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Instanton contribution to the electromagnetic form factors of the nucleon
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We study the electromagnetic form factors of the nucleon, from small to large momentum transfer, in the
context of the instanton liquid modéLM ). As a first step, we analyze the role of single-instanton effects, and
show that they dominate the form factors at large momentum transfer. Then, we go beyond the single-instanton
approximation and perform a calculation to all orders in the 't Hooft interaction. We find that the ILM is in
good agreement with the available experimental data. Based on these results, we argue that instantons provide
a microscopic mechanism that explains the delay of the onset of the asymptotic perturbative regime in the
electromagnetic form factors.
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I. INTRODUCTION E.(O?
FZEQZ; -~ Iogz(QzAéCD)/QZ! (3)
The recent measurements of pion and nucleon form fac- 1Q

tors performed at Jefferson LaboratoLAB) have trig- i good agreement with experimental data. On the other
gered an important discussion about the transition from theiang  the perturbative predictions for the individual Pauli

nonperturbative to the perturbative regime, in QCD. Theynq the Dirac form factor are nevertheless very far from the

pion form fact\é)r h";S been m\;zasured very accurately in thgyerimental data. This fact led the authors to argue that the
range 0.6 GeV<Q°<1.6 GeV by the F, Collaboration  recocious scaling of the rati) could be the result of a

[1]. It was found that the form factor deviates significantly gejicate cancellation in the numerator and denominator.
from the asymptotic perturbative prediction, even'at the Ia}rg— The delay of the onset of the perturbative regime in the
est value of the momentum transfer. Important informationg|astic form factors implies that there are strong nonpertur-
about the proton form factors has been obtained by means ghive forces inside hadrons, which dominate over the per-
the recql polarization .method, whlch.allows one to accesg,rpative gluon exchange even at short distarioéshe or-

the ratio of the electric over magnetic form factd&3].  ger of 1/Q). Two important theoretical questions arise from
Thesez experlzments have ~shown that the ratioyis fact. What is the microscopic origin of the short-scale
HGe(Q)/G(Q°) decreases very rapidly, while in the jnieraction driving the pion and nucleon elastic form factors

asymptotic regime it should approach constajt away from their perturbative limit? Why do such nonpertur-
These two results have indicated that, in elastic form facyative forces not show up in they* — m, transition form

tors, the asymptotic perturbative regime is not reached untijyctor?
very large values of the momentum transfer. Interestingly, Clearly, the answers to these questions reside in the non-
this. conclusion contrasts wit.h. the results of the CLEO eX-perturbative sector of QCD. In particular, it is commonly
periment onyy* —mq transition form factor, where the accepted that the soft physics of the light quarks is very
asymptotic regime is reached a'lreadyqﬁzz Ge\/z.'For much influenced by the interactions responsible for chiral
completeness, it should be mentioned that there exists a|5°s§‘/mmetry breakingCSB). On the other hand, confinement
combination of proton form factors which seems to exhibit ageems to play only a marginal role. The most convincing
precocious scaling toward the perturbative behavior, namelyayigence in this direction comes from lattice studies of QCD
the ratio of Pauli over Dirac form factor5,(Q%)/F1(Q?), i the semiclassical limit: by means of the so-called “cool-
where ing” procedure, it was observed that, in this limit, the
current-current correlators of light hadrons change very little,
1 although all perturbative fluctuations are removed, and the
F1i(Q?) = 1_+7-[GE(Q2) +1Gu(Q)], (1) string tension drops oys].
The characteristic scale associated with CSB 1sf 4
~ 1.2 GeV, significantly larger than the typical confinement
1 Q? scale,Aqcp. Such a separation justifies attempting to under-
Fo(Q?) = —[Gu(Q?) - Ge(Q?)], Ti=——. (2 stand the short-distance nonperturbative structure of light
1+7 aM hadrons, without having to account simultaneously for the
microscopic origin of confinement. On the other hand, from
It was recently shown by Belitsky, Ji, and Yuang that, whenthe observation that#f . ~m,, it follows that any effective
logarithmic corrections and subleading twist light-cone wavedescription of the short-distance nonperturbative dynamics
functions are introduced, perturbative QCD pred[&s of light quarks should also account for topological effects.
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Instantons are topological gauge configurations which The single-instanton contribution to the nucleon electric
dominate the QCD path integral in the semiclassical limit.from factors were first investigated in R¢21]. In this work
They generate the so-called 't Hooft interaction, whichwe extend the analysis to the magnetic as well as to the Pauli
solves the (1) problem[7] and spontaneously breaks chiral and Dirac form factors of the nucleon. Moreover, we also go
symmetry[8], but does not confine. Evidence for such anbeyond the single-instanton approximation and include
instanton-induced interaction in QCD comes from a numbemany-instanton effects, by performing a calculation to all
of phenomenological studief], as well as from lattice orders in the 't Hooft interaction. We find that experimental
simulations[6,10,11. The instanton liqguid mod€lLM) as-  data at large momentum transfer can be reproduced surpris-
sumes that the QCD vacuum is saturated by an ensemble ofg well in the SIA. On the other hand, form factors at low
instantons and anti-instantons. The only phenomenologicahomenta are very sensitive to many-instanton effects. In
parameters in the model are the average instanton size general, we found very good agreement between theory and
=1/3 fm and densityn=1 fm™. These values were ex- experiment, which indicates that instantons provide the cor-
tracted more than two decades ago, from the global vacuumect nonperturbative dynamics, responsible for the electro-
propertieq12]. The nonperturbative contribution to the elec- magnetic structure of the nucleon and for the delay of the
tromagnetic form factors of the nucleon has been analyzed ionset of the perturbative asymptotic regime in elastic form
a number of works by means of phenomenological model$actors.

