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The parity-nonconserving asymmetry in the deuteron photodisintegration,gW +d→n+p, is considered with
the photon energy ranged up to 10 MeV above the threshold. The aim is to improve upon a schematic estimate
assuming the absence of tensor, as well as spin-orbit forces in the nucleon-nucleon interaction. The major
contributions are due to the vector-meson exchanges, and the strong suppression of the pion-exchange contri-
bution is confirmed. A simple argument, going beyond the observation of an algebraic cancellation, is pre-
sented. Contributions of meson-exchange currents are also considered, but found to be less significant.
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I. INTRODUCTION

Some interest, both experimental and theoretical, has re-
cently been shown for the study of parity nonconservation in
the deuteron photodisintegration by polarized light. Histori-
cally, it was its inverse counterpart: the net polarization in
radiative thermal neutron capture by proton,n+p→d+g,
which attracted the first attention[1]. The experimental study
was performed by the Leningrad group, taking advantage of
new techniques measuring an integrated current[2]. The
nonzero polarization obtained,Pg=−s1.3±0.45d310−6, mo-
tivated many theoretical calculations in the frame of strong
and weak interaction models known in the 1970s(see, for
instance, Refs.[3–5]. The theoretical results were consis-
tently within the rangePg=s2–5d310−8, which is smaller
than the measurement by a factor of 30 or more in magnitude
and, moreover, of opposite sign. The difficulty in understand-
ing the measurement and, also perhaps, the novelty of the
techniques, which have been extensively used later on, led to
a special reference to this work as the “Lobashov experi-
ment.”

Later estimates with modern nucleon-nucleonsNNd po-
tentials, both parity-conserving (PC) and parity-
nonconserving(PNC), give values ofPg roughly within the
same theoretical range as above. On the experimental side,
new results were reported in the early 1980s by the same
Leningrad group, giving Pgø5310−7 [6] and Pg

=s1.8±1.8d310−7 [7]. Practically, these results indicate an
upper limit of Pg, which is not very constrictive. Since the
Leningrad group’s last report, the “Lobashov experiment”
has long been forgotten by both experimentalists and theo-
rists. Recent experiments, such as elasticpW-p scattering
(TRIUMF [8]) and polarized thermal neutron capture by pro-
ton (LANSCE [9]), which directly address the problem of

PNC NN interactions, and quasielasticeW-d scattering(MIT-
Bates[10,11]), which indirectly involves these interactions,
have however raised a new interest for the study of PNC
effects in few-body systems. In what could be a golden age
for these studies, the “Lobashov experiment” is again
evoked.

While it seems that there is not much prospect for per-
forming the “Lobashov experiment” in the near future, the
inverse process, on the contrary, could be more promising. In
this reaction,gW +d→n+p, where a deuteron is disintegrated
by absorbing a circularly polarized photon, it is expected
that, near threshold, the PNC asymmetrysAgd is equal to the
polarization in the “Lobashov experiment.” This last one can
thus be tested from a different approach.

The asymmetryAg in the deuteron photodisintegration
was first calculated by Lee[12] up to the photon energy
vg.3.22 MeV, which is 1 MeV above the threshold. In this
energy domain, where the dominant regular transition isM1,
the result was within the theoretical range ofPg . Later on,
Oka extended Lee’s work, up tovg.35 MeV [13]. Though
the cross section still receives a contribution from theM1
transition, the dominant contribution comes from theE1
transitions. This offers a pattern of PNC effects different
from the one at very low photon energy. It was found thatAg

shows a great enhancement atvg*5 MeV, mainly due to
the PNCp-exchange contribution. If such an enhancement
was observed in the experiment, it would provide an impor-
tant and unambiguous determination of the weakpNN cou-
pling constanthp

1. However, a recent schematic calculation
of Ag by Khriplovich and Korkin[14], partly suggested by
one of the present authors, showed a critical contradiction to
Oka’s result, with a huge suppression ofAg at the energies
vg*3 MeV.

On the experimental side, a measurement of the asymme-
try Ag in gW +d→n+p was considered in the 1980s by Earle
et al. [15,16], but no sensitive result was reported. However,
due to advances in experimental techniques and instrumen-
tation, the measurement ofAg becomes more feasible nowa-
days and several groups at JLab[17], IASA (Athens), LEGS
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sBNLd, TUNL, and SPring-8 show interest in such a mea-
surement. It is therefore important to understand and im-
prove previous estimates.

In this work, we carefully reexamine thegW +d→n+p pro-
cess with two main purposes:

(1) To determine how the enhancement of thehp
1 contri-

bution in Oka’s results will change when the calculation is
completed with missing parity-admixed components in the
final state, in particular in the3P1 channel. The role of this
last one was revealed by the schematic estimate of Ref.[14].

(2) To determine the uncertainty of Khriplovich and Ko-
rkin’s calculation in which very simple wave functions are
used.

