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We study the electromagnetic form factors of the nucleon, from small to large momentum transfer, in the
context of the instanton liquid model(ILM ). As a first step, we analyze the role of single-instanton effects, and
show that they dominate the form factors at large momentum transfer. Then, we go beyond the single-instanton
approximation and perform a calculation to all orders in the ’t Hooft interaction. We find that the ILM is in
good agreement with the available experimental data. Based on these results, we argue that instantons provide
a microscopic mechanism that explains the delay of the onset of the asymptotic perturbative regime in the
electromagnetic form factors.
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I. INTRODUCTION

The recent measurements of pion and nucleon form fac-
tors performed at Jefferson Laboratory(JLAB) have trig-
gered an important discussion about the transition from the
nonperturbative to the perturbative regime, in QCD. The
pion form factor has been measured very accurately in the
range 0.6 GeV2,Q2,1.6 GeV2 by the Fp Collaboration
[1]. It was found that the form factor deviates significantly
from the asymptotic perturbative prediction, even at the larg-
est value of the momentum transfer. Important information
about the proton form factors has been obtained by means of
the recoil polarization method, which allows one to access
the ratio of the electric over magnetic form factors[2,3].
These experiments have shown that the ratio
mGEsQ2d /GMsQ2d decreases very rapidly, while in the
asymptotic regime it should approach constant[4].

These two results have indicated that, in elastic form fac-
tors, the asymptotic perturbative regime is not reached until
very large values of the momentum transfer. Interestingly,
this conclusion contrasts with the results of the CLEO ex-
periment ongg* →p0 transition form factor, where the
asymptotic regime is reached already atQ2*2 GeV2. For
completeness, it should be mentioned that there exists also a
combination of proton form factors which seems to exhibit a
precocious scaling toward the perturbative behavior, namely,
the ratio of Pauli over Dirac form factorsF2sQ2d /F1sQ2d,
where

F1sQ2d ª
1

1 + t
fGEsQ2d + tGMsQ2dg, s1d

F2sQ2d ª
1

1 + t
fGMsQ2d − GEsQ2dg, t ª

Q2

4M2 . s2d

It was recently shown by Belitsky, Ji, and Yuang that, when
logarithmic corrections and subleading twist light-cone wave
functions are introduced, perturbative QCD predicts[5]

F2sQ2d
F1sQ2d

, log2sQ2LQCD
2 d/Q2, s3d

in good agreement with experimental data. On the other
hand, the perturbative predictions for the individual Pauli
and the Dirac form factor are nevertheless very far from the
experimental data. This fact led the authors to argue that the
precocious scaling of the ratio(3) could be the result of a
delicate cancellation in the numerator and denominator.

The delay of the onset of the perturbative regime in the
elastic form factors implies that there are strong nonpertur-
bative forces inside hadrons, which dominate over the per-
turbative gluon exchange even at short distances(of the or-
der of 1/Q). Two important theoretical questions arise from
this fact. What is the microscopic origin of the short-scale
interaction driving the pion and nucleon elastic form factors
away from their perturbative limit? Why do such nonpertur-
bative forces not show up in thegg* →p0 transition form
factor?

Clearly, the answers to these questions reside in the non-
perturbative sector of QCD. In particular, it is commonly
accepted that the soft physics of the light quarks is very
much influenced by the interactions responsible for chiral
symmetry breaking(CSB). On the other hand, confinement
seems to play only a marginal role. The most convincing
evidence in this direction comes from lattice studies of QCD
in the semiclassical limit: by means of the so-called “cool-
ing” procedure, it was observed that, in this limit, the
current-current correlators of light hadrons change very little,
although all perturbative fluctuations are removed, and the
string tension drops out[6].

The characteristic scale associated with CSB is 4pfp

,1.2 GeV, significantly larger than the typical confinement
scale,LQCD. Such a separation justifies attempting to under-
stand the short-distance nonperturbative structure of light
hadrons, without having to account simultaneously for the
microscopic origin of confinement. On the other hand, from
the observation that 4pfp,mh8

it follows that any effective
description of the short-distance nonperturbative dynamics
of light quarks should also account for topological effects.
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Instantons are topological gauge configurations which
dominate the QCD path integral in the semiclassical limit.
They generate the so-called ’t Hooft interaction, which
solves the U(1) problem[7] and spontaneously breaks chiral
symmetry [8], but does not confine. Evidence for such an
instanton-induced interaction in QCD comes from a number
of phenomenological studies[9], as well as from lattice
simulations[6,10,11]. The instanton liquid model(ILM ) as-
sumes that the QCD vacuum is saturated by an ensemble of
instantons and anti-instantons. The only phenomenological
parameters in the model are the average instanton sizer̄
.1/3 fm and densityn̄.1 fm−4. These values were ex-
tracted more than two decades ago, from the global vacuum
properties[12]. The nonperturbative contribution to the elec-
tromagnetic form factors of the nucleon has been analyzed in
a number of works by means of phenomenological models
(for an incomplete list see Ref.[31]).

It the present study, we use the ILM to address the ques-
tion whether the ’t Hooft interaction can provide the nonper-
turbative dynamics needed to explain the experimental re-
sults for the pion and nucleon form factors. The instanton
contribution to these form factors has been investigated in
the context of the ILM in a number of works. In Ref.[13]
Forkel and Nielsen computed the pion form factor in a sum-
rule approach, which takes into account the direct-instanton
contribution, in addition to the lowest dimensional conden-
sate terms in the operator product expansion.1 As in other
sum-rule approaches, this calculation required a detailed
knowledge of the contribution coming from the continuum
of excitations. In order to avoid this problem, in Refs.
[15,16] the electromagnetic pion and proton three-point
functions were calculated in coordinate space, by means of
numerical simulations in the ILM. The contribution from the
continuum of excitations could be excluded by considering
sufficiently large-sized correlation functions. The results
were then compared to phenomenological estimates of the
same correlation functions, obtained from the Fourier trans-
form of the fits of the experimental data. Unfortunately, this
method has the shortcoming that it does not allow adirect
comparison of the theoretical predictions against the experi-
mental data.

Direct comparison between theory and form factors at in-
termediate and large momentum transfer became possible af-
ter the single-instanton approximation(SIA) was developed
[17,18]. In Ref. [19] it was shown that instantons can quan-
titatively explain the pion charged form factor and its devia-
tion from the perturbative regime at large momentum trans-
fer. Conversely, it was observed that such effects are
parametrically suppressed in thegg* →p0 transition form
factor. This explains the early onset of the perturbative re-
gime in such a form factor. Moreover, a calculation of the
pion distribution amplitude in the ILM was performed in
Ref. [20]. It was found that instantons can explain the behav-
ior of the low-energy experimental datasQ2,2 GeV2d for
the gg!→p0 transition form factor.