(for an incomplete list see Ref31]). The paper is organized as follows. In Sec. Il we review

It the present study, we use the ILM to address the queghe connection between the form factors of the nucleon and
tion whether the 't Hooft interaction can provide the nonper-some Euclidean correlation functions, which have to be
turbative dynamics needed to explain the experimental reevaluated nonperturbatively. In Sec. Il we introduce the SIA
sults for the pion and nucleon form factors. The instantorand present the predictions for the Sachs as well as for the
contribution to these form factors has been investigated iirac and Pauli form factors of the nucleon. In Sec. IV we
the context of the ILM in a number of works. In Rgfl3] include many-instanton effects by means of numerical simu-
Forkel and Nielsen computed the pion form factor in a sumdations in the full-instanton liquid. All results are summarized
rule approach, which takes into account the direct-instantoin Sec. V, while the Appendix contains a compilation of the
contribution, in addition to the lowest dimensional conden-analytic SIA results.
sate terms in the operator product expangids in other
sum-rule approaches, this calculation required a detailed
knowledge of the contribution coming from the continuum
of excitations. In order to avoid this problem, in Refs.
[15,16 the electromagnetic pion and proton three-point In order to compute the form factors of the nucleon we
functions were calculated in coordinate space, by means @fonsider the following Euclidean correlation functions:
numerical simulations in the ILM. The contribution from the
continuum of excitations could be excluded by considering
sufficiently large-sized correlation functions. The results G32"(t,q) = f d*xdye V20| Tr 2" (,y)35(0,0) 72"
were then compared to phenomenological estimates of the
same correlation functions, obtained from the Fourier trans- X(=1,%)v4]|0), (4)
form of the fits of the experimental data. Unfortunately, this
method has the shortcoming that it does not allodiract
comparison of the theoretical predictions against the expenggp(n (t,q) = f dBxdyed (x+y)/2<0|-|-r[ 77p(n)(,[ y)IEM0, 0)7]2én
mental data.

Direct comparison between theory and form factors at in- X (= 1,%)7,]/0), (5)
termediate and large momentum transfer became possible af-
ter the single-instanton approximatio8lA) was developed
[17,18. In Ref.[19] it was shown that instantons can quan-
titatively explain the pion charged form factor and its devia-
tion from the perturbative regime at large momentum trans-
fer. Conversely, it was observed that such effects are P () — cabq, T
parametrically suppressed in the/* — m, transition form 7sdX) = €7 Ua(x) Cy50(X) Jus(X) ®
factor. This explains the early onset of the perturbative re
gime in such a form factor. Moreover, a calculation of the
pion distribution amplitude in the ILM was performed in
Ref.[20]. It was found that instantons can explain the behav-
ior of the low-energy experimental dat®’><2 Ge\?) for
the yy* — #° transition form factor.