It is straightforward to deal with point(1). In Ref. [14], a
nice and simple argument about the cancellation of thehp

1

contribution from the final3P0,
3P1, and 3P2 states along

with their parity-admixed partners was given. However, the
argument assumed the absence of tensor as well as spin-orbit
forces, which are important components of theNN interac-
tion. In order to address these two points(missing compo-
nents and simplicity of the wave functions), we elaborate our
calculation with the Argonnev18 NN interaction model. We
thus include the1S0,

3P0,
3P1,

3P2-
3F2 channels, deuteronD

state, and all their parity-admixed partners consistently. They
represent a minimal set of states that allows one to verify the
results of the schematic model, as well as to include the
effect of the tensor and spin-orbit forces that manifest differ-
ently in these various channels. We also include other chan-
nels, whose role is less important however. As for theE1
operator, we employ the Siegert’s theorem[18], which takes
into account the contribution of some PC and PNC two-body
currents. The small photon energy considered heresvg

ø12 MeVd justifies this usage. Since there is no theorem
similar to the Siegert one for theM1 transition operator,
two-body currents have to be considered explicitly for both
the PC and PNC parts. Adopting the Desplanques, Dono-
ghue, Holstein(DDH) potential of the weak interaction[19],
the asymmetryAg will be expressed in terms of the weak
pNN, rNN andvNN coupling constants, with corresponding
coefficients indicating their relative importance.

This paper is organized as follows. In Sec. II, we review
the basic formalism underlying the calculation, which in-
volves both one- and two-body currents. In Sec. III, we show
the results and some discussions follow. Particular attention
is given to a comparison with earlier works and to new con-
tributions from PNC two-body currents. A simple argument
explaining the suppression of the pion-exchange contribution
is also given. Conclusions are given in Sec. IV. The Appen-
dix contains expressions ofE1 andM1 transition amplitudes
due to the PNC two-body currents considered in the present
work.

II. FORMALISM

For a photodisintegration of an unpolarized target, the
asymmetry factor is defined as

Ag ;
s+ − s−

s+ + s−
,

wheres+s−d denotes the total cross section using right-(left-)
handed polarized light. By spherical multipole expansion, it
could be expressed as

Ag =

2 Reo
f,i,J

fFEJ
* F̃MJ5

+ FMJ
* F̃EJ5

g

o
f,i,J

fFEJ
2 + FMJ

2 g
. s1d

In this formula, the normal electromagneticsEMd and PNC-

induced EM form factors,FXJ andF̃XJ5
, with X andJ denot-

ing the type and multipolarity of the transition between a
specific initialsid and finalsfd states, are defined in the same
way as Refs.[20,21]. They depend on the momentum trans-
fer q, which equals to the photon energyvg in this current

case. The form factorsF̃XJ5
vanish (and so does the asym-

metry) unless some PNC mechanism induces parity admix-
tures of wave functions and axial-vector currents.

In this work, we consider the photon energyvg=q up to
10 MeV above the threshold. As the long wavelength limit
kq rl!1 is a good approximation, the inclusion of only di-
pole transitions, i.e.,E1 andM1, is sufficient. This leads to
10 possible exit channels connected to the deuteron state by
angular momentum considerations. Among them,1S0, via the
M1 transition, and3P0,

3P1,
3P2-

3F2, via theE1 transitions,
dominate the cross section.

The transverse multipole operators assume a full knowl-
edge of nuclear currents. This requires, besides the one-body
currentj s1d from individual nucleons, a complete set of two-
body exchange currents(ECs) j s2d, which is consistent with
the NN potential. These ECs are usually the sources of the-
oretical uncertainties, because theNN dynamics is still not
fully understood. While there is no alternative for the evalu-
ation of FMJ, the Siegert theorem[18] does allow one to
transform the evaluation ofFEJ into the one of charge mul-
tipole FCJ. The fact that the PCNN interaction does not give
rise to exchange charges atOs1d removes most of the uncer-
tainties related to exchange effects: knowledge of the one-
body chargers1d is sufficient for a calculation good to the
order of 1/mN.

In the framework of impulse approximation and using the
Siegert theorem, one gets, for the deuteron photodisintegra-
tion (Ef −Ei =vg=q andJi =1),

FE1
sSdsqd f,i =

Ei − Ef

q
Î 2

2Ji + 1
kJf iE d3xf j1sqxdY1sVxdgrs1dsxdiJil

+
1

q

1
Î2Ji + 1

kJf iE d3x = 3 f j1sqxdY111sVxdg · j spin
s1d sxdiJil . −

q

3Î2p
kJf io

i

êi xiiJil ; −
q

2Î6p
kE1s1dl, s2d
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FM1
s1d sqd f,i = i

1
Î2Ji + 1

kJf iE d3xf j1sqxdY111sVxdg · j s1dsxdiJil . −
q

3Î2p
kJf io

i

1

2mN
fêixi 3 pi + m̂isigiJil ; −

q

2Î6p
kM1s1dl,

s3d

where êi =es1+t i
zd /2 and m̂i =esms+mvt i

zd /2 with ms=0.88
andmv=4.70;Y andY are the spherical and vector spherical
harmonics. In these expressions, the approximated results are
obtained by replacing the spherical Bessel functionj1sqxd
with its asymptotic form asq→0, i.e., qx/3, at the long
wavelength limit and keeping terms linear inq (the lowest
order); they could be related to the forms ofkE1s1dl and
kM1s1dl often adopted in the literature. In our numerical cal-
culation, the identity relations are employed instead. Note
that the one-body spin current is conserved by itself and not
constrained by current conservation. In Eq.(2), this one-

body spin current(2nd line) is of higher order inq compared
with the Siegert term(1st line), however, it is kept for com-

pleteness. As for the PNC-induced form factorsF̃E15

sSd and

F̃M15

s1d , one only has to replace either the initial or final state

by its opposite-parity admixture,kJfu˜ or uJil˜ , and add a factor
“ i” for E1 or “−i” for M1 matrix elements(in relation with
our conventions).