The single-instanton contribution to the nucleon electric
from factors were first investigated in Ref.[21]. In this work
we extend the analysis to the magnetic as well as to the Pauli
and Dirac form factors of the nucleon. Moreover, we also go
beyond the single-instanton approximation and include
many-instanton effects, by performing a calculation to all
orders in the ’t Hooft interaction. We find that experimental
data at large momentum transfer can be reproduced surpris-
ing well in the SIA. On the other hand, form factors at low
momenta are very sensitive to many-instanton effects. In
general, we found very good agreement between theory and
experiment, which indicates that instantons provide the cor-
rect nonperturbative dynamics, responsible for the electro-
magnetic structure of the nucleon and for the delay of the
onset of the perturbative asymptotic regime in elastic form
factors.

The paper is organized as follows. In Sec. II we review
the connection between the form factors of the nucleon and
some Euclidean correlation functions, which have to be
evaluated nonperturbatively. In Sec. III we introduce the SIA
and present the predictions for the Sachs as well as for the
Dirac and Pauli form factors of the nucleon. In Sec. IV we
include many-instanton effects by means of numerical simu-
lations in the full-instanton liquid. All results are summarized
in Sec. V, while the Appendix contains a compilation of the
analytic SIA results.

II. FORM FACTORS AND EUCLIDEAN
CORRELATION FUNCTIONS

In order to compute the form factors of the nucleon we
consider the following Euclidean correlation functions:

G3E
psndst,qd =E d3xd3yeiq·sx+yd/2k0uTrfhsc

psndst,ydJ4
ems0,0dh̄sc

psnd

3s− t,xdg4gu0l, s4d

G3M
psndst,qd =E d3xd3yeiq·sx+yd/2k0uTrfhsc

psndst,ydJ2
ems0,0dh̄sc

psnd

3s− t,xdg2gu0l, s5d

whereJm
emsxd is the electromagnetic current andhsc

psndsxd is an
operator that excites states with the quantum numbers of the
nucleon. In the case of the proton we choose2

hsc
p sxd = eabcfua

TsxdCg5dbsxdgucsxd. s6d

In QCD, in the limit of large Euclidean time separationt, the
correlation functions(4) and (5) relate directly to the form
factors of the nucleon. In particular,G3E

psnd depends linearly
on the proton(neutron) electric form factor:

G3E
psndst,qd → 8M2Rst,qdGE

psndsQ2d, s7d

1This calculation has been recently repeated, including both next
to leading order perturbative corrections and a more realistic esti-
mate of the single-instanton contribution[14]

2The corresponding operator for the neutron is obtained through
the substitutionu↔d.
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Rst,qd ª Lsc
2 S 1

2vq/2
D2

e−2vq/2t, s8d

whereGE
psndsQ2d denotes the proton(neutron) electric form

factor andLsc the coupling of the interpolating operator(6)
to the nucleon. Similarly, ifq is chosen along thex̂ direction,
G3M

psnd relates to the proton(neutron) magnetic form factor:

G3M
psndst,qd → − 2q2Rst,qdGM

psndsQ2d. s9d

These expressions are derived in the Breit frame, wherep8
=−p=q /2 andQ2=q2. We recall that, in the kinematic re-
gime explored by current experiments, both Sachs form fac-
tors are positive definite. This implies thatG3M

psndst ,qd and
G3E

psndst ,qd have opposite signs.
From the correlation functions(4) and(5) one can imme-

diately construct linear combinations which relate to the
Dirac and Pauli form factors:

G3F1

psnd
ª G3E

psnd − G3M
psnd → 8M2s1 + tdRst,qdF1

psndsQ2d,

s10d

G3F2

psnd
ª −

1

t
G3M

psnd − G3E
psnd → 8M2s1 + tdRst,qdF2

psndsQ2d.

s11d

Notice that, due to the sign difference, the absolute contribu-
tions of the correlation functionsG3M andG3E to the Dirac
form factorF1sQ2d are added up, while the contributions to
the Pauli form factorF2sQ2d are subtracted.

The exponential factorRst ,qd in Eqs.(7)–(11) can be ob-
tained from the two-point function:

G2st,qd =E d3xeiq·xk0uTrhscst,xdh̄scs0dg4u0l. s12d

In the large Euclidean time limit, one has

G2st,qd → 2Lsc
2 e−vqt, s13d

from which it is possible to extract the constantLsc and the
nucleon massM.

Even at asymptotically large momentum transfer, the cor-
relation functions defined in this section cannot be calculated
in perturbation theory. This is because all the three-point and
two-point functions are large sized(due to thet→` limit ),
while perturbative QCD(PQCD) is supposed to work only
for small-sized correlation functions. On the other hand, fac-
torization theorems state that, at asymptotically large values
of the momentum transfer, all nonperturbative effects are in-
cluded in the light-cone wave functions and decouple from
the hard perturbative contributions. The problem with such
an approach is that it is not possible to knowa priori at
which momenta factorization theorems become quantita-
tively reliable. Therefore, in this work we shall refrain from
using them and attempt adirect nonperturbative evaluation
of the Green’s functions, from moderate to largeQ2.

After performing Wick contractions, the fermionically
connected components of the correlators(4) and (5) read

G3EsMdst,qd =E d3xE d3yeiq/2·sx+ydeabcea8b8c8kUA4s2d
abca8b8c8

+ UB4s2d
abca8b8c8 + UC4s2d

abca8b8c8 + UD4s2d
abca8b8c8

+ DA4s2d
abca8b8c8 + DB4s2d

abca8b8c8l, s14d

where

UA4s2d
abca8b8c8 = TrfScb8st,y;− t,xdsCg5dTSaa8

T st,y;− t,xdsCg5d

3 Sbest,y;0,0dg4s2dSec8s0,0;− t,xdg4s2dg,

UB4s2d
abca8b8c8 = − Trfg4s2dScc8st,y;− t,xdgTrfsCg5dSbest,y;0,0d

3g4s2dSeb8s0,0;− t,xdsCg5dTSaa8
T st,y;− t,xdg,

UC4s2d
abca8b8c8 = TrfScest,y;0,0dg4s2dSeb8s0,0;− t,xd

3sCg5dTScb8st,y;− t,xdsCg5dTSaa8
T st,y;− t,xd

3sCg5dSbc8st,y;− t,xdg4s2dg,

UD4s2d
abca8b8c8 = − TrfsCg5dSbb8st,y;− t,xdsCg5dTSaa8

T st,y;− t,xdg

3 TrfScest,y;0,0dg4s2dSec8s0,0;− t,xdg4s2dg,

and

DA4s2d
abca8b8c8 = − Trfg4s2dScb8st,y;− t,xdsCg5dTSaa8

T st,y;− t,xd

3sCg5dSbest,y;0,0dg4s2dSeb8s0,0;− t,xdg,

DB4s2d
abca8b8c8 = TrfSaest,y;0,0dg4s2dSea8s0,0;− t,xdsCg5d

3 Scb8
T st,y;− t,xdg4s2dTSbc8st,y;− t,xdsCg5dTg.

Similarly, the two-point function reads

G2st,pd =E d3xeip·xeabcea8b8c8kNA
abca8b8c8 + NB

abca8b8c8l,

s15d

where

NA
abca8b8c8 = s− 1dTrfSaa8st,x;0,0dsCg5dSbb8

T st,x;0,0d

3sCg5dTgTrfScc8st,x;0,0dg4g,

NB
abca8b8c8 = TrfSaa8st,x;0,0d

3sCg5dScb8
T st,x;0,0dg4Sbc8

T st,x;0,0dsCg5dTg.