Il. FORM FACTORS AND EUCLIDEAN
CORRELATION FUNCTIONS

WhereJ‘;m(x) is the electromagnetic current aw@é“)(x) is an
operator that excites states with the quantum numbers of the
nucleon. In the case of the proton we chdose

In QCD, in the limit of large Euclidean time separatiprthe
correlation functiong4) and (5) relate directly to the form
factors of the nucleon. In partlc:uIa(E;Bp n depends linearly
on the proton(neutron electric form factor

G3E"(t,q) — 8M?R(t,q)GE"(Q?), (7)
This calculation has been recently repeated, including both next

to leading order perturbative corrections and a more realistic esti- *The corresponding operator for the neutron is obtained through
mate of the single-instanton contributigiv] the substitutioru< d.

065211-2



INSTANTON CONTRIBUTION TO THE.. PHYSICAL REVIEW C 69, 065211(2004

2
R(th) = Agc( 20 /2> e_z‘”qlzt, (8) GsE(M)(th) =fd3Xf dweiqlz.(X+y)EabCEa/brcr<UzEE:g)blc,
q
where GE"(Q?) denotes the protomeutron electric form + Ug5eb’e 4 yaeal’e’ 4 yaneat'c
factor andA4; the coupling of the interpolating operat() beab'c! beafb'c”
to the nucleon. Similarly, i is chosen along the direction, + D§4(°2a) <+ D§4(Cg) ), (14)

p(n) . _
G3,, " relates to the proto(neutrorn magnetic form factor: where

G3P"(t,q) — - 202R(t,q)GPM(Q?). 9 L
w (1) =~ 2R A)GYTQ) O U =g (tyi- tX)(Cre) TS (tyi- tX)(Coe)

These expressions are derived in the Breit frame, wpeére _ _

=-p=q/2 andQ?*=q? We recall that, in the kinematic re- X Sdlt,Y30,0) 742 See (0,0, = £.X) va2 ],
gime explored by current experiments, both Sachs form fac-

tors are positive definite. This implies th@tS,F\’,f”)(t,q) and Uéﬁffﬁb © == T y4See (t,Y; = £,X) T (Cys) Shelt,y; 0,0)
G32"(t,q) have opposite signs.

From the correlation functiongh and(5) one can imme- X Va8 (0,0; = 1,X)(Cye) S, (ty; = ,%)],
diately construct linear combinations which relate to the
Dirac and Pauli form factors: U?:Zf%b'd = THSuelt,Y:0,0) 142 Sy (0,05~ £,%)
G3E = 3" - G — BMAL + DRLAFY"(QY, X(C9) S (1,Y5 = £,X)(C ) Sy (LY~ %)
(10 X(Cy9So (LY~ tX) vz,
G =~ %G?ﬁf‘) -G - 8BMA L+ DRLYFEM(QY).  URYEP"® =~ T (Cys) Sy (LY: = £,X)(Cye) Sy (Ly; = 1,X)]
(11) X T Se(t,Y:0,0) ya2See (0,0;= t,X) yar2 ],

Notice that, due to the sign difference, the absolute contribuand
tions of the correlation function3,, and G3¢ to the Dirac abcalb’c! T
form factor Fy(Q?) are added up, while the contributions to  Daaz) =~ T yaeSw (LY = t.X)(Cys) 'S,y (ty; = t,X)
the Pauli form factoiF,(Q?) are subtracted. % (C tv:00 00 —tx
The exponential factoR(t,q) in Egs.(7)<11) can be ob- (Cre)55elt,Y;0.0) 742 % (0,0: = t3)],

tained from the two-point function: bedb'c’
Dg4(cz) ¢ = T S,e(t,y;0,0) ya2Sear (0,05~ 1,X)(C )

G2(t,q) :f d3Xeiq-x<0|TrnSC(t,X)?Sc(O) ¥40). (12 % Szb,(t,y;_ £,X) Y4270 (LY~ £,X)(Cys)T].
In the large Euclidean time limit, one has Similarly, the two-point function reads
G2(t,q) — 2A§ce_‘”qt, (13 G2(t,p) = f d3xeip.xeabcfa,blcl<Nibcdb’c’ + Ngbca’b’c’>,

from which it is possible to extract the constany, and the
nucleon mas$/.