The nonvanishing matrix elements for the five dominant
exit channels are thus

(1) 1S0:

kM1s1dl = −
mv

mN
E drU*s1S0dUds3S1d, s4d

kE15
s1dl =

i

3
E r dr Ũ*s3P0dfUds3S1d − Î2Uds3D1dg −

i
Î3
E r dr U*s1S0dŨds1P1d. s5d

(2) 3P0:

kE1s1dl =
1

3
E r dr U*s3P0dfUds3S1d − Î2Uds3D1dg, s6d

kM15
s1dl = i

mv

mN
E drFŨ*s1S0dUds3S1d −

1
Î3

U*s3P0dŨds1P1dG − iÎ2

3

ms − 1/2

mN
E dr U*s3P0dŨds3P1d. s7d

(3) 3P1:

kE1s1dl = −
1
Î3
E r dr U*s3P1dFUds3S1d +

1
Î2

Uds3D1dG , s8d

kM15
s1dl = − i

mv

mN
E dr U*s3P1dŨds1P1d − i

ms + 1/2
Î2mN

E dr U*s3P1dŨds3P1d − i
Î2ms

mN
E dr Ũ*s3S1dUds3S1d

+ i
ms − 3/2
Î2mN

E dr Ũ*s3D1dUds3D1d. s9d

(4) 3P2- 3F2:

kE1s1dl =
Î5

3
E r drHU*s3P2dFUds3S1d −

1

5Î2
Uds3D1dG +

3Î3

5
U*s3F2dUds3D1dJ , s10d
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kM15
s1dl = − iÎ5

3

mv

mN
E drFU*s3P2dŨds1P1d −Î3

5
Ũ*s1D2dUds3D1dG + iÎ5

6

ms − 1/2

mN
E drFU*s3P2dŨds3P1d

+
3
Î5

Ũ*s3D2dUds3D1dG . s11d

The results for the remaining five less important channels
s3S1–3D1,

1P1,
1D2,

3D2d will be included in numerical
works. Ther-weighted radial wave functions for scattering
and deuteron states,U andUd, along with their parity admix-

tures, Ũ and Ũd, are obtained by solving the Schrödinger
equations. The details can be found in Ref.f21g.

By taking the square of normal EM form factors(PC re-
sponse function) or the product of normal and PNC-induced
ones(PNC response function), we can directly compare Eqs.
(5a)–(5h) in Ref. [13]. After removing factors due to wave-
function normalizations, the differences are

(1) The parity admixture of the scattering3P1 state is

included in our work: The admixturesŨs3S1d andŨs3D1d are
solved from the inhomogeneous differential equations with
the source term modulated byUs3P1d. They are not orthogo-
nal to the deuteron state and thus should not be ignored.
Actually, they are required to ensure the orthogonality of the
deuteron and the3P1 scattering states once these are allowed
to contain a parity-nonconserving component.

(2) The terms involving the scalar magnetic moment are
different: Looking for instance at theM1 matrix element

betweenUs3P1d and Ũds3P1d, the effectiveM1 operator is
proportional tomsS+L /2. By the projection theorem,kSl
=kLl, the overall factor should bems+1/2, notms+1 as in
Ref. [13].1 It looks as if this work ignored the 1/2 factor in
front of theL operator.

Both points involve the spin-conserving PNC interaction,
which is dominated by the pion exchange. Therefore, how
these differences change the sensitivity ofAg with respect to
hp

1 will be elaborated in the next section.
Now we discuss, in two steps, the extra contributions due

to ECs when one tries to go beyond the impulse approxima-
tion together with the Siegert-theorem framework.

First, when PC ECs are included, their contribution toM1
matrix elements,FM1

s2d , definitely needs to be calculated. On
the other hand, as PC exchange charges are higher order in
the nonrelativistic limit,FE1

sSd is supposed to take care of most
two-body effects, and the remaining contributionDFE1

s2d can
be safely ignored. This argument also applies for the PNC-
induced form factors involving the PC ECs: one needs to

considerF̃M15

s2d but can leave outDF̃E15

s2d .
Second, the inclusion of PNC ECs, to the first order in

weak interaction, only affects the PNC-induced form factors.

The contributionF̃M15

s28d is calculated by using theM1 operator

constructed from the PNC ECs and unperturbed wave func-
tions (so we use a prime to remind us of the difference from
parity-admixture contributions). One special feature of PNC
ECs is that they do have exchange charges ofOs1d [22].

Therefore, one should include them inF̃E15

sS8d.
As a last remark, we note one advantage of nuclear PNC

experiments in processes like photodisintegration or radia-
tive capture. The real photon is “blind” to the nucleon ana-
pole moment, which could contribute otherwise to PNC ob-
servables in virtual photon processes. Because thisP-odd
T-even nucleon moment is still poorly constrained both theo-
retically and experimentally, the interpretation of real-photon
processes, like the one considered here, is thus compara-
tively easier.

III. RESULTS AND DISCUSSIONS

For practical purposes, we use the Argonnev18 [23]
sAv18d and DDH [19] potentials as the PC and PNCNN
interactions, respectively. In comparison with earlier works
in the 1970s or the 1980s, a strong interaction model like
Av18 offers the advantage that the singlet-scattering length is
correctly reproduced, due to its charge dependence. Correct-
ing results in this respect is therefore unnecessary.