In these expressions,Ssy4,y ;x4,xd denotes the quark propa-
gator, the trace is over spinor and color indices, and the
bracketsk·l denote the average over all gauge field configu-
rations.

Fermionically disconnected components of these three-
point functions bring in an additional contribution to the
form factors, coming from the quark-antiquark sea. At zero
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momentum transfer, such contributions measure the charge
of the vacuum and therefore vanish. They also cancel out at
finite momentum transfer, if one assumes flavor SU(3) sym-
metry.

So far, all expressions are completely general, as all the
QCD dynamics resides in the quantum average over the
gauge configurations. In the semiclassical limit, the nonper-
turbative contribution to the correlation functions(4) and(5)
arises from single-instanton and from many-instanton ef-
fects. Typical single-instanton contributions are represented
in Fig. 1, where the instanton field mediates the exchange of
momentum between two partons. Many-instanton effects are
not only those in which a parton exchanges its momentum
with the other partons in the nucleon by scattering on two or
more pseudoparticles. In addition, there are also collective
effects, which are associated with the breaking of chiral sym-
metry and the dynamical generation of a momentum-
dependent quark effective mass[8]. These many-body inter-
actions are supposed to play an important role at low
momenta.

In the next section, we shall calculate the contributions
arising from the interaction of two massless partons with a
single instanton, while many-instanton effects will be dis-
cussed in Sec. IV.

III. SINGLE-INSTANTON CONTRIBUTIONS

In this section, we use the SIA to evaluate the single-
instanton contribution to the correlators(4), (5), and (12).
The SIA is an effective theory of the instanton vacuum, in
which the degrees of freedom of the closest pseudoparticle
are kept explicitly in account, while the contribution from all
other pseudoparticles in the vacuum is included into one ef-
fective parameterm* .85 MeV. Such a parameter, which
was rigorously defined and calculated in Ref.[17] for differ-
ent ensembles, depends on only the two phenomenological
parameters of the ILM, i.e., the instanton sizer̄ and density
n̄.

The main advantage of the SIA is that the quark propaga-
tor in the single-instanton back-ground has a simple analyti-
cal form [22]. It consists of a zero-mode part and a nonzero-
mode part,SIsx,yd=Szm

I sx,yd+Snzm
I sx,yd. The accuracy of

the SIA was analyzed in detail in Refs.[16,17]. It was shown

that the approach is reliable only if the relevant Green’s func-
tions receive a maximal contribution from the zero-mode
part of the propagator. In fact, the additionalg4 matrix in
Eqs.(4), (5), and(12) has been inserted in order to meet such
a requirement.

In this work, we choose to further simplify the calculation
by adopting the so-called “zero-mode approximation,” in
which the nonzero-mode part of the propagator is replaced
by the free one,SIsx,yd.Szm

I sx,yd+S0sx,yd. Such an ap-
proximation corresponds to accounting for the ’t Hooft inter-
action and neglecting other residual instanton-induced inter-
actions, which are generally subleading. Indeed, in Ref.[16]
it was shown that the zero-mode approximation is very ac-
curate in the case of the nucleon three- and two-point func-
tions that we are considering.

Finally, it is convenient to use the regular gauge and work
directly in a time-momentum representation of the Green’s
functions. To this end, one expresses Eqs.(14) and (15) in
terms of “wall-to-wall” (W2W) propagators, defined as the
spatial Fourier transforms of the point-to-point(P2P) quark
propagators:

Sst8,p8;t,pd ; E d3xd3yeip8·y−ip·xSsy,xd. s16d

This is achieved by insertions of appropriate delta functions
at each vertex. The convenience of the time-momentum rep-
resentation resides in the fact that the W2W quark propaga-
tors in the single-instanton background have been calculated
analytically [19] and are smooth, nonoscillatory exponential
or Bessel functions. The massless free W2W quark propaga-
tor is given by

S0st8,p8;t,pd = s2pd3ds3dsp8 − pd
e−upuut8−tu

2
umgm, s17d

whereu4=−1 andul =−ipl / upu, for l =1,2,3. Thezero-mode
W2W quark propagator in the regular gauge is given by

Szm
IsAdst8,p8;t,pd =

2r2

m! fst8,p8;t,pdW IsAd, s18d

FIG. 1. Graphical representation of the typical contributions to the wall-to-wall nucleon electromagnetic three-point function. The
double-lined “walls” correspond to the spatial Fourier integration. The dashed ellipse denotes the four quark(zero-mode) instanton interac-
tion. The nucleon is excited at the left, struck by the virtual photon in the middle, and absorbed at the right. Two contributions to the
connected three-point function are shown. Diagram(A) probes the diquark content of the nucleon, whereas in diagram(B) the photon
interacts with the remaining quark. Diagram(C) is disconnected, where the photon probes the sea quark content of the nucleon.
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fst8,p8;t,pd ; eisp8−pd·zK0sup8uÎst8 − z4d2 + r2d

3K0supuÎst − z4d2 + r2d, s19d

W IsAd ; gmgn

1 ± g5

2
tm

7tn
±, s20d

where zm=sz,z4d denotes the instanton position,m! is the
effective parameter discussed above, andtm

± =st , 7 id are
color matrices.

The calculation of the correlation functions(4), (5), and
(12) is performed by substituting Eqs.(17) and (18) in the
traces arising from Wick contractions. The quantum average
is carried out by integrating over the instanton color orienta-
tion, position, and size. The integral over the color orienta-
tion is trivial, while that over instanton position generates a
delta function which accounts for total momentum conserva-
tion. As expected, the introduction of an instanton-induced
interaction generates an extra loop integral, over the momen-
tum exchanged through the field of the instanton. Despite the
presence of loops, all diagrams are finite, as the instanton
finite size provides a natural ultraviolet cutoff. The integral
over the instanton size is weighted by a distribution function.
In this work we assume a simple delta-function distribution
dsrd= n̄dsr− r̄d. Alternatively, one could use a fit of the in-
stanton size distributions obtained from lattice simulations
(for a compilation of results see Ref.[25]). In previous work
we verified that these two choices essentially give the same
result [19].

The SIA is reliable only if the correlation functions are
dominated by the contribution of the closest instanton. This
condition is clearly not satisfied when the distance covered
by the quarks becomes much larger than the typical distance
between two neighbor instantons. Previous studies[16,17]
have shown that P2P Green’s functions obtained analytically
in the SIA quantitatively agree with those obtained numeri-
cally in the full-instanton background, if the distance be-
tween the quark source and the quark sink is smaller than
,1 fm for two-point functions and than,1.8 fm for three-
point functions.

On the other hand, we do not expect the SIA calculation
of the W2W correlators to be reliable for all values of the
momentump, even for small Euclidean timest. In fact, if the
momentum is small the spatial Fourier transform(16) re-
ceives non-negligible contributions from P2P propagators
connecting very distant points on the walls. However, forupu
larger than 1 GeV or so, only points at a distance smaller
than roughly one inverse GeV from the time axis will con-
tribute to the Fourier transform, and the SIA is applicable.

