3 = /2=l /2, ci andc f
are the proton-neutron wave functions in the initial and final
states, defined in the obvious standard notations as

ci = o
lms

klm1su1MilYlmsr̂ dx1Mi

ulsrd
r

,

c f = 4p o
lsms

klmssuJMflYlm
* sp̂dYlmsr̂ dxss

us2S+1KJ:prd
pr

,

s3d

whereu0srd=usrd and u2srd=wsrd are the radial deuterons
andd waves, respectively, andus2S+1KJ:prd sK=S,P, . . .d is
the radial continuum wave function. The spin operatorsS
andS in Eq. (1) are defined as

S= 1
2ssp + snd, S = 1

2ssp − snd. s4d

The upper and lower signs in Eqs.(1) and(2) correspond to
the photon absorption or emission, respectively[21].

In the following consideration, the regular and PNC tran-
sitions from the deuteron bound state(with the radial wave
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function uD) to thenp 3PJ scattering states(with the corre-
sponding radial wave functionuJ) will appear. Our analysis
shows that these radial integrals at considered energies are
not sensitive toJ. Therefore, we can use the “degenerated”
approximation, in whichuJ is calculated with the central
forces. The reason for weak sensitivity of the radial integrals
to J is that the dominant contribution to the radial integrals
comes from relatively large distances, whereu0,1,2 are close
to each other because the phase shifts for different states at
Eg,10 MeV are rather small:udJu,4 degrees. Small dis-
tances atr ,0.5 fm, whereuJ are really different, do not
contribute to the integral becauseuJ are small, and because
of strong suppression fromuDsrd [or ruDsrd]. Direct numeri-
cal calculation shows that atEg&10 MeV, the validity of
this approximation is better than 4–5 %, which is quite rea-
sonable. This approximation allows us to express the corre-
sponding matrix elements in a very transparent form useful
for qualitative analysis. But this approximation cannot be
used for calculation of the odd parity admixtures. In this
case, the spin-orbital and tensor parts of theNN potentials
have to be taken properly into account.

The regularM1 andE1 transition amplitudes expressed
through the radial proton-neutron wave functions have the
following forms:

TlsM1d = − lN
mv

M
IM
0 d−lMi

, IM
0 =E u*s1S0:prdusrddr,

s5d

TlsE1d = iNÎ4p

3 o
m,sMf

k1m1suJMflY1m
* sp̂dfdmldsMi

IE
0

− Î2k2m1su1Milk2m1lu1mlIE
2g, s6d

IE
0 =E u*s3PJ:prdusrdr dr, IE

2 =E u*s3PJ:rdwsrdr dr ,

s7d

whereusrd andwsrd are the radial deuterons andd waves,
respectively, andp is the proton momentum in the center of
mass system.

The normalization factorN in Eqs.(5) and (6) reads

N2 =
2apk

p2 . s8d

The total cross section is related to the amplitudesTl as

sgD→np =
Mp

12p
o
lMi

fuTlsM1du2 + uTlsE1du2g, s9d

uTlu2 =
1

4p
E dVpuTlu2, s10d

whereMi is the deuteron spin projection and

1

2N2 o
lMi

uTlsM1du2 = Smv

M
D2

uIM
0 u2,

1

2N2 o
lMi

uTlsE1du2 = uIE
0u2 +

2

5
uIE

2u2. s11d

In the following, we will assume the average of Eq.(10) in
all the quadratic forms ofTaTb

* which define the observables
in the case where the angular distribution of the final nucleon
is not fixed and skip the symbol “overline,” for simplicity.

The wave functions for the deuteron bound state and the
np scattering states are calculated using the realistic nucleon-
nucleon potentials in two extreme cases: potential with a soft
short-range repulsive core(Paris potential[33,34]) and po-
tential with a hard repulsive core(HJ potential[35]).