The total cross section is plotted in Fig. 1 as a function of
the photon energy and labeled as “IA+Sieg.” Its separate
contributions fromE1 andM1 transitions are also shown on
the same plot(labeled accordingly). The M1 transition only
dominates near the threshold region; as the photon energy
reaches about 1 MeV above the threshold, theE1 transition
overwhelms. Away from the threshold, the calculated results
agree well with both experiment and existing potential-
model calculations up to 10 MeV[24]. Such a good agree-
ment shows the usefulness of the Siegert theorem, by which
most of the two-body effects are included. Compared with
the curve labeled as “IA,” the result of impulse approxima-
tion, one sees the increasing importance of these two-body
contributions asvg gets larger. On the contrary, becauseM1
matrix elements are purely one-body, we expect our near-
threshold results smaller than experiment by about 10%[24].
This discrepancy, originally found in the radiative capture of
thermal neutron by proton(the inverse of deuteron photodis-
integration), requires various physics such as exchange cur-
rents and isobar configurations, to be fully explained. Here,
we qualitatively estimate a 5% error for the calculation of
FM1 near threshold.

When calculating the PNC-induced matrix elements with
the DDH potential, we use the strong meson-nucleon cou-
pling constants:gpNN=13.45, grNN=2.79, andgvNN=8.37;

1We also note that unlike our notationms,v is used to denote the
anomalous magnetic moments in Ref.[13].
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and meson masses(in units of MeV): mp=139.57, mr

=770.00, andmv=781.94. The resulting asymmetry is then
expressed in terms of six PNC meson-nucleon coupling con-
stantsh’s as

Ag = c1hp
1 + c2hr

0 + c3hr
1 + c4hr

2 + c5hv
0 + c6hv

1 , s12d

where the six energy-dependent coefficientsc1. . .6 show the
sensitivity to each corresponding coupling. It turns out that,
for the energy range considered here,c2,c4,c5@c1@c3,c6.
This implies that the asymmetry has a larger sensitivity to the
isoscalar and isotensor couplings than to the isovector ones.
The detailed energy dependences of these “large” and
“small” coefficients are shown in Fig. 2.

In principle, these results are independent. In practice
however, they can be shown to depend on three quantities,
reflecting the dominant role of the variousS↔P neutron-
proton transition amplitudes at low energy. These amplitudes
have some energy dependence, which is essentially deter-
mined by the best known long-range properties of strong
interaction models. They can therefore be parametrized by
their values at zero energy[1,25,26], including at the deu-
teron pole. To a large extent, they can be used independently
of the underlying strong interaction model, quite in the spirit
of effective-field theories that they anticipated[27]. In the
case of the Av18 model employed here, they are given by

mNlt = − 0.043hr
0 − 0.022hv

0 ,

mNls = − 0.125hr
0 − 0.109hv

0 + 0.102hr
2,

mNC = 1.023hp
1 + 0.007hr

1 − 0.021hv
1 . s13d

The largest corrections to the above approach occur for the
PNC pion-exchange interaction which, due to its long range,
produces some extra energy dependence and sizableP↔D
transition amplitudes. They can show up when the contribu-

tion of theS↔P transition amplitude is suppressed, as it is
in this work.

For vg=2.235 MeV, which is very close to the disintegra-
tion threshold, we get the asymmetry

Ag
sthd < f− 8.44hr

0 − 17.65hr
2 + 3.63hv

0 + Osc1,c3,c6dg 3 10−3.

s14d

Using the DDH “best” values as an estimate, we obtained
Ag

sthd<2.53310−8. By detailed balancing, one expects that
Ag

sthd equals the circular polarizationPg
sthd observed in the

radiative thermal neutron capture by proton, given the same
kinematics. Though our result does not exactly correspond to
the same kinematics as the inverse process usually consid-
ered(the kinetic energy of thermal neutrons,0.025 eV), it
agrees both in sign and order of magnitude with existing
calculations ofPg

sthd [3–5]. We also performed a similar cal-
culation for the latter case with Av18, and the result is

Pg
sthd < f− 8.75hr

0 − 17.47hr
2 + 3.39hv

0 + Osc1,c3,c6dg 3 10−3.

s15d

This is very close to the result ofAg quoted above.

FIG. 1. The total cross section as a function of the photon en-
ergy. The main result is the curve labeled as “IA+Sieg,” and the
curves “E1” and “M1” showing contributions from corresponding
transitions. The curve “IA” is the result of a pure impulse approxi-
mation calculation, where no two-body contribution is included.

FIG. 2. The energy dependences of “large” coefficientsc2, c4,
and c5 (top panel) and “small” coefficientsc1, c3, andc6 (bottom
panel) in the asymmetry parametrization, Eq.(12).
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It is noticed that our expression ofAg
sthd at very low en-

ergy, and therefore that one forPg
sthd, contains a contribution

from the one-pion exchange(see the low-energy part of the
c1 coefficient given in Fig. 2). This feature, which apparently
contradicts the statement often made in the past that this
contribution is absent inPg

sthd, is due to the incorporation in
our work of the spin term in Eq.(2), which represents a
higher-order term inq. This correction also explains the dif-
ference in the behavior of thec1 coefficient with Oka’s result
[13].