The physical reason why at largeQ2 single-instanton ef-
fects dominate over many-instanton contributions is the fol-
lowing. In Minkowski space, instantons correspond to quan-
tum fluctuations related to tunneling between degenerate
classical vacua of QCD. At large momentum transfer, one
can imagine computing the form factor in an infinite-
momentum frame, where the nucleon approaches the speed
of light. Following the same argument as in Feynman’s par-
ton model, one concludes that in this frame the dynamics of
the nucleon is frozen. As a result of such a time dilation,

during the scattering process quarks experience the conse-
quences of—at most—a single tunneling event, i.e., of a
single instanton.

In summary, the feasibility of SIA calculations relies on
the existence of a range of time and momentum, where the
closest instanton contribution is dominant and the ground
state is isolated. Previous studies[16–18] have shown that,
for the electromagnetic three-point functions(4) and(5), this
is achieved if one choosest to be 0.8 fm& t&1 fm and re-
stricts attention to the kinematic regimeupu*1–2 GeV.

In order to compare SIA predictions against experiment
we shall first compute the nucleon coupling constant and
mass from the two-point function. Then we shall use these
values to extract the form factors from the three-point func-
tions. All analytic results are collected in the Appendix.

A. Nucleon mass and coupling constant in the SIA

In order to extract the nucleon mass and coupling constant
in the SIA, we have evaluated the two-point function(12) for
t=0.9 fm andupu*1 GeV.

In Fig. 2 we show the SIA prediction forG2st ,qd and
compare it with the single-pole fit from Eq.(13), with M
=1.10 GeV andLsc=0.030 GeV3. The agreement between
the SIA and the single-pole fit is very good, indicating that,
for these values of time and momenta, the nucleon state has
been isolated.

B. Proton form factors in the SIA

After having extracted the nucleon mass and coupling, we
are now in a condition to discuss the single-instanton contri-
bution to the proton form factors, which are obtained from

FIG. 2. (Color online) The nucleon two-point function, witht
=0.9 fm (in units of 106 GeV9). The dashed line denotes the SIA
prediction and the points represent the single-pole fit(13), with
Lsc=0.030 GeV3 andM =1.10 GeV.
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the correlation functions(7) and (9)–(11), at3 t=0.9 fm.
These theoretical predictions are affected by the errors gen-
erated by the numerical multidimensional loop integration
and by the uncertainty on the best-fit values forM andLsc.
The overall error is estimated to be smaller than 5%.4

The SIA results for the Sachs form factors of the proton
are presented in Fig. 3(a) and compared to experimental data
[2,3,23]. At relatively large momentasQ2*3 GeV2d, where
the approach is supposed to work, we observe a good agree-
ment between SIA theoretical calculations and experiment.

In Fig. 3(b) we show the single-instanton contribution to
the ratio of magnetic and electric form factors. In this case
also we observe that the theoretical calculations converge
toward the experimental data, in the large-momentum-
transfer regime. However, we observe that at low momentum
transfer not only is the SIA curve very far from experiment,
but also its trend is opposite.

These results have several implications. On the one hand,
we find that single-instanton effects provide the right amount
of nonperturbative short-distance dynamics needed to ex-
plain the observed Sachs form factors at large momentum
transfer. On the other hand, we see that the behavior of both
the electric and the magnetic form factors at low- and
intermediate-momentum transfer cannot be understood in
terms of the interaction of the partons with asingleinstanton.
In this kinematic regime, form factors are expected to be

very sensitive to many-instanton effects and possibly to other
nonperturbative interactions.

Let us now discuss the SIA results for the Dirac and Pauli
form factors, which are reported in Figs. 4 and 5 and com-
pared with the fit of the experimental results. We observe that
single-instanton effects are sufficient to explain with impres-
sive accuracy the Dirac form factor, from low to highQ2.
Notice that, at the largest momentum availableQ2

.5.6 GeV2, the slope of the functionQ4 F1sQ2d is still
larger than zero. On the other hand, we recall that in PQCD
this combination should be a constant, modulo logarithmic
corrections. Hence, we conclude that single-instanton effects
provide the right amount of dynamics required to explain the
deviation from the perturbative behavior of the Dirac form
factor.

The SIA prediction for the proton Pauli form factor is
reported in Fig. 5 and compared to a fit of the experimental
data. In this case, the performance of the SIA at low momen-
tum transfer is worse than in the case of the Dirac form
factor.

It is natural to ask why the same approach performs dif-
ferently in the two cases. We recall that the SIA is an effec-
tive theory of the ILM which can be used to account for
instanton effects only in the limit of large momentum trans-
fer. Therefore, the fact that the SIA prediction deviates from
the data at small momentum transfer does not necessarily
imply that the instanton model is in disagreement with ex-
periment. In order to check the ILM against low-energy ex-
perimental data one necessarily needs to perform a many-
instanton calculation.

With this in mind, let us compare the definitions of the
Dirac and Pauli form factors, in terms of three-point corre-
lation functions Eqs.(10) and (11). We observe thatF2sQ2d
is obtained from adifferenceof correlation functions of com-
parable magnitude(recall thatG3F2

psnd is negative definite),

3In Ref. [21] it was shown that fort*0.7–1.0 fm the relevant
ratios of three- to two- point function are already independent oft.

4We note that the SIA prediction forGE, reported in 3, does not
exactly coincide with the results reported in Ref.[21]. The discrep-
ancy is due to the fact that the present results are obtained with
better numerical accuracy, which allowed us to determine more pre-
cisely the nucleon mass(M =1.10 GeV±0.01GeV as opposed to the
early estimateM =1.17 GeV±0.05 used in Ref.[21]).

FIG. 3. (Color online) (a) SIA predictions for the proton Sachs form factors compared to experimental data[2,3,23]. The experimental
points for the electric form factor aboveQ2=0.5 GeV2 are obtained from the JLAB data formGEsQ2d /GMsQ2d, using a dipole fit for the
magnetic form factor.(b) SIA prediction for the ratio of electric to magnetic form factors, compared to recent JLAB data obtained by the
recoil polarization method[2,3].
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while F1sQ2d is related to thesum of the same quantities.
Notice also that in the combination leading toF2sQ2d the
contribution of the magnetic correlator is weighted by the
inverse ofQ2 (through the factor 1/t), which enhances the
low-momentum modes, for which the SIA becomes inaccu-
rate. From this observation it follows that the systematic er-
ror caused by the use of the SIA in the intermediate- and
low-momentum regime is larger in the case of the Pauli form
factor than in the case of the Dirac form factor.