Even at asymptotically large momentum transfer, the corywhere
relation functions defined in this section cannot be calculated
in perturbation theory. This is because all the three-point and ~ N2*°@P'¢’ = (- 1)Tr[S,, (t,x;0,0)(Cys)SL,, (t,X;0,0)
two-point functions are large sizé€due to thet— o limit),
while perturbative QCOPQCD) is supposed to work only X (Cys) 1T Seer(£,X;0,0) 74],
for small-sized correlation functions. On the other hand, fac-
torization theorems state that, at asymptotically large values pjabeab’c’ _ TH S, (t,X:0,0)

. . a' \LA, U,y

of the momentum transfer, all nonperturbative effects are in-
cluded in the light-cone wave functions and decouple from ><(Cy5)SIb,(t,x;O,O)y4SZC,(t,x;O,O)(Cy5)T].
the hard perturbative contributions. The problem with such
an approach is that it is not possible to knawpriori at  In these expression§(y,,y;x,,x) denotes the quark propa-
which momenta factorization theorems become quantitagator, the trace is over spinor and color indices, and the
tively reliable. Therefore, in this work we shall refrain from brackets(-) denote the average over all gauge field configu-
using them and attempt d@irect nonperturbative evaluation rations.

(15

of the Green’s functions, from moderate to laQ& Fermionically disconnected components of these three-
After performing Wick contractions, the fermionically point functions bring in an additional contribution to the
connected components of the correlat@sand (5) read form factors, coming from the quark-antiquark sea. At zero
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FIG. 1. Graphical representation of the typical contributions to the wall-to-wall nucleon electromagnetic three-point function. The
double-lined “walls” correspond to the spatial Fourier integration. The dashed ellipse denotes the fodrepoarkodg instanton interac-
tion. The nucleon is excited at the left, struck by the virtual photon in the middle, and absorbed at the right. Two contributions to the
connected three-point function are shown. Diagrgdn probes the diquark content of the nucleon, whereas in diagBnthe photon
interacts with the remaining quark. Diagraf) is disconnected, where the photon probes the sea quark content of the nucleon.

momentum transfer, such contributions measure the chargbat the approach is reliable only if the relevant Green’s func-
of the vacuum and therefore vanish. They also cancel out dions receive a maximal contribution from the zero-mode
finite momentum transfer, if one assumes flavo3Wym-  part of the propagator. In fact, the additiong] matrix in
metry. Egs.(4), (5), and(12) has been inserted in order to meet such
So far, all expressions are completely general, as all tha requirement.
QCD dynamics resides in the quantum average over the In this work, we choose to further simplify the calculation
gauge configurations. In the semiclassical limit, the nonperby adopting the so-called “zero-mode approximation,” in
turbative contribution to the correlation functio@® and(5)  which the nonzero-mode part of the propagator is replaced
arises from single-instanton and from many-instanton efby the free oneS(x,y)=S,.(X,y)+S(x,y). Such an ap-
fects. Typical single-instanton contributions are represente@roximation corresponds to accounting for the 't Hooft inter-
in Fig. 1, where the instanton field mediates the exchange adction and neglecting other residual instanton-induced inter-
momentum between two partons. Many-instanton effects aractions, which are generally subleading. Indeed, in Rl
not only those in which a parton exchanges its momentunit was shown that the zero-mode approximation is very ac-
with the other partons in the nucleon by scattering on two okurate in the case of the nucleon three- and two-point func-
more pseudoparticles. In addition, there are also collectivéions that we are considering.
effects, which are associated with the breaking of chiral sym- Finally, it is convenient to use the regular gauge and work
metry and the dynamical generation of a momentumdirectly in a time-momentum representation of the Green’s
dependent quark effective mas. These many-body inter- functions. To this end, one expresses Ed4) and(15) in
actions are supposed to play an important role at lowerms of “wall-to-wall” (W2W) propagators, defined as the
momenta. spatial Fourier transforms of the point-to-poiift2P quark
In the next section, we shall calculate the contributionspropagators:
arising from the interaction of two massless partons with a
single instanton, while many-instanton effects will be dis-
cussed in Sec. IV. Sit',p’:t,p) = f dBxdByeP Y IPXg(y,x). (16)

lIl. SINGLE-INSTANTON CONTRIBUTIONS This is achieved by insertions of appropriate delta functions