We note that, because theM1 transition dominates at the
threshold and we only use the impulse approximation for its
matrix element, there should be approximately a −5% cor-
rection to Ag

sthd (also Pg
sthd) when two-body effects are in-

cluded inFM1. On the other hand, asF̃E15
is calculated using

the Siegert theorem, it should be reliable up to the correction

of F̃E15

sS8d from the PNC exchange charge atOs1d.
When the photon energy gets larger, one can see immedi-

ately that the asymmetry gets smaller. A prediction using the
DDH best values is shown in Fig. 3. In this figure, as soon as
the photon energy reaches 1 MeV above the threshold, the
asymmetry drops by one order of magnitude. Moreover, the
sign changes aroundvg=4 MeV. This implies that a higher
sensitivitys,10−9d is needed for any experiment targeting at
the kinematic range away from the threshold. Our calculation
is consistent with the work by Khriplovich and Korkin[14],
but is widely different from the one by Oka[13]. In the
following, we make a closer comparison with these works
and, then, present the results for the contribution of various
PNC two-body currents considered.

A. Comparison with Oka’s work

The major difference comes from the pion sector. In Ref.
[14], where the scattering wave functions are obtained from
the zero-range approximation and the deuteron is purely a
3S1 state, a simple angular momentum consideration leads to
a null contribution from pions. Our result shows that the
more complex nuclear dynamics has only small corrections,
so the asymmetry is not sensitive tohp

1. However, it is not

the case at all in Ref.[13]: the pion exchange dominates the
asymmetry with the coefficientc1 being one or two orders of
magnitude larger than our result.

This discrepancy could be illustrated by considering a
case wherevg is 10 MeV above the threshold. In the central
column of Table I, we list the pertinent PNC responses due to
the pion exchange among the five dominant exit channels. In
the right column, we simulate what the outcome will be if
the analytical results of Eqs.(5a)–(5g) in Ref. [13] are used,
i.e., with different factors involvingms and no parity admix-
ture of the3P1 state as mentioned in Sec. II. Comparing the
totals from both columns, one immediately observes that the
simulated result is bigger by an order of magnitude. More
inspection shows that, while the changes of thems factors do
alter each response somewhat, the major difference depends
on whether the big cancellation from the3P1 admixture is
included or not. By adding contributions from other sublead-
ing channels, the total will be further downed by a factor of
2.5. Thus the overall difference is about a factor of 30.

B. Comparison with Khriplovich and Korkin’s work

The vanishing of thep-exchange contribution in Khriplo-
vich and Korkin’s work[14] supposes that theE1 transitions
from the deuteron state to the different scattering states,
3P0,

3P1, and3P2, are the same, which implies that one ne-
glects both the tensor and spin-orbit components of the
strong interaction. As these parts of the force have large ef-
fects in some cases, it is important to determine how the
above vanishing is affected when a more realistic description
of the interaction is used.

We first notice that the isoscalar magnetic operator,msS
+L /2, can be written asmsJ+s1/2−msdL. As the operatorJ
conserves the total angular momentum, it follows that theE1
transitions from the deuteron state to the3P0 and 3P2 states
will be proportional toms−1/2, in agreement with Eqs.(7)
and (11). A similar result holds for the3P1 state. For this
transition, one has to take into account that theJ operator
connects states that are orthogonal to each other, including

FIG. 3. The asymmetry by using the DDH best values.

TABLE I. The dominant PNC responses due to the pion ex-
change forvg 10 MeV above the threshold(in units of 10−53hp

1).
The central column is calculated by Eqs.(4)–(11), while the right
column by Eqs.(5a)–(5h) in Ref. [13]. The symbolD denotes the
deuteron state.

Transitions Equations(4)–(11) Equations(5a)–(5h) in Ref. [13]

3P0↔D 0.449 −0.142
3P1↔D̃ −3.217 −4.383

3P1̃↔D 3.942 Not considered

3P2↔D̃ −1.231 0.389

3P2̃↔D −0.142 0.045

3F2↔D̃ −0.151 0.048

3F2̃↔D −0.019 0.006

Total −0.371 −4.037
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the case where they contain some parity admixture. This un-
usual but interesting result was originally suggested by a
similar result obtained by Khriplovich and Korkin for the1S0
and3P0 states[14]. They used it later on for thep-exchange
contribution upon the suggestion of one the present authors.
Taking this property into account, one can check that the
different ms-dependent terms in Eq.(9) combine so that the
quantity,ms−1/2, can befactored out. This explains the can-
cellation of the two largest contributions in Table I, 3.942
and −3.217, approximately proportional to 2ms=1.76 and
−sms+1/2d=−1.38.

Further cancellation is obtained when one considers the
sum of thep-exchange contributions to the asymmetryAg

corresponding to the differentP states. Taking into account
the remark made in the previous paragraph, it can be checked
that contributions from Eqs.(7), (9), and (11) are propor-
tional to 2, 3, and −5 and 4, −3, and −1 for the3S1 and 3D1
deuteron components, respectively(assuming that the3P
wave functions are the same). As can be seen in Table I, the
dominant contributions, 0.449,0.725s=3.942−3.217d, and
−1.231 are not far from the relative ratios 2, 3, and −5,
expected for the3S1 deuteron component. Possible depar-
tures can be ascribed in the first place to the3D1 deuteron
component.