In the present calculations, all perturbative fluctuations
have been neglected. It is therefore important to have at least
an estimate of the magnitude of these contributions. To this
end, in Fig. 3 we compare the complete SIA results with the
predictions obtained by retaining only the zero-mode part of
the propagator. The difference between these two curves
comes from free diagrams. By definition of perturbation
theory, the contribution from free diagrams has to be larger
than the perturbative corrections to them. So, by comparing

FIG. 4. (Color online) (a) Dirac form factor of the proton evaluated in the SIA and compared to a phenomenological fit of the
experimental data obtained as follows. In Eq.(2) the magnetic form factor is fitted with the traditional dipole fromulam−1GM

fit =GdipsQ2d
=1/s1+Q2/0.71d2. The electric form factor is obtained fromGE

fitsQ2d=GdipsQ2d3 f1−0.13sQ2−0.04dg, where the second factor parametrizes
the JLAB data formGM /GE. (b) Q4 times the Dirac form factor in the SIA compared to a phenomenological fit of the experimental data.
Perturbative QCD counting rules predictQ4F1sQ2d,const.

FIG. 5. (Color online) (a) Pauli form factor of the proton evaluated in the SIA and compared to a phenomenological fit of the
experimental data obtained as follows. In Eq.(2) the magnetic form factor is fitted with the traditional dipole fromulam−1GM

fit =GdipsQ2d
=1/s1+Q2/0.71d2. The electric form factor is obtained fromGE

fitsQ2d=GdipsQ2d3 f1−0.13sQ2−0.04dg, where the second factor parametrizes
the JLAB data formGM /GE. (b) Q6 times the Pauli form factor of the proton in the SIA compared to a phenomenological fit of the
experimental data. Perturbative QCD at lowest twist predictsQ6F2sQ2d,const, modulo logarithmic corrections.
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free versus zero-mode contributions, we can estimate the im-
portance of perturbative fluctuations, relative to the nonper-
turbative effects we have accounted for. In all cases consid-
ered, we found that the instanton-induced contributions
represent the dominant dynamical effect.

In summary, we have observed that the SIA is able to
reproduce the Sachs form factor in the regime where it is
applicable, i.e., at large momentum transfer. On the other
hand, the approach misses important dynamics at low and
intermediate momentum transfer, where many-instanton ef-
fects have to be included. Interestingly, we have observed
that such many-body contributions are not important in the
Dirac form factor, which is extremely well reproduced in the
SIA, from rather small to largeQ2.

C. Neutron form factors in the SIA

The result of the SIA calculations of the neutron electro-
magnetic form factors are presented in Fig. 6 and compared
with the experimental data.

As in the case of the proton, we observe that single-
instanton effects can explain the data on the magnetic form
factor in the large-momentum-transfer regime. On the other
hand, the electric form factor is known only at small momen-
tum transfer, where the SIA is not reliable. In this case, the
SIA undershoots the experimental data by a factor of 2 or so.
Clearly, in order to test the validity of the ILM with such a
form factor, we need to include many-instanton effects.

The SIA predictions for the neutron Pauli and Dirac form
factors, which are also known only at small momentum
transfer, are presented for completeness in Fig. 7 and com-
pared against experimental data. In these cases, we observe
that the agreement between the SIA and these low-energy
data is indeed quite poor.

In general, we have found that single-instanton effects
alone are not sufficient to explain the available low-energy
information on the form factors of the neutron.

IV. MANY-INSTANTON CONTRIBUTIONS

In the previous section we analyzed the single-instanton
contribution to the form factors of the nucleon. In general,
we observed a good agreement with experimental data, in the
large-momentum-transfer regime. On the other hand, we
verified that at low momentum transfer the single-instanton
effects are subleading, as expected. Thus, in order to address
the question whether the low-energy data can also be ex-
plained by the ’t Hooft interaction, we need to account for
many-instanton degrees of freedom explicitly. To do so, we
face the problem of computing the relevant correlation func-
tions in the full instanton liquid vacuum, i.e., toall orders in
the ’t Hooft interaction.

Such ILM calculations can be performed by exploiting the
analogy between the Euclidean generating functional and the
partition function of a statistical ensemble[9], in close anal-
ogy with what is usually done in lattice simulations. After the
integral over the fermionic degrees of freedom is carried out
explicitly, one computes expectation values of the resulting
Wick contractions(14) by performing a Monte Carlo average
over the configurations of an ensemble of instantons and
anti-instantons. In the random instanton liquid model
(RILM ), the density and size of the pseudoparticles are kept
fixed, while their position in a periodic box and their color
orientation are generated according to a random distribution.

In this framework, P2P correlators can be evaluated accu-
rately in a few hours on a regular workstation. Unfortunately,
the W2W correlators which are needed in order to extract the
form factors are much harder to compute numerically. In-
deed, many simplifications which make the SIA approach
particularly convenient do not occur in a multi-instanton
background. For example, since at the one-instanton level
the W2W quark propagator in the instanton background is
known in a closed form, one can carry out calculations ana-
lytically, working directly in a time-momentum representa-
tion. On the other hand, in a multi-instanton background the

FIG. 6. (Color online) (a) Electric form factor of the neutron evaluated in the SIA and compared to experimental data[24]. (b) Magnetic
form factor of the neutron evaluated in the SIA and compared to experimental data[24].
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quark propagator is obtained by inverting the Dirac operator
numerically, and this operation is done in coordinate repre-
sentation. Hence, one is left to compute numerically the six-
dimensional integration in Eqs.(4) and (5). Furthermore,
such an integration is complicated by the nasty oscillatory
behavior of the integrand, introduced by the phases of the
Fourier transform.

As a result of these facts, while P2P correlators can be
evaluated on an ordinary single-processor computer, W2W
correlators typically call for multiprocessor computation. But
even on a very powerful parallel machine, an accurate evalu-
ation of the form factors at large momentum transfer is still
very hard to achieve, because in such a kinematic regime the
integrand is oscillating very fast. In this section, we propose
a strategy to overcome these problems.

We begin by analyzing the many-instanton contribution to
the electric form factors, for which an important simplifica-
tion occurs, as we shall see below. As a first step, we rewrite
Eq. (4) as

G3E
psndst,q,Pd =E d3xd3ye−iq·y+iP·xk0uTrfhsc

psnds2t,0dJ4
emst,yd

3h̄sc
psnds0,xdg4gu0l. s21d

Note that charge conservation implies the identity

G3E
psndst,0,Pd = G2s2t,Pd, s22d

which can be useful to test the accuracy of the numerical
integration. We can now eliminate one of the complex phases
by settingP=0, which corresponds to going to the nucleon’s
rest frame. At large Euclidean times, the resulting Green’s
function has the following spectral representation:

G3E
psndst,q;0d → Lsc

2 vq + M

vq
e−vqte−MtGE

psndsQ2d. s23d

Now we observe that two of the three integrals ind3y can be
performed analytically, exploiting the fact that the above
Green’s function is invariant under spatial rotations.5 We ob-
tain

G3E
psndst,q,0d =

4p

uqu E duyuuyusinsuquuyudG3E
psndst,uyu,0d,

s24d

where we have introduced the “charge distribution Green’s
function”

G3E
psndst,y,Pd =E d3k

s2pd3G3E
psndst,k,Pdeik·y. s25d

G3psndst ,y ,0d represents the probability amplitude for one of
the three quarks that were created at an initial time in a state
with quantum numbers of the proton(neutron) and vanishing
total momentum to absorb a photon at a distancey from the
origin of the center of mass frame, at a later timet. When the
Euclidean time becomes large such a Green’s function en-
codes the information about the charge distribution of the
nucleon.