In this section, we use the SIA to evaluate the single—at each vertex. The convenience of the time-momentum rep-

nstanton contributon 1 the corelatord), (9), and (12, - R T RIERE B LS R L e iated
The SIA is an effective theory of the instanton vacuum, in 9 9

which the degrees of freedom of the closest pseudoparticlgnalytica"y[19].and are smooth, nonoscillatory exponential
are kept explicitly in account, while the contribution from all Or Bessel functions. The massless free W2W quark propaga-

other pseudoparticles in the vacuum is included into one eft—Or Is given by

fective parametem’ =85 MeV. Such a parameter, which ol

was rigorously defined and calculated in R@f7] for differ- R 3 (3 s g Pt

ent ensembles, depends on only the two phenomenological S(t'p"it.p) = (2m°6%(p’ - p) 2 U Ve (A7)
parameters of the ILM, i.e., the instanton sizand density

n whereu,=-1 andu,=-ip,/|p|, for 1=1,2,3. Thezero-mode

. The main advantage of the SIA is that the quark propaga;, . -
tor in the single-instanton back-ground has a simple analy’fi‘yvzw quark propagator in the regular gauge is given by

cal form[22]. It consists of a zero-mode part and a nonzero- o2
mode part,S(x,y)=S,,(x,y)+S,,(x,y). The accuracy of B (sr oty 2P o IA)

T o t',p’;t,p) =—f(t',p’";t,pW', 18
the SIA was analyzed in detail in Refd.6,17. It was shown Sm(t'.p'tp) m* (t\p7itp) (18)
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10 T T

f(t'.p’;t,p) = &P P 2Ko([p Nt - 2)%+ p?)

[t—7V24 2 o ® Single-pole fit
XKo(Ip[V(t=29)% +p?), (19 o e

1+

ST (20) 1t ‘\,\\ ]
where z,=(z,z,) denotes the instanton positiom* is the
effective parameter discussed above, arjdc(r,li) are >
color matrices. baN
The calculation of the correlation functioii$), (5), and B
(12) is performed by substituting Eqél7) and (18) in the b
traces arising from Wick contractions. The quantum average
is carried out by integrating over the instanton color orienta-
tion, position, and size. The integral over the color orienta- 0 . .
tion is trivial, while that over instanton position generates a 0.5 1 1.5 2
delta function which accounts for total momentum conserva- lal [GeV]
tion. As expected, the introduction of an instanton-induced
interaction generates an extra loop integral, over the momen- FIG. 2. (Color onling The nucleon two-point function, with
tum exchanged through the field of the instanton. Despite the 0.9 fm (in units of 1¢ GeV?). The dashed line denotes the SIA
presence of loops, all diagrams are finite, as the instantoprediction and the points represent the single-polg1f8), with
finite size provides a natural ultraviolet cutoff. The integral As.=0.030 GeV andM=1.10 GeV.
over the instanton size is weighted by a distribution function.
In this work we assume a simple delta-function distribution
d(p)=ndé(p-p). Alternatively, one could use a fit of the in- during the scattering process quarks experience the conse-
stanton size distributions obtained from lattice simulationsquences of—at most—a single tunneling event, i.e., of a
(for a compilation of results see R¢R5]). In previous work  single instanton.
we verified that these two choices essentially give the same In summary, the feasibility of SIA calculations relies on
result[19]. the existence of a range of time and momentum, where the
The SIA is reliable only if the correlation functions are closest instanton contribution is dominant and the ground
dominated by the contribution of the closest instanton. Thistate is isolated. Previous studig$—19 have shown that,
condition is clearly not satisfied when the distance coveregyor the electromagnetic three-point functio@s and(5), this
by the quarks becomes much larger than the typical distancg achieved if one choosesto be 0.8 fmst<1 fm and re-
between two neighbor instantons. Previous studié17  stricts attention to the kinematic reginm =1-2 GeV.
have shown that P2P Green’s functions obtained analytica”y In order to compare SIA predictions against experiment
in the SIA quantitatively agree with those obtained numeriye shall first compute the nucleon coupling constant and
cally in the full-instanton background, if the distance be-mass from the two-point function. Then we shall use these
tween the quark source and the quark sink is smaller thagalues to extract the form factors from the three-point func-

~1 fm for two-point functions and thar-1.8 fm for three-  tions. All analytic results are collected in the Appendix.
point functions.