The above cancellation calls for an explanation deeper
than the one consisting of the verification that the algebraic
sum of different contributions cancels. An argument could be
the following: In the conditions where the cancellation takes
place(the same interaction in the3P states in particular), a
closure approximation involving spin and angular orbital
momentum degrees of freedom can be used to simplify the
writing of the PNC part of the response function that appears
at the numerator of Eq.(1). Keeping only the factors of in-
terest here, the interference term ofE1 andM1 matrix ele-
ments can be successively transformed as follows:

dR~ o
M

kJiur̂ iSms −
1

2
DLjsd i j − q̂iq̂jduJĩl

~ o
M
Fk3S1uUds3S1d +

Uds3D1d
Î2

„3sS · r̂d2 − S2
…G

3 r̂ iLjsd i j − q̂iq̂jdfS · r̂ u3S1lg

~ TrFSUds3S1d +
Uds3D1d

Î2
s3sS · r̂d2 − S2dDS · r̂G = 0.

s16d

The first line stems from retaining the isoscalar part of the
magnetic operator proportional tosms−1/2dL (it is reminded
that theJ part does not contribute). The next line is obtained
by expressing the PC and PNC parts of the deuteron wave
function as some operator acting on a pureu3S1l state. Once
this transformation is made, it is possible to replace the sum-
mation over the deuteron angular momentum components,
M, by the spin ones,ms, which is accounted for at the third
line. The last line then follows from the fact that the trace of
the spin operator,S, possibly combined with aDS=2 one,
vanishes. A result similar to the above one can be obtained

for some contributions involving MECs. It is however no-
ticed that some corrections involving the spin-orbit force, or
spin-dependent terms in theE1 transition operator, which
both contain an extraS factor in the above equation, could
lead to a nonzero trace and therefore to a relatively large
correction. Of course, the above cancellation relies on the
fact that no polarization of the initial or final state is consid-
ered. Had we looked at an observable involving such a po-
larization, like the asymmetry in the capture of polarized
thermal neutrons by protons, the result will be quite differ-
ent. As is well known, this observable is dominated by the
p-exchange contribution[1].

C. Contributions of PNC ECs

In Sec. II, the contributions of PNC ECs were summa-

rized in two additional PNC-induced form factors,F̃E15

sS8d and

F̃M15

s28d . Now, we estimate these contributions by considering
only the dominant channels1S0,

3P0,
3P1, and 3P2-

3F2. As
E15 connects states of the same parity, only1S0 is allowed;

therefore,F̃E15

sS8d plays a more important role forAg near the
threshold. On the other hand,M15 connects states of oppo-

site parity, which requires the other four channels, soF̃M15

s28d

has more impact onAg at higher energies. The full set of
PNC ECs which is consistent with the DDH potential was
derived in Ref.[22], Eqs.(17)–(24). The whole evaluation is
straightforward, however tedious, so we defer all the analyti-
cal expressions in the Appendix and only quote the numeri-
cal results here.

With the same parametrization as Eq.(12), the additional
contributions to the asymmetry by PNC ECs, viaE15 and
M15 respectively, are

AgsF̃E15

sS8dd = c2
sS8dhr

0 + c4
sS8dhr

2, s17d

AgsF̃M15

s28d d = c1
s28dhp

1 + c2
s28dhr

0 + c3
s28dhr

1 + c4
s28dhr

2 + c6
s28dhv

1 .

s18d

The detailed energy dependence of each coefficient is shown
in Fig. 4.

The dominance ofF̃E15

sS8d near the threshold andF̃M15

s28d at
higher energies could be readily observed in these plots. We
discuss their significances to the total asymmetry in the fol-
lowing.

For the case where the photon energy is 0.01 MeV above

the threshold, onlyc2
sS8d andc4

sS8d are substantial. The former
coefficient is about 20% ofc2, while the latter one is only
2% of c4. By using the DDH best values, these contributions
give an asymmetry of about 1.4310−9, which is a 6% cor-
rection. This is typically the order of magnitude one could
expect from the exchange effects.

As the energy gets larger, while the coefficientsc2
sS8d and

c4
sS8d keep stable, the coefficients associated withM15 matrix

elements grow linearly, roughly. The fastest growing one is

c1
s28d, because the long-ranged pion exchange dominates the
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matrix elements. Comparatively,c2
s28d has a smaller slope due

to less overlap between the effective ranges pertinent to the
deuteron wave function and ther exchange.

For the case where the photon energy is 10 MeV above

the threshold,c1
s28d, c2

s28d, and c2
sS8d are substantial. The first

coefficient is about 50% ofc1, and the latter two combined is
about 16% ofc2. The extremely large correction toc1 can be
simply explained. The cancellation which affects the single-
particle contribution[see Eq.(16)] does not apply to the
two-body one. By using the DDH best values, all contribu-
tions due to PNC ECs give an asymmetry of about 3.7
310−11, which is a 5% correction. The reason why large
effects from individual meson exchanges lead to an overall
small correction is due to the cancellation between pion and
heavy-meson exchanges: the DDH best values have opposite
signs for the pion and heavy-meson couplings. This conclu-
sion, however, depends on the sign we assumed for thegrpg

coupling.