CalculatingG3psndst , uy u ,0d numerically for several values
of uyu is not computationally very challenging, because it
requires only a three-dimensional integration over the spatial
position of the source and involves no oscillating phase. This

5Notice that only the electric three-point function and the two-
point function display such a symmetry property. Hence the method
presented in this section cannot be applied to compute the magnetic
form factor.

FIG. 7. (Color online) (a) Dirac form factor of the neutron evaluated in the SIA and compared to experimental data. The experimental
curve has been obtained by assuming that the magnetic form factor follows a dipole fromula and taking the electric form factor from
experiment(b) Pauli form factor of the neutron evaluated in the SIA and compared to experimental data. The experimental curve has been
obtained by assuming that the magnetic form factor follows a dipole fromula and taking the electric form factor from experiment.
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problem can be handled with traditional adaptive Monte
Carlo methods and takes a few days of computation on a
regular single-processor machine. Then, for the final integra-
tion in duyu, we can make use of the one-dimensional inte-
gration routines which are optimized for fast-oscillating
functions.

We have evaluated the functionG3st ,y ,0d in the RILM
by averaging over configurations of 252 pseudoparticles of
size r=0.33 fm, in a periodic box6 of volume 3.63

35.4 fm4. As in lattice simulations, we have used a rather
large current quark masss70 MeVd, in order to avoid finite-
volume artifacts. The results forG3st , uyu ,0d for different val-
ues of uyu are plotted in Fig 8(a). The final one-dimensional
integration in Eq.(24) was handled with a Gauss quadrature
routine, combined with a polynomial interpolation of the in-
tegrand.

In order to extract the form factor, we have adopted the
ratio of three- and two-point functions similar to the one
suggested in Refs.[27,28]:

GEsQ2d = lim
t→`

2vq

M + vq

G3Est,q,0d
G2s2t,qd

G2st,qd
G2st,0d

. s26d

A. Nucleon mass in the ILM

As in the previous SIA calculation, before extracting the
form factor we need to verify that, at the Euclidean time we
work at st=0.9 fmd, the contribution of the nucleon pole to
the two-point function has been isolated. To this end, in Fig.
8(b) we compare our numerical results in the RILM with a
single-particle fit from Eq.(13). The mass extracted from the
fit is M =1.15 GeV, in good agreement with previous esti-
mates in the RILM[18,29].

B. Proton form factors in the ILM

The result of our calculation of the proton electric form
factor in the RILM is presented in Fig. 9, where it is com-
pared with experimental data and with the SIA curve. We
observe a very good agreement between theory and experi-
ment. In particular, the inclusion of many-instanton effects
allows us to explain the experimental data in the low-
momentum regime, while at large momentum transfer the
RILM gives results completely consistent with the simple

6As usual, in a finite box all momenta are quantize according to
pi =sp /Lidn, with n=0, ±1, ±2, . . ..

FIG. 8. (Color online) (a) Charge distribution Green’s functionG3st , uyu ,0d for proton (circles) and nucleon(squares), evaluated in the
RILM for t=0.9 fm. (b) Two-point function of the nucleon in the RILM(points), compared to a single-pole fit(dashed line), G2fitst , uqud
=2L2e−tÎq2+M2

with t=0.9 fm.

FIG. 9. (Color online) Electric form factor of the proton in the
ILM and from experiment. Triangles are low-energy SLAC data,
which follow a dipole fit. Circles are experimental data obtained
from the recent JLAB result forGE/GM, assuming a dipole fit for
the magnetic form factor. Squares are result of many-instanton
simulations in the RILM, and the dashed line is the SIA curve.
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single-instanton calculation. Quite remarkably, we find that
the RILM prediction follows a dipole fit at low momenta, but
falls off faster at large momentum transfer, in agreement with
what is observed in the recoil polarization measurements.
Notice that this property of the form factor could not be
understood at the level of the interaction of partons with a
single instanton[Fig. 3(b)].

From the low-momentum points we can extract the proton
charge radius, which falls slightly short of the experimental
value: kREsRILM d

2 l=s0.76 fmd2 [to be compared with
kREsexptd

2 l=s0.81 fmd2]. The fact that we obtain a slightly
small charge radius is not surprising. Indeed, on the one hand
we recall that in the present calculation we have used quarks
of mass of about 70 MeV, corresponding to a rather heavy
nucleon sM =1.15 GeVd. On the other hand, we have ne-
glected fermionicaly disconnected graphs, which encode
some of the sea contribution(notice, however, that some
“pion cloud” contribution is present through theZ graphs).

In the previous section, we have shown that the proton
Dirac form factor is already completely saturated by the one-
instanton contribution at relatively low momentasQ
*0.5 GeV2d. We can use this result to combine the RILM
result for GEsQ2d and the SIA result forF1sQ2d and obtain
the magnetic and the Pauli form factors of the proton in the
ILM, for Q*0.5 GeV2. The results for such form factors are
reported in Fig. 10. In these two cases also we see that the
inclusion of many-instanton effects is sufficient to explain
the low-energy data.

C. Electric form factor of the neutron in the ILM

The results for the electric form factor of the neutron are
shown in Fig. 11. In this case, the agreement with experiment
is somewhat worse than the corresponding results for the

proton electric form factor. Our theoretical prediction under-
shoots experimental data by a factor of 2 or so. We believe
that this discrepancy is mainly due to the absence of discon-
nected graphs. Clearly, the relative contribution of such
SU(3) breaking effects is much more important in the case of
the neutron, which has a very small electric form factor com-
pared to the proton. This hypothesis is supported by the fact
that in Ref.[30] the disconnected diagrams were calculated
in lattice QCD and found to give a contribution of the order
of 50% to the form factor. A systematic study of the sea
contribution coming from disconnected graphs to several
low-energy observables is currently in progress[26].

FIG. 10. (Color online) (a) Magnetic form factor of the proton in the ILM(squares) and from experiment(triangles). The ILM curve has
been obtained by combining the analytical SIA prediction for the Dirac form factorF1 with the numerical RILM results forGE. (b) Pauli
form factor of the proton in the ILM. The circles are obtained from a fit of the experimental data. Squares are the ILM prediction, obtained
by combining the RILM results forGE with the SIA results forF1.

FIG. 11. (Color online) Electric form factor of the neutron in the
RILM and from experiment[24]. Circles are experimental data,
squares are RILM points, while the dashed line is the SIA curve.
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V. CONCLUSIONS

The present study was motivated by the observation that
recent JLAB data show that electromagnetic form factors are
very sensitive to some short-distance nonperturbative dy-
namics. Instantons are known to play the leading role in the
spontaneous breaking of chiral symmetry and in the satura-
tion of the chiral anomaly, i.e., in two very important non-
perturbative phenomena which occur at the GeV scale. In a
previous analysis we showed that instantons saturate the pion
charged form factor and, at the same time, explain why the
perturbative regime is reached much earlier in thegg*
→p0 transition form factor. In this work, we asked whether
they can also explain some existing puzzles concerning the
nucleon form factors.