Figure 1 shows the comparison of the available experi-
mental data[38,39] and the result of the present calculation
for the total cross section of thegD→np reaction as a func-
tion of the energy excessDEg=Eg−Ethr, whereEthr is the
threshold energyEthr=es1+e /2sMp+Mn−edd.e and e
=2.23 MeV is the deuteron binding energy. The result for the
Paris potential is shown in Fig. 1(a), where each contribution
from theM1 andE1 transitions is also displayed. The differ-
ence between the Paris and HJ potentials in the total cross
section does not exceed 5% and disappears atDEg→0 [see
Fig. 1(b)] because the main contribution into the radial inte-
grals of Eqs.(1) and (2) at low DEg comes from the rela-
tively large distances withr @1 fm, where thenp wave func-
tions calculated for all the realistic potentials are close to
each other. This result is in agreement with those of the

FIG. 1. (Color online) The total cross section of the deuteron
photodisintegration as a function of the energy excessDEg=Eg

−Ethr. (a) Result for the Paris potential. Contributions of theM1 and
E1 transitions are shown by the dashed and dot-dashed curves, re-
spectively. (b) The total cross section for the Paris(solid) and
Hamada-Johnston(dashed) potentials. The experimental data on the
total cross section are taken from Refs.[38] (open circles) and[39]
(filled circles). The data onM1-transition(filled squares) are taken
from Ref. [40].
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previous calculations performed with various realistic poten-
tials (see Ref.[39] for references and quotations).

III. PNC INTERACTION AND PARITY ODD ADMIXTURES

The short-range PNC potential is expressed in terms of
r ,v, andp exchanges, and has the following form[3,41]:

VPNC=
2igr

M HFhr
0t1t2 +

1

2
hr

1st1
z + t2

zd +
1

2Î6
hr

2s3t1
zt2

z

− t1 · t2dG 3 fSh=, frsrdj + s1 + xrdV ¹ frsrdg

−
1

2
hr

1st1
z − t2

zdSh=, frsrdj + ihr
18Ft1 3 t2

2
Gz

S= frsrdJ
+

2igv

M
HFhv

0 +
1

2
hv

1st1
z + t2

zdGfSh=, fvsrdj

+ s1 + xvdV = fvsrdg +
1

2
hv

1st1
z − t2

zdSh=, fvsrdjJ
+

2gphp

Î2M
HFt1 3 t2

2
Gz

S= hpsrdJ , s12d

where

fvsrd . frsrd =
e−mrr

4pr
, fpsrd =

e−mpr

4pr
, V =

i

2
fs1 3 s2g.

s13d

For the strong nucleon-meson coupling constantsgi and xi,
we use commonly accepted values[9] gr=2.79,gv

=8.37,gp=13.45, xr=3.71, and xv=−0.12. The PNC
meson-nucleon coupling constantshi are taken as the best
value of Ref.[3] (in the Weinberg-Salam model). The sensi-
tivity of the observables tohp will be discussed separately.
For convenience, Table I shows all the parameters used in the

present work. Odd-parity admixture statesc̃ to the deuteron
wave functions andnp-scattering states are defined in the
first order of perturbation theory in terms of Schrödinger
equation

fE − HPCgc̃ = VPNCc, s14d

whereHPC is the parity-conserving Hamiltonian andVPNC is
the parity-violating two-body potential. For the odd-parity
1P1 admixture in a deuteron withI =0, we have the following
expression:

c̃s1P1d = i
ũs1P:rd

r
Y1Mi

sr̂ dx00,

ũs1P1:rd = o
i=v,r

2giĥi
0

Î3
E dr8g1

00s− e;r,r8dHF− xi f i8sr8d

+ 2f isr8dS ]

] r8
−

1

r8
DGusr8d − Î2F− xi f i8sr8d

+ 2f isr8dS ]

] r8
+

2

r8
DGwsr8dJ ,

ĥr
0 = − 3hr

0, ĥv
0 = hv

0 , s15d

wherexSSz
is the two nucleon spin function,gl

ISsE; r ,r8d is
the Green function of the radial Schödinger equation for the
np system with the orbital momentuml =1, isospinI =0, spin
S=0, and the energyE=−e.

The odd-parity3P1 admixture withI =1 is dominated by
the p-meson-exchange weak interaction. Nevertheless, for
completeness we also include the contributions of ther- and
v-meson exchanges for theDI =1 transition. The net expres-
sion for the3P1 admixture reads

c̃s3P1d = io
ms

k1m1su1Mil
ũs3P:rd

r
Y1msr̂ dx1s,

ũs3P1:rd =
2
Î3
E dr8g1

01s− e;r,r8dXfgphpfp8 sr8d

− Î2grhr8
1fr8sr8dgFusr8d +

1
Î2

wsr8dG − Î2sgvhv
1

− grhr
1dHF fr8sr8d + 2frsr8dS ]