On the other hand, we do not expect the SIA calculation

W =y,7,

G2
4

of the W2W correlators to be reliable for all values of the A. Nucleon mass and coupling constant in the SIA
momentunp, even for small Euclidean timesin fact, if the
momentum is small the spatial Fourier transfo(t®) re- In order to extract the nucleon mass and coupling constant

ceives non-negligible contributions from P2P propagatorsn the SIA, we have evaluated the two-point functia®) for

connecting very distant points on the walls. However,|for  t=0.9 fm and|p|=1 GeV.

larger than 1 GeV or so, only points at a distance smaller In Fig. 2 we show the SIA prediction fo&2(t,q) and

than roughly one inverse GeV from the time axis will con- compare it with the single-pole fit from E@13), with M

tribute to the Fourier transform, and the SIA is applicable. =1.10 GeV andA.=0.030 GeV. The agreement between
The physical reason why at lar@g? single-instanton ef-  the SIA and the single-pole fit is very good, indicating that,

fects dominate over many-instanton contributions is the folfor these values of time and momenta, the nucleon state has
lowing. In Minkowski space, instantons correspond to quanbeen isolated.

tum fluctuations related to tunneling between degenerate

classical vacua of QCD. At large momentum transfer, one

can imagine computing the form factor in an infinite- B. Proton form factors in the SIA

momentum frame, where the nucleon approaches the speed

of light. Following the same argument as in Feynman’s par- After having extracted the nucleon mass and coupling, we
ton model, one concludes that in this frame the dynamics oére now in a condition to discuss the single-instanton contri-
the nucleon is frozen. As a result of such a time dilation,bution to the proton form factors, which are obtained from

065211-5



P. FACCIOLI PHYSICAL REVIEW C 69, 065211(2004)
Ty T T T T 1
. i . LL: 5
1 ® G_ Experiment - o Experiment
04 b & % A G, Experiment I —— SIA
\ —— G SIA (free + zm)
. G, SIA (zm only) S ¢
- A E
2oV === G, SIA (free + zm) - T
= "\ —-- G, SIA (zm only) RN
(5 \‘ \\ (DE
o A \\ ‘\\ ~u —— I
O] e AA\\\“\ (g. lla—'—}:_—_
N \\ e
\\ \A\\\ /’——///
\\ &= \:\\\ PR
\ = \\\Z~
‘\‘\,it:f g
" . S S — 5
0 1 2 3 4 5 0 1 2 3 4 5
2 2 2 2
Q  [GeV] Q> [GeV]
(a) (b)

FIG. 3. (Color onling (a) SIA predictions for the proton Sachs form factors compared to experimenta3jaia3. The experimental
points for the electric form factor abov@?=0.5 Ge\? are obtained from the JLAB data faiGg(Q?)/Gy(Q?), using a dipole fit for the
magnetic form factor(b) SIA prediction for the ratio of electric to magnetic form factors, compared to recent JLAB data obtained by the
recoil polarization method2,3].

the correlation functiong7) and (9)—<11), at® t=0.9 fm. very sensitive to many-instanton effects and possibly to other
These theoretical predictions are affected by the errors gemonperturbative interactions.
erated by the numerical multidimensional loop integration Let us now discuss the SIA results for the Dirac and Pauli
and by the uncertainty on the best-fit values fbrand A;. ~ form factors, which are reported in Figs. 4 and 5 and com-
The overall error is estimated to be smaller than 5%. pared with the fit of the experimental results. We observe that
The SIA results for the Sachs form factors of the protonsingle-instanton effects are sufficient to explain with impres-
are presented in Fig(8 and compared to experimental data sive accuracy the Dirac form factor, from low to hig)r.
[2,3,23. At relatively large momentéQ?=3 Ge\?), where Notice that, at the largest momentum availab@?
the approach is supposed to work, we observe a good agree<5.6 GeV?, the slope of the functiorQ* Fy(Q?) is still
ment between SIA theoretical calculations and experiment.larger than zero. On the other hand, we recall that in PQCD
In Fig. 3(b) we show the single-instanton contribution to this combination should be a constant, modulo logarithmic
the ratio of magnetic and electric form factors. In this casecorrections. Hence, we conclude that single-instanton effects
also we observe that the theoretical calculations convergprovide the right amount of dynamics required to explain the
toward the experimental data, in the large-momentum#eviation from the perturbative behavior of the Dirac form
transfer regime. However, we observe that at low momentunfiactor.
transfer not only is the SIA curve very far from experiment, The SIA prediction for the proton Pauli form factor is
but also its trend is opposite. reported in Fig. 5 and compared to a fit of the experimental
These results have several implications. On the one handata. In this case, the performance of the SIA at low momen-
we find that single-instanton effects provide the right amountum transfer is worse than in the case of the Dirac form
of nonperturbative short-distance dynamics needed to exactor.
plain the observed Sachs form factors at large momentum It is natural to ask why the same approach performs dif-
transfer. On the other hand, we see that the behavior of botlerently in the two cases. We recall that the SIA is an effec-
the electric and the magnetic form factors at low- andtive theory of the ILM which can be used to account for
intermediate-momentum transfer cannot be understood iimstanton effects only in the limit of large momentum trans-
terms of the interaction of the partons witlsiagleinstanton.  fer. Therefore, the fact that the SIA prediction deviates from
In this kinematic regime, form factors are expected to bethe data at small momentum transfer does not necessarily
imply that the instanton model is in disagreement with ex-
periment. In order to check the ILM against low-energy ex-