We found that large-momentum-transfer data of Sachs as
well as Pauli and Dirac form factors can already be repro-
duced by accounting for the scattering of the partons on a
single instanton. These calculations were carried out in the
SIA. On the other hand, form factors at low momenta cannot
be calculated in the SIA because, in such a kinematic regime,
many-instanton effects are very important. The only excep-
tion is the proton Dirac form factor, which is already satu-
rated by one instanton at relatively low momentum transfer
sQ2,0.5 GeV2d.

We evaluated numerically the electric form factors in the
full-instanton vacuum, i.e., to all orders in the ’t Hooft inter-
action, using the RILM. In the case of the proton, we found
that RILM predictions are consistent with SIA calculations at
large momentum transfer and quantitatively reproduce the
available body of experimental data. In particular, we
showed that in the ILM the electric form factor follows a
dipole fit at low momenta, but falls off faster at large mo-
menta, in quantitative agreement with the recent JLAB re-
sults. On the other hand, the electric form factor of the neu-
tron seems to be rather sensitive to fermionically
disconnected graphs and SU(3) breaking effects, which have
been neglected in the present approach.

We combined our SIA result for the proton Dirac form
factor with our numerical RILM results for the electric form
factors and obtained predictions for the magnetic and Pauli
form factors. As in the previous cases, we found very good
agreement with experiment for all proton form factors. In the
future we are planning to use the framework developed in
this work to investigate the role of the pion cloud in low-
energy observables.
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APPENDIX: ANALYTIC RESULTS IN THE SIA

Everywhere, we chooseq pointing along the 1ˆ direction:
q=sq,0 ,0d. Let us define the following functions:

j−std ª Îst − z4d2 + r̄2,

j+std ª Îst + z4d2 + r̄2,

j0std ª Ît2 + r̄2.

1. Two-point function

The SIA result for the two-point function defined in Eq.
(12) is

G2st,qd =
32n̄r4

mp2p6E
0

`

duk udul udumu

3umu2uk u2ul u2E
−1

1

dckdcldcmE
−`

`

dz4sA + Bd,

where

Aª 2K0fuk uj−st/2dgK0fumuj+st/2dgK0fxm
−j+st/2dg

3K0fxk
−j−st/2dge−txq

+
,

Bª K0fuk uj−st/2dgK0fumuj+st/2dgK0fxm
+j+st/2dg

3K0fxk
+j−st/2dge−txq

−
,

and

xQ
+
ª

Îul u2 + uqu2 + 2uquul ucl

xQ
−
ª

Îul u2 + uqu2 − 2uquul ucl

xm
+
ª

Îul u2 + um2 + 2umul ucm

xm
−
ª

Îul u2 + um2 − 2umul ucm

xk
+
ª

Îul u2 + uk u2 + 2uk uul uck

xk
−
ª

Îul u2 + uk u2 − 2uk uul uck

2. Magnetic three-point function

The SIA result for the proton(neutron) magnetic three-
point function defined in(5) is

G3M
psndst,qd =

n̄r̄4

m*2 E d3k

s2pd3 E d3l

s2pd3 E d3m

s2pd3

3F2

3
UMsDdsk,l,md −

1

3
DMsUdsk,l,mdG ,

where
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UMsk,l,md ª U1
M + U2

M + U3
M + U4

M ,

and

DMsk,l,md ª D1
M + D2

M .

The functionsU1–4
M correspond to sets of diagrams in which the virtual photon is absorbed by au quark. They are defined

as follows.
U1

M
ªu1a

M +u1b
M +u1c

M ,

u1a
M
ª − 256

m3
2 + m1

2 + qm1 − m2
2 − umuum + qu

umuum + qu
e−tsum+qu+umudK0fuk uj−stdgK0ful uj+stdgK0fuq/2 + m + k uj−stdgK0fuq/2 + m + l uj+stdg,

u1b
M
ª + 256

l2k2

ul uuk + qu
e−tsuk+qu+2ul udK0fuk uj0stdgK0fuq/2 + l + k uj−stdgK0fumuj+stdgK0fuq/2 + m + l uj+stdg,

u1c
M
ª + 256

− m1l1 + m2l2 − m3l3 + umuul u
umuul u

e−tsumu+2ul udK0fum + quj0stdgK0fuk uj−stdgK0fuq/2 − l − k uj−stdgK0fuq/2 + m + l uj+stdg.

U2
M
ªu2a

M +u2b
M ,

u2a
M
ª − 1024

m2sl2 + m2d
uq/2 + m + l uumu

e−ts2uq/2+m+l u+umudK0fuq − k + l + muj−stdgK0fum + quj0stdgK0fuk uj−stdgK0ful uj+stdg,

u2b
M
ª − 1024

sl2 − k2 + m2dsm2 + l2d
uq/2 + m + l uuq − k + m + l u

e−ts2uq/2+m+l u+um+q−k+l udK0fuk uj−stdgK0ful + m − k uj0stdgK0ful uj+stdgK0fumuj+stdg.

U3
M
ªu3a

M +u3b
M +u3c

M ,

u3a
M
ª +

128

um + l − k + quum + q/2 + l u
s− 2l1k1 + 2l1

2 + 3qm1 − 2m1k1 + 4m1l1 + 2m1
2− qk1 + 2ql1 + 3ql1 − 2l3k3 + 2l3

2 − 2m3k3

+ 4m3l3 + q2 − 2l2
2 − 2m2

2− 4m2l2 + 2m2k2 + 2l2k2 + 2m3
2 + 2uq/2 + m + l uuq + m + l − k ud

3 e−ts2uq/2+m+l u+uq−k+l+mudK0fumuj+stdgK0ful uj+stdgK0fuk uj−stdgK0fum + l − k uj0stdg,

u3b
M
ª − 256

sl2 + m2dm2

umuuq/2 + m + l u
e−ts2um+l+q/2u+umudK0fuk uj−stdgK0ful uj+stdgK0fuq + muj0stdgK0fuq − k + m + l uj−stdg,

u3c
M
ª − 256

m1
2 − m2

2 + m3
2 + qm1 − umuum + qu

umuum + qu
e−ts2um+qu+umudK0ful uj+stdgK0fuq/2 + m + l uj+stdgK0fuk uj−stdgK0fuq/2 + m + k uj−stdg.

U4
M
ªu4a

M ,

u4a
M
ª − 1024

sm1
2 − m2

2 + m3
2 + qm1 − umuum + qudm2

umuuq + mu
e−tsum+qu+umudK0fuk uj−stdgK0fuq/2 + m + k uj−stdg

3K0fuq/2 + m + l uj+stdgK0ful uj+stdg.

The functionsD1–2
M correspond to sets of diagrams in which the photon is absorbed by ad quark. They are defined as follows.