] r8
−

1

r8
DGusr8d

+
1
Î2
H fr8sr8d + 2frsr8dS ]

] r8
+

2

r8
DGvsr8dJC .

s16d

Figure 2(a) shows the odd-parity1P1 and 3P1 admixture
in the deuteron wave function for the Paris(solid curves) and
HJ (dashed curves) potentials. The main difference between
the two potentials appears at short distances. In case of the
HJ potential, all wave functions vanish in the core region at
r ø rcore srcore=0.48 fmd. This results in a sizable suppression
of 1P1 admixture because the “form factors”fvsrd in Eq. (15)
decrease sharply withr. The functionfpsrd decreases more
slowly. Therefore, the3P1 admixture is not so sensitive to the
choice of the potential model.

Analysis of the odd-parity component in the continuum
np states shows that atEg,10 MeV, the dominant contribu-
tion to the considered asymmetries comes from the3P0 ad-
mixture to the1S0 state, from the1S0 admixture to the3P0
state, and from the3S1 and3D1 components of the3P1 state.
They are defined as follows:

c̃s3P0d = i
Î4p

3 o
m

ũs3P0:prd
pr

s− 1dm+1Y1msr̂ dx1−m, s17d

TABLE I. Weak coupling constants determined from the best
value of Ref.[3]. All values are given in units of 10−6.

hr
0 hr

1 hr
18 hr

2 hv
0 hv

1 hp

−1.14 −0.02 −0.07 −0.95 −0.19 −0.11 0.46
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ũs3P0:prd = − o
i=r,v

Î12giĥi E dr8g1
11sE;r,r8d

3 Fs2 + xidf i8sr8d + 2f isr8dS ]

] r8
−

1

r8
DG

3us1S0:pr8d,

c̃s1S0d = iÎ4p

3

ũs1S0:prd
pr

x00o
m

Y1m
* sp̂d, s18d

ũs1S0:prd = o
i=r,v

2giĥi

Î3
E dr8g0

10sE;r,r8dFxi fv8sr8d − 2f isr8d

3S ]

] r8
+

1

r8
DGus3P0:pr8d,

c̃s3S1d = iÎ4p
ũs3S1:prd

pr
x1Mfo

m

Y1m
* sp̂d, s19d

ũs3S1:prd = −
2
Î3
E dr8g0

01sE;r,r8dHgphpfp8 sr8d

− Î2grhr8
1fr8sr8d + Î2sgvhv

1 − grhr
1d

3F fr8sr8d + 2frsr8dS ]

] r8
+

1

r8
DGJus3P1:pr8d,

c̃s3D1d = i4p
ũs3D1:prd

pr o
ms

k2m1su1MflY2msrdx1so
m

Y1m
* sp̂d,

ũs3D1:prd = −Î2

3
E dr8g2

01sE;r,r8dHgphpfp8 sr8d

− Î2grhr8
1fr8sr8d + Î2sgvhv

1 − grhr
1d

3F fr8sr8d + 2frsr8dS ]

] r8
−

2

r8
DGJus3P1:pr8d,

ĥr = hr
0 −Î2

3
hr

2, ĥv = hv
0 , s20d

where E=p2/M. The Green functionsgsE; r ,r8d in Eqs.
(15)–(18) are expressed through the regular and irregular so-
lutions of the corresponding Schrödinger equations in the
standard way. For the3S1 and3D1 states, we use the spectral
representation

Mgl
01sE;r,r8d =

ulsrdulsr8d
E + e

+
2

p
E dk

us3K1:krdus3K1:kr8d
E − Ek

,

s21d

with eul
2 dr=1, K=S,D, andEk=k2/M, and keeping only the

first term, because the second term does not contribute to the
M1 transition. In this sense, our3S1,

3D1 odd-parity admix-
tures are the only part of the corresponding total wave func-
tions which contribute to the PNCM1 transition.