3In Ref. [21] it was shown that fot=0.7-1.0 fm the relevant . .
perimental data one necessarily needs to perform a many-

ratios of three- to two- point function are already independerit of ! .
“We note that the SIA prediction fdBg, reported in 3, does not InStarlton 'Cal'cuIaFlon. L

exactly coincide with the results reported in Rgfl]. The discrep- __ With this in mind, let us compare the definitions of the

ancy is due to the fact that the present results are obtained witRirac and Pauli form factors, in terms of three-paint corre-

better numerical accuracy, which allowed us to determine more pre@tion functions Eqs(10) and (11). We observe thak ,(Q?)

cisely the nucleon magi=1.10 GeV+0.01GeV as opposed to the is obtained from alifferenceof correlation functions of com-

early estimateM =1.17 GeV+0.05 used in Ref21]). parable magnitudeérecall thatGSE(Z”) is negative definitg
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FIG. 4. (Color onling (a) Dirac form factor of the proton evaluated in the SIA and compared to a phenomenological fit of the
experimental data obtained as follows. In EB) the magnetic form factor is fitted with the traditional dipole fromyﬂéleh'j:Gdip(QZ)
=1/(1+Q?/0.712. The electric form factor is obtained froGE‘(QZ):Gdip(QZ) X [1-0.13Q?-0.04], where the second factor parametrizes

Perturbative QCD counting rules prediofF,(Q?) ~ const.

the JLAB data foruGy,/Gg. (b) Q* times the Dirac form factor in the SIA compared to a phenomenological fit of the experimental data.

while F;(Q?) is related to thesumof the same quantities.
Notice also that in the combination leading Fg(Q?) the

factor than in the case of the Dirac form factor.

0.4 T
\
“ ® Experiment (fit)
\ —— SIA
\
\
\
\
\
° \
- \
L \
\
\\
£ X
\
\
e \
\\
o~
¥~
-
0 L . .
0 2 3 4 5
2 2
Q" [GeV]

(a)

In the present calculations, all perturbative fluctuations

have been neglected. It is therefore important to have at least
contribution of the magnetic correlator is weighted by thean estimate of the magnitude of these contributions. To this

inverse ofQ? (through the factor 14), which enhances the end, in Fig. 3 we compare the complete SIA results with the
low-momentum modes, for which the SIA becomes inaccufredictions obtained by retaining only the zero-mode part of
rate. From this observation it follows that the systematic erthe propagator. The difference between these two curves
ror caused by the use of the SIA in the intermediate- andomes fromfree diagrams. By definition of perturbation

low-momentum regime is larger in the case of the Pauli forntheory, the contribution from free diagrams has to be larger

than the perturbative corrections to them. So, by comparing

Q°F,
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FIG. 5. (Color onling (a) Pauli form factor of the proton evaluated in the SIA and compared to a phenomenological fit of the
experimental data obtained as follows. In EB) the magnetic form factor is fitted with the traditional dipole fromyﬂaleh'AtzGdip(Qz)
=1/(1+Q?%/0.72)2. The electric form factor is obtained froGﬂ‘(Qz)zGdip(Qz) X [1-0.13Q%-0.04], where the second factor parametrizes