D1
M
ªd1a

M +d1b
M ,

d1a
M
ª − 1024

m2sm2 + l2d
umuum + q/2 + l u

e−tsumu+2uq/2+l+mudK0fum + quj0stdgK0ful uj+stdgK0ffuk uj−stdgK0fuq − k + m + l uj−stdg,

d1b
M
ª + 1024

sm2 + l2dsk2 − l2 − m2d
um + q/2 + l u + uq + l + m − k u

e−ts2um+q/2+l u+uq+l+m−k udK0fum + l − k uj0stdgK0fumuj+stdgK0fuk uj−stdgK0ful u,j+stdg.

D2
M
ªd2a

M +d2b
M +d2c

M +d2d
M ,
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d2a
M
ª+ 256

ml − ul uumu
umuul u

e−tsumu+2ul udK0fum + quj0stdgK0fuk uj+stdgK0fuq/2 + m + l uj+stdgK0fuq/2 − k − l uj−stdg,

d2b
M
ª− 256

m2sm2 + l2d
um + q/2 + l uumu

e−ts2um+q/2+l u+umudK0fum + l − k + quj−stdgK0fum + quj0stdgK0fuk uj−stdgK0ful u,j+stdg,

d2c
M
ª+ 256

l2k2

uk + quul u
e−tsuq+k u+2ul udK0ful + k + q/2uj−stdgK0fumuj+stdgK0fuk uj0stdgK0fuq/2 + m + l u,j+stdg,

d2d
M
ª−

256

2um + l − k + quuq/2 + m+ l u
e−tsum+l−k+qu+2ul+q/2+mudK0ful uj+stdgs2m1

2 + 3m1q − qk1 − 2m1k1 − 2l1k1 − 2m3k3 − 2l3k3 + q2

+ 3l1q + 4l1m1 + 2l1
2 + 2m3

2 + 4l3m3 + 2l3
2 + 4l2m2 − 2m2k2 − 2l2k2 + 2l2

2 + 2m2
2 + 2uq/2 + m + l uuq + m + l − k ud

3K0fum − k + l uj0stdgK0fuk uj−stdgK0fumu,j+stdg.

3. Electric three-point function

The proton(neutron) electric three-point function reads

G3E
psndst,qd =

n̄r̄4

m*2 E d3k

s2pd3 E d3l

s2pd3 E d3m

s2pd3F2

3
UEsDdsk,l,md −

1

3
DEsUdsk,l,mdG ,

where

UEsk,l,mdªU1
E + U2

E + U3
E + U4

E

and

DEsk,l,mdªD1
E + D2

E.

As in the case of the magnetic three-point function,U1–4
E correspond to sets of diagrams in which the photon is absorbed by

a u quark. They are defined as follows:
U1

E
ªu1a

E +u1b
E +u1c

E ,

u1a
E
ª− 256

m2 + qm1 + umuum + qu
umuum + qu

e−tsum+qu+umudK0fuk uj−stdgK0ful uj+stdgK0fuq/2 + m + k uj−stdgK0fuq/2 + m + l uj+stdg,

u1b
E
ª− 256e−tsuk+qu+2ul udK0fuk uj0stdgK0fuq/2 + l + k uj−stdgK0fumuj+stdgK0fuq/2 + m + l uj+stdg,

u1c
E
ª− 256

lm + umuul u
umuul u

e−tsumu+2ul udK0fum + quj0stdgK0fuk uj−stdgK0fuq/2 − l − k uj−stdgK0fuq/2 + m + l uj+stdg.

U2
E
ªu2a

E +u2b
E ,

u2a
E
ª− 1024e−ts2uq/2+m+l u+umudK0fuq − k + l + muj−stdgK0fum + quj0stdgK0fuk uj−stdgK0ful uj+stdg,

u2b
E
ª− 1024e−ts2uq/2+m+l u+um+q−k+l udK0fuk uj−stdgK0ful + m − k uj0stdgK0ful uj+stdgK0fumuj+stdg.

U3
E
ªu3a

E +u3b
E +u3c

E ,

u3a
E
ª+

128

um + l − k + quum + q/2 + l u
e−ts2uq/2+m+l u+uq−k+l+muds2m2 + 2l2 + 4ml − 2lk − 2mk + 3qm1 + 3ql1 + q2 − qk1

+ 2uq/2 + m + l uuq + m + l − k udK0fumuj+stdgK0ful uj+stdgK0fuk uj−stdgK0fum + l − k uj0stdg,

u3b
E
ª− 256e−ts2um+l+q/2u+umudK0fuk uj−stdgK0ful uj+stdgK0fuq + muj0stdgK0fuq − k + m + l uj−stdg,

u3c
E
ª− 256

m2 + qm1 + umuum + qu
umuum + qu

e−ts2um+qu+umudK0ful uj+stdgK0fuq/2 + m + l uj+stdgK0fuk uj−stdgK0fuq/2 + m + k uj−stdg.
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D4
E
ªd4a

E ,

u4a
E
ª− 1024

m2 + qm1 + umuum + qu
umuuq + mu

e−tsum+qu+umudK0fuk uj−stdgK0fuq/2 + m + k uj−stdgK0fuq/2 + m + l uj+stdgK0ful uj+stdg.

The functionsD1–2
E correspond to sets of diagrams in which the photon is absorbed by ad quark. They are defined as follows:

D1
E
ªd1a

E +d1b
E ,

d1a
E
ª− 1024e−tsumu+2uq/2+l+mudK0fum + quj0stdgK0ful uj+stdgK0fuk uj−stdgK0fuq − k + m + l uj−stdg,

d1b
E
ª− 1024e−ts2um+q/2+l u+uq+l+m−k udK0fum + l − k uj0stdgK0fumuj+stdgK0fuk uj−stdgK0ful uj+stdg.

D2
E
ªd2a

E +d2b
E d2c

E +d2d
E ,

d2a
E
ª+ 256

ml − ul uumu
umuul u

e−tsumu+2ul udK0fum + quj0stdgK0fuk uj+stdgK0fuq/2 + m + l uj+stdgK0fuq/2 − k − l uj−stdg,

d2b
E
ª− 256e−ts2um+q/2+l u+umudK0fum + l − k + quj−stdgK0fum + quj0stdgK0fuk uj−stdgK0ful uj+stdg,

d2c
E
ª− 256e−tsuq+k u+2ul udK0ful + k + q/2uj−stdgK0fumuj+stdgK0fuk uj0stdgK0fuq/2 + m + l uj+stdg,

d2d
E
ª

− 256

2um + l − k + quuq/2 + m+ l u
e−tsum+l−k+qu+2ul+q/2+mudK0ful uj+stdgs2m1

2 + 3m1q − qk1 − 2m1k1 − 2l1k1 − 2m3k3 − 2l3k3 + q2

+ 3l1q + 4l1m1 + 2l1
2 + 2m3

2 + 4l3m3 + 2l3
2 + 4l2m2 − 2m2k2 − 2l2k2 + 2l2

2 + 2m2
2

+ 2uq/2 + m + l uuq + m + l − k udK0fum − k + l uj0stdgK0fuk uj−stdgK0fumuj+stdg.
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