Figure 2(b) shows the odd-parity3P0,
1S0,

3S1, and 3D1
admixtures for two potentials atDEg=0.1 MeV. The 3D1
function is scaled additionally byÎPD, where PD is the
D-state probability in a deuteron, because the corresponding
M1 transition is suppressed by this factorsPD

Paris

=0.0577,PD
HJ=0.0697d. Again, one can see that in case of

hard-core potentials, all wave functions vanish in the core
region, which leads to the relative suppression of the odd-
parity 3P0 and 1S0 components, whereas the3S1 and 3D1
configurations defined mainly by the long-rangepNN inter-
action are not sensitive to the potential atr . rcore. In Fig.
2(c), we show the continuum wave functions atDEg

=1 MeV. The main difference as compared with the previous
case appears in the1S0 odd-parity admixture. It oscillates
with r more strongly and has a node atr .3.5 fm and at
DEg.1 MeV. This oscillating behavior is manifested in the
correspondingM1 transition.

IV. ASYMMETRIES

The asymmetry of the deuteron disintegration in reaction
with circularly polarized photon beam,

ARL =
sl=1 − sl=−1

sl=1 + sl=−1
, s22d

consists of seven terms

ARL = o
i=1

4

Vi
g + o

j=1

3

p j
g, s23d

defined by the interplay of dipole transitions caused by the
parity-conserved and parity nonconserved interaction as fol-
lows:

FIG. 2. The odd-parity admixture to the proton-neutron wave
functions calculated with the Paris(solid curves) and HJ(dashed
curves) potentials.(a) Results for the deuteron wave functions.(b)
and (c) Results for the continuumnp wave functions atDEg=0.1
and 1 MeV, respectively.
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V1
g = 2RefT*sM1:D → 1S0dTsE1:D → 3P̃0dg/N, s24ad

V2
g = 2RefT*sM1:D → 1S0dTsE1:1P̃1 → 1S0dg/N,

s24bd

V3
g = 2RefT*sE1:D → 3P0dTsM1:D → 1S̃0dg/N, s24cd

V4
g = 2RefT*sE1:D → 3PJdTsM1:1P̃1 → 3PJdg/N,

s24dd

p1
g = 2RefT*sE1:D → 3PJdTsM1:3P̃1 → 3PJdg/N,

s24ed

p2
g = 2RefT*sE1:D → 3P1dTsM1:D → 3S̃1dg/N, s24fd

p3
g = 2RefT*sE1:D → 3P1dTsM1:D → 3D̃1dg/N,

s24gd

N =
1

2N2TrfTT*g.

The explicit forms in terms of the radial integrals read

V1
g = −

2

3Î3

1

N
mv

M
ReFIM

0* E dr rũ*s3P0:prdfusrd − Î2wsrdgG ,

s25ad

V2
g = −

2
Î3

1

N
mv

M
ReFIM

0* E dr ru*s1S1:prdũs1P1:rdG ,

s25bd

V3
g =

2

3Î3

1

N
mv

M
ReFsIE

0* − Î2IE
2*d E drũ*s1S0:prdusrdG ,

s25cd

V4
g =

2
Î3

1

N
mv

M
ReFsIE

0* − Î2IE
2*d E dru*s3PJ:prdũs1P1:rdG ,

s25dd

p1
g = −Î8

3

1

N
ms

M
ReFSIE

0* +
1
Î2

IE
2*D

3E dru*s3PJ:prdũs3P1:rdG , s25ed

p2
g =Î8

3

1

N
ms

M
ReFSIE

0* +
1
Î2

IE
2*D E drũ*s3S1:prdusrdG ,

s25fd

p3
g = −Î2

3

1

N
ms − 3/2

M
ReFSIE

0* +
1
Î2

IE
2*D

3E drũ*s3D1:prdwsrdG . s25gd

Another asymmetry is related to the deuteron disintegration
with unpolarized photon and polarized deuteron:

AD =
sMD=1 − sMD=−1

sMD=1 + sMD=−1
, s26d

whereMD=1s−1d corresponds to the deuteron spin projec-
tion parallel (antiparallel) to the direction of the beam mo-
mentum. This asymmetry has also seven components

AD = o
i=1

4

Vi
D + o

j=1

3

p j
D. s27d

Three of them,V1,2,3
D , are equal with the opposite sign to the

correspondingVg asymmetries

V1
D = − V1

g, V2
D = − V2

g, V3
D = − V3

g. s28d

In these cases, the spin of the final states is zero and the
correspondingM1 transitions are proportional tod−lMD

. The
other four asymmetries are expressed as

V4
D =

2
Î3

1

N
mv

M
ReFsIE

0* − Î2IE
2*d E dru*s3PJ:prdũs1P1:rdG ,

p1
D = −Î2

3

1

NReFSms − 1

M
IE
0* − Î2

ms − 1/4

M
IE
2*D

3E dru*s3PJ:prdũs3P1:rdG ,

p2
D = −

1

2
p2

g, p3
D = −

1

2
p3

g. s29d

The most important is the modification ofp1
D. As we will see

later, the spin transitions inp1 andp2 proportional toms are
almost canceled inAg, but not in AD. Therefore, the PNC
weak interaction of thep exchange may be clearly mani-
fested only in theAD asymmetry.