IV. CONCLUSION

The present work has been motivated by various aspects
of the PNC asymmetryAg in the deuteron photodisintegra-
tion, especially in the few-MeV photon-energy range. An

earlier work addressing this energy domain[13] showed that
the process could provide information on the PNCpNN cou-
pling constant,hp

1, which allows one to check results from
other processes involving this coupling. A later work[14],
rather schematic, concluded that this contribution could be
largely suppressed. Between these two extreme limits, the
question arises of what this contribution could be when a
realistic description is made, including in particular the ten-
sor and spin-orbit components of theNN interaction. At first
sight, a sizable PNCp-exchange contribution could arise if
one assumes tensor-force effects of about 15% for each par-
tial contribution and no cancellation.

The complete calculation shows that thep-exchange con-
tribution remains strongly suppressed after improving upon
the schematic model. Beyond making this observation, a
genuine explanation should therefore be found. When con-
sidering the asymmetryAg, an average is made over the
spins of initial and final states. Terms in the interference
effects of electric and magnetic transitions, whose spin de-
pendence averages to a nonzero value, are expected to pro-
duce a sizable contribution. This discards thep-exchange
contribution, which involves a linear dependence on the spin
operatorS, and tensor-force effects, which involve the prod-
uct of spin operators of the orders 1 and 2. The argument
applies to MECs too. A different conclusion would hold for
an observable implying a spin polarization of the initial or
final state. It thus appears some similarity between the rela-
tive role of various contributions here and that one empha-
sized by Danilov for the inverse process at thermal energies:
the circular polarization of photonsPg (equivalent toAg

here) is mainly dependent on the PNC isoscalar and isotensor
contributions, while the asymmetry of the photon emission
with respect to the neutron polarization depends on the
p-exchange contribution.

As the p-exchange contribution to the asymmetryAg

turns out to have a minor role, we can concentrate on the
vector-meson ones. At the low energies considered here, it is
expected that these contributions depend on two combina-
tions of parameters entering the description of the PNC(and
PC) NN interaction. They are the zero-energy neutron-proton
scattering amplitudes in theT=0 andT=1 channels,lt and
ls. In terms of these quantities introduced by Danilov[1]
(see also later works by Missimer[25], Desplanques and
Missimer [26], and Holstein[27]), the discussion could be
simpler. The asymmetry is found to vary between

Ag = 0.70mNlt − 0.17mNls at threshold

and

Ag = − 0.037mNlt + 0.022mNls at vg = 12 MeV,

thus evidencing a change in sign which occurs aroundvg

=5.5 MeV for both amplitudes. Depending on low-energy
properties and, thus, on the best-known properties of the
strong interaction, the place where the cancellation ofAg

occurs sounds to be well established. It roughly agrees with
what can be inferred from the analytic work by Khriplovich
and Korkin[14]. Not much sensitivity to PNC ECs is found.
An experiment should therefore aim at a measurement at

FIG. 4. The energy dependences of PNC EC coefficients in the

asymmetry parametrization: the top panel showsc2,4
sS8d in Eq. (17)

and the bottom panel showsc1,2,3,4,6
s28d of Eq. (18).
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energies significantly different, either below or above.
The goal for studying PNC effects is to get information on

the hadronic physics entering the PNCNN interaction. This
supposes that one can disentangle the different contributions
to each process. We notice that the combination of param-
eterslt andls appearing in the expression ofAg is orthogo-
nal to that one determining PNC effects in most other pro-
cesses, especially in medium and heavy nuclei. The study of
the present process is therefore quite useful. Another obser-
vation, which is not totally independent of the previous one,
concerns the isotensor contribution. This one is especially
favored in the present process, while it is generally sup-
pressed in processes involving a roughly equal number of
protons and neutrons with either spin[28]. The present pro-
cess is therefore among the best ones to get information on
the isotensorrNN coupling constant. We, however, stress
that this supposes the isoscalar parts could be constrained
well by other processes. In a meson-exchange model of the
PNC interaction, these are represented by the isoscalarrNN
andvNN coupling constants. One could add that the relative
sign of these two contributions is the same, in a large range
of the photon energysvgù3 MeVd, as in many other pro-
cesses. It however differs at small photon energies, where the
asymmetry involves a combination of the various isoscalar

and isotensor couplings that is little constrained by other
processes. This explains that expectations ofAg up to 10−7

near threshold could be suggested in recent works on the
basis of a phenomenological analysis[14,28,29]. Measuring
this asymmetry could therefore be quite useful to determine a
poorly known component of PNCNN interactions. On the
theoretical side, the present work should be completed by the
contribution of further parity-conserving exchange currents,
but also by higher 1/mN-order corrections from the single-
particle current and, consistently, from both PC and PNC
exchange currents[30]. Though they are not expected to
change the main conclusions reached here, they could be
required to obtain from experiments more accurate informa-
tion on PNCNN forces.
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APPENDIX: NONVANISHING MATRIX ELEMENTS OF PNC ECS FOR DOMINANT TRANSITIONS

In this section, we summarize the analytical expressions of the nonzeroF̃E15

sS8d andF̃M15

s28d for the five dominant channels which
lead to the numerical results in Sec. III C.

1. F̃E15

„S8…

As discussed in Sec. II, an exchange charge atOs1d should contribute to this form factor. According to Ref.[22], the r
exchange does generate one:

rmesonic
r sx;r1,r2d = 2egrNNShr

0 −
hr

2

2Î6
Dst1 3 t2dzss1 − s2d · =xffrsrx1dfrsrx2dg, sA1d

with fXsrd=exps−mXrd / s4prd and rxi= ux−r iu. The 1S0 state is the only open exit channel and it gives

kE15
sS8dl = 8

grNN

mr
Shr

0 −
hr

2

2Î6
Dk1S0urf rsrdu3S1ld, sA2d

wherekf uFsrduild denotes the radial integraledrU*sfdFsrdUdsid and the subscript “d” refers to the deuteron state.