the JLAB data foruGy/Gg. (b) QP times the Pauli form factor of the proton in the SIA compared to a phenomenological fit of the
experimental data. Perturbative QCD at lowest twist pred®B,(Q?) ~ const, modulo logarithmic corrections.
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FIG. 6. (Color onling (a) Electric form factor of the neutron evaluated in the SIA and compared to experimentf2dpatd) Magnetic
form factor of the neutron evaluated in the SIA and compared to experimenta]2déta

free versus zero-mode contributions, we can estimate the im- IV. MANY-INSTANTON CONTRIBUTIONS

portance of perturbative fluctuations, relative to the nonper-

turbative effects we have accounted for. In all cases consid- In the previous section we analyzed the single-instanton
ered, we found that the instanton-induced contributionsontribution to the form factors of the nucleon. In general,
represent the dominant dynamical effect. we observed a good agreement with experimental data, in the

In summary, we have observed that the SIA is able tdarge-momentum-transfer regime. On the other hand, we
reproduce the Sachs form factor in the regime where it is/erified that at low momentum transfer the single-instanton
applicable, i.e., at large momentum transfer. On the otheeffects are subleading, as expected. Thus, in order to address
hand, the approach misses important dynamics at low anthe question whether the low-energy data can also be ex-
intermediate momentum transfer, where many-instanton efplained by the 't Hooft interaction, we need to account for
fects have to be included. Interestingly, we have observe¢hany-instanton degrees of freedom explicitly. To do so, we
that such many-body contributions are not important in theface the problem of computing the relevant correlation func-
Dirac form factor, which is extremely well reproduced in the tions in the full instanton liquid vacuum, i.e., &l ordersin
SIA, from rather small to larg&?. the 't Hooft interaction.

Such ILM calculations can be performed by exploiting the
analogy between the Euclidean generating functional and the
partition function of a statistical ensemil], in close anal-

The result of the SIA calculations of the neutron electro-ogy with what is usually done in lattice simulations. After the
magnetic form factors are presented in Fig. 6 and compareititegral over the fermionic degrees of freedom is carried out
with the experimental data. explicitly, one computes expectation values of the resulting

As in the case of the proton, we observe that singleWick contractiong14) by performing a Monte Carlo average
instanton effects can explain the data on the magnetic forrover the configurations of an ensemble of instantons and
factor in the large-momentum-transfer regime. On the otheanti-instantons. In the random instanton liquid model
hand, the electric form factor is known only at small momen-(RILM), the density and size of the pseudoparticles are kept
tum transfer, where the SIA is not reliable. In this case, thdixed, while their position in a periodic box and their color
SIA undershoots the experimental data by a factor of 2 or saorientation are generated according to a random distribution.
Clearly, in order to test the validity of the ILM with such a  In this framework, P2P correlators can be evaluated accu-
form factor, we need to include many-instanton effects. rately in a few hours on a regular workstation. Unfortunately,

The SIA predictions for the neutron Pauli and Dirac formthe W2W correlators which are needed in order to extract the
factors, which are also known only at small momentumform factors are much harder to compute numerically. In-
transfer, are presented for completeness in Fig. 7 and congdeed, many simplifications which make the SIA approach
pared against experimental data. In these cases, we obseparticularly convenient do not occur in a multi-instanton
that the agreement between the SIA and these low-enerdyackground. For example, since at the one-instanton level
data is indeed quite poor. the W2W quark propagator in the instanton background is

In general, we have found that single-instanton effect&known in a closed form, one can carry out calculations ana-
alone are not sufficient to explain the available low-energylytically, working directly in a time-momentum representa-
information on the form factors of the neutron. tion. On the other hand, in a multi-instanton background the

C. Neutron form factors in the SIA
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FIG. 7. (Color onling (a) Dirac form factor of the neutron evaluated in the SIA and compared to experimental data. The experimental
curve has been obtained by assuming that the magnetic form factor follows a dipole fromula and taking the electric form factor from
experiment(b) Pauli form factor of the neutron evaluated in the SIA and compared to experimental data. The experimental curve has been
obtained by assuming that the magnetic form factor follows a dipole fromula and taking the electric form factor from experiment.

quark propagator is obtained by inverting the Dirac operator wgtM _
numerically, and this operation is done in coordinate repre