V. RESULTS AND DISCUSSION

We first discuss theAg asymmetry. AtEg→Ethr, the V1
and V2 terms only contribute to the total asymmetry. The
signs of them are opposite and therefore their interference is
destructive. The sign of the total asymmetry is defined by the
dominant term. The strength ofV1,2 is determined by the
values of the corresponding PNC weak coupling constants
and the behavior of the proton-neutron wave function at
short distances. When the functionsusrd and us1S0:prd are
smooth atr &1 fm (e.g., in the zero-range approximation),
one can neglect derivativesu8 in Eqs. (15) and (17). Using
the approximate expression for the Green function forr8, r
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and E,0: g1sE: r ,r8d.−r82usr −r8d /3r, neglectingw and
w8, and taking into account the fact that the main contribu-
tion to the odd-parity admixturesũs1P1: rd and ũs3P0:prd
comes from the terms proportional tofv8sr8d, one gets the
following estimate:

V1
g

V2
g . −

Shr
0 −Î2

3
hr

2Ds2 + xrd + hv
0s2 + xvd

3hr
0xr − hv

0xv

. − 0.18.

s30d

This estimation coincides with the result of the plane-wave
Born approximation given in Ref.[2] and shows the domi-

nance of the3S1→ 1P̃1 PNC transition withDI =0 compared

to the1S0→ 3P̃0 transition withDI =0,2. Incase of the real-
istic NN potential, the radialnp wave functions increase rap-
idly from zero at r =0 (for the hard-core potential fromr
=rcore) to the finite value atr .1 fm. Since fv and ufv8u de-
crease withr, the dominant contribution to the integrals in
Eqs.(15) and (17) comes from the region atr =0.6–1.2 fm.
This leads to increase ofuV1

g /V2
gu and to decrease of the

asymmetriesuARLu anduADu. Of course, we cannot neglect the
terms with derivativesu8 because they are essential just in
the region of the dominant contribution of the corresponding
integrals. In our caseu8srd ,w8srd ,u8s1S0: rd at r &1.2 fm are
positive and large, especially for the hard-core HJ potentials.
In Eq. (15), the term proportional tou8srd gives a construc-
tive contribution and enhanceuV2u, whereas in Eq.(17),
unp8 sprd contributes destructively and suppressesuV1u. As a
result, we get the ratio ofV1

g /V2
g close to the estimate of Eq.

(30).
Figure 3(a) shows the asymmetriesARL as a function of

DEg together with the partial asymmetriesVi andpi. When
DEg increases, the PNCM1 transitions become important. At
low DEg, the asymmetriesV3

g caused by theDI =0,2 PNC
forces, andV4

g generated byDI =0 forces are close to each
other numerically with the same sign. However, atDEg

,0.5 MeV,V3
g decreases, changes sign, and then its absolute

value becomes much smaller thanuV4
gu, and it does not affect

the total asymmetry. In the limit ofDEg→0, the present
result ofALR=3.35310−8 is in agreement with the previous
calculations for the circular photon polarization in thenp
→Dg reaction(Pg=s1.8–5.6d310−8 [17–19]).

The PNC transitions withDI =1 sDS=0d are described by
thep1

g, p2
g, andp3

g terms, wherep1,2
g terms are dominant and

they are mostly determined by the weakp-meson-exchange
interaction. In Fig. 3(a), we show thep1

g asymmetry, the sum
of p2

g+p3
g-terms, and the coherent sum of all theDI =1 tran-

sitions denoted aspg. At DE,10 MeV, the absolute values
of p1

g andp2
g are the biggest among the othersVid terms and

close to each other. But their signs are opposite. Therefore,
the coherent sum is rather small:

p12
g = p1

g + p2
g , mssĨM

1 − ĨM
2 d , msOsPDd, s31d

where ĨM
1 and ĨM

2 are the radial integrals for theM1 transi-
tions in Eqs.(25e) and(25f), respectively. The finite value of
p12