2. F̃M15

„28…

As the four allowed exit channels3P0,
3P1, and3P2− 3F2 are spin- and isospin- triplet, the nonvanishing PNC ECs, which

satisfy the spin and isospin selection rules, are

jpair
r sx;r1,r2d =

egrNN

4mN
hr

1frsrdst 1
z − t 2

zdss1 + s2dfs1 + t 1
zdd s3dsx − r1dg + s1 ↔ 2d, sA3d

jpair
v sx;r1,r2d =

− egvNN

4mN
hv

1 fvsrdst 1
z − t 2

zdss1 + s2dfs1 + t1
zdd s3dsx − r1dg + s1 ↔ 2d, sA4d

jmesonic
r sx;r1,r2d =

− egrNN

mN
Shr

0 −
hr

2

2Î6
Dst1 3 t2dz¹x

ahif¹1
as2 + s 1

a=2, frsrx1dfrsrx2dg − mvfss1 3 =1das2 + s 1
as2

3 =2, frsrx1dfrsrx2dgj + s1 ↔ 2d, sA5d
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jmesonic
rp sx;r1,r2d =

− egrNNgrpg

Î2mr

hp
1st1 3 t2dzs=1 3 =2dffrsrx1dfpsrx2dg + s1 ↔ 2d. sA6d

Note that one additional strong meson-nucleon coupling constant,grpg, appears in Eq.(A6). This could be constrained by the
r→p+g data. For the numerical calculation, we quote the numbergrpg=0.585 as given in Ref.[31]. The matrix element

kM15
s28dl can be written as a sum of the contributions from each EC as

kM15
s28dl =

1

mN
FgrNNhr

1X1 + gvNNhv
1X2 + grNNShr

0 −
hr

2

2Î6
DX3G +

1

mr

grNNgrpg hp
1X4, sA7d

and for each exit channel, the quantitiesX1–4 are
(1) 3P0

X1 = −
2

3Sk3P0urf rsrdu3S1ld +
1
Î2

k3P0urf rsrdu3D1ldD , sA8d

X2 =
2

3Sk3P0urf vsrdu3S1ld +
1
Î2

k3P0urf vsrdu3D1ldD , sA9d

X3 = −
8

3Fs1 + 2mvdk3P0urf rsrdu3S1ld

+
1
Î2

s1 − mvdk3P0urf rsrdu3D1ld −
2

mr

k3P0urf rsrdu3S1
s+dld

−
Î2

mr

k3P0urf rsrdu3D1
s−dldG , sA10d

X4 =
4Î2

3smr
2 − mp

2d
fk3P0ufpr8 srdu3S1ld − Î2k3P0ufpr8 srdu3D1ldg; sA11d

(2) 3P1

X1 =
1
Î3

fk3P1urf rsrdu3S1ld − Î2k3P1urf rsrdu3D1ldg, sA12d

X2 = −
1
Î3

fk3P1urf vsrdu3S1ld − Î2k3P1urf vsrdu3D1ldg, sA13d

X3 =
4
Î3
Fs1 − mvdk3P1urf rsrdu3S1ld

− Î2s1 − mvdk3P1urf rsrdu3D1ld −
2

mr

k3P1urf rsrdu3S1
s+dld

+
2Î2

mr

k3P1urf rsrdu3D1
s−dldG , sA14d

X4 = −
4Î2

Î3smr
2 − mp

2d
Sk3P1ufpr8 srdu3S1ld

+
1
Î2

k3P1ufpr8 srdu3D1ldD; sA15d

(3) 3P2–3F2
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X1 =
Î5

3
Fk3P2urf rsrdu3S1ld −

2Î2

5
k3P2urf rsrdu3D1ld −

3Î3

5
k3F2urf rsrdu3D1ldG , sA16d

X2 = −
Î5

3
Sk3P2urf vsrdu3S1ld −

2Î2

5
k3P2urf vsrdu3D1ld −

3Î3

5
k3F2urf vsrdu3D1ldD , sA17d

X3 =
4Î5

3
Ss1 − mvdk3P2urf rsrdu3S1ld −

2Î2

5
s1 − 4mvdk3P2urf rsrdu3D1ld −

2

mr

k3P2urf rsrdu3S1
s+dld +

4Î2

5mr

k3P2urf rsrdu3D1
s−dld

−
3Î3

5
s1 + mvdk3F2urf rsrdu3D1ld +

6Î3

5mr

k3F2urf rsrdu3D1
s+dldD , sA18d

X4 =
4Î10

3smr
2 − mp

2d
Sk3P2ufpr8 srdu3S1ld −

1

5Î2
k3P2ufpr8 srdu3D1ld +

3Î3

5
k3F2ufpr8 srdu3D1ldD , sA19d

where

u2S+1LJ
s+dl ; S d

dr
−

L + 1

r
Du2S+1LJl,

u2S+1LJ
s−dl ; S d

dr
+

L

r
Du2S+1LJl,

and

fpr8 srd ;
d

dr
ffpsrd − frsrdg.
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