g is mainly caused by the nonsymmetrical contribution of

the deuterond wave in p1
g, and p2

g and it almost vanishes
whenPD=0. In case of the zero-range approximation(ZRA)
in the limit DEg→0, this cancellation is exact[29]. In the
real case the total contribution of theDI =1 PNC interaction
spgd is finite. However, its absolute value is smaller by a
factor of 27 than the result of Ref.[28]. Therefore, it seems
to be difficult to get information about theDI =1 PNC forces
from ARL

g .
The coherent interference of theV1

g, V2
g, and V4

g terms
leads to a sharp decrease ofARL down to zero atDEg

.1.3 MeV (in case of the Paris potential), and a change of
sign from positive to negative. Figure 3(b) shows the total
asymmetryARL for the two potentials. For illustration, we
also show the prediction of Ref.[29] for the modified ZRA
model. One can see that the behavior of the asymmetryARL
is similar qualitatively for the quite different models. In case
of the HJ potential, the asymmetry is smaller. The difference
between two potentials at low photon energyDEg

=0.01–1 MeV amounts to a factor of 2.5–3. The intercept
ARL=0 is shifted towards lower energies. The prediction of
the modified ZRA model[29] is close qualitatively to those
of the Paris potential but the absolute value ofARL is much
greater and the position of the intercept is shifted towards
higher energies. This comparison with the HJ potential and
the modified ZRA model has a rather illustrative character
because the realistic potentials with a soft repulsive core are
commonly accepted for more adequate description of the
short-range phenomena. From this point of view, only the
prediction obtained with the Paris potential seems to be re-
alistic.

FIG. 3. Asymmetry of the deuteron disintegration in the reaction
gD→pn with circular polarized photon and unpolarized deuteron
as a function of the energy excessEg−Ethr. (a) Relative contribution
of the different odd-parity transitions for the Paris potential. The
sign in the bracket denotes the sign of the corresponding term.(b)
Comparison of the total asymmetry for the Paris(solid), Hamada-
Johnston(dashed) potentials, and the modified ZRA of Ref.[29]
(dot-dashed).
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Figure 4(a) shows theAD asymmetry as a function of
DEg. There are two main differences compared to theARL
asymmetry. First, the componentsV2 andV4 are of the same

sign. Second, there is no cancellation between the3P̃1

→ 3PJ andD→ 3S1
, transitions. Their coherent sum now be-

haves as

p12
D = p1

D + p2
D , sms − 1

2dĨM
1 , s32d

and becomes a significant part of the asymmetry at large
DEg. The sum of all transitions generated by theDI =1 PNC
forcespD=p12

D +p3
D has the same sign as theV2 andV4 com-

ponents. This leads to a nonmonotonical behavior ofuADu
with a local minimum atDEg.2 MeV, but the sign ofAD
remains to be the same at 0,DEgø10 MeV and negative.
In Fig. 4(b), we compare the results forAD calculated with
the two potentials. The difference between the two asymme-
tries decreases with the increasing photon energy, however,
the two results are similar in shape.

The weakp-meson exchange is mostly important at large
DEg. For illustration, Fig. 5 shows the asymmetryAD calcu-
lated as a function ofDEg at different values ofhp which
cover its theoretical uncertainty: 0øhpø2.5hp

best, wherehp
best

is the best value of DDH. One can see that the constructive
interference between weakp and vector meson-exchange re-
sults in increasing the absolute value ofAD with increasing
hp, and leads to a shift in the position of the local minimum
towards the lower energies. The absolute value ofuADu in-
creases by a factor of 3 whenRp changes from 0 to 2.5 at
1&DEg&10 MeV.

Using the energy dependence ofARL and AD, one can
obtain the relations between the weak coupling constants.
Thus, the standard representations of asymmetries throughhi
are

ARL = ar
0grhr

0 + ar
2grhr

2 + av
0gvhv

0 + av
1sgvhv

1 − grhr
1d

+ ar8
1grhr8

1 + apgphp, s33d

AD = br
0grhr

0 + br
2grhr

2 + bv
0gvhv

0 + bv
1sgvhv

1 − grhr
1d + br8

1grhr8
1

+ bpgphp. s34d

In the ideal case, having the asymmetries at six energy points
and using the energy dependence ofai andbi one extractshi
unambiguously. In practice, the number of “independent”
equations for determination ofhi is smaller, because some of
ai sbid are rather weak. The energy dependence of the coef-
ficientsai andbi is shown in the Figs. 6(a) and 6(b), respec-

FIG. 4. Asymmetry of the deuteron disintegration in thegD
→pn reaction with polarized deuteron and unpolarized photon as a
function of the energy excessEg−Ethr. (a) Relative contribution of
different odd-parity transitions for the Paris potential. Notation is
the same as in Fig. 3(a). (b) Comparison of the asymmetry for the
Paris and Hamada-Johnston potentials.

FIG. 5. Asymmetry of the deuteron disintegration in thegD
→pn reactionsADd with different values of the PNCp-exchange
coupling constantR=hp /hp

best=0,1,2.5, wherehp
best is the best

value of Ref.[3].

FIG. 6. (a) The quantitiesai of Eq. (35). (b) The quantitiesbi of
Eq. (36). Only the large components are displayed. Results are ob-
tained with the Paris potential.

M. FUJIWARA AND A. I. TITOV PHYSICAL REVIEW C 69, 065503(2004)

065503-8



tively. For simplicity, we display only the dominant terms.
There are several points, whereARL and AD are particu-

larly interesting. AtDE→0, where the absolute values of
both the asymmetries have a maximum, we get the following
relations:

ARL . − s4.82grhr
0 + 7.43grhr

2 − 0.99gvhv
0d 3 10−3,

s35d

AD . − ARL. s36d

The point DE,10 MeV can be used for analyzing the
p-meson-exchange contribution inAD:

AD . s1.46grhr
0 − 0.36grhr

2 + 0.27gvhv
0 − 0.43gphpd 3 10−3.

s37d

The coefficientbp is governed by the long-range interactions
and therefore is not sensitive to the model of theNN inter-
action at short distances.

The position of interceptARL=0 at DEg.1.3 MeV may
be also used for fixing the relation between the coupling
constants, but the experiment to find this position would be
very difficult. On the other hand, another relation may be
obtained when one of the term in Eqs.(33) and (34) van-
ishes, but asymmetries have a finite and reasonable value.
Thus, we have atDEg.0.4, ar

0=0, and therefore

ARLsDEg . 0.4 MeVd . − s3.13grhr
2 − 0.67gvhv

0d 3 10−3.

s38d

The relations(35)–(38) are derived using the energy de-
pendence of the coefficientsai andbi in Eqs. (33) and (34)
shown in Fig. 6. The latter is defined by the short-range
behavior of theNN forces, and is obtained with the Paris
potential which has been, in particular, designed for the ad-
equate description of various phenomena sensitive to the
nucleon interaction at short distances. On the other hand, the
Paris potential cannot describe the neutron-proton singlet
scattering length which is its obvious disadvantage. Never-
theless, we are convinced that our results for the Paris poten-
tial would coincide within,20–30 % accuracy with the pre-
dictions obtained with the other soft-core realistic potentials.
This level of accuracy corresponds to the difference between
the present result ofARLsEg=Ethrd and the previous calcula-
tions of Pg with different realistic potentials[18].

VI. SUMMARY

We have analyzed the energy dependence of two PNC
asymmetries in the deuteron photodisintegration: one with a
circularly polarized photon beamsARLd and another with a
polarized deuteron targetsADd. We show that by combining
the measurements ofARL and AD, valuable information on
the PNC nuclear forces may be obtained; namely, using the
energy dependence ofARL and AD, three constraints(equa-
tions) for determination of the PNC coupling constants will
be obtained.

Finally, we stress that the present investigation is a very
first step. It would be important to verify if the predicted
asymmetries are universal in the framework of other realistic
potentials invoking the meson-exchange currents and relativ-
istic effects[42]. The role of the higher multipole transitions
at higher energies is not quite clear.

After completing this paper, the work by Liu, Hyun, and
Desplanques has appeared in Ref.[43]. The authors have
analyzed theARL asymmetry using the realistic Argonne
AV18 potential. In spite of some difference between our
models, the results of both papers are consistent with each
other. Reference[43] givesARLsDEg.0d. +2.53310−8 and
ARL changes its sign atDEg,1.5 MeV. The contribution of
the weakp-exchange transition is suppressed dynamically
and it is a factor of about 30 smaller than the prediction of
Ref. [28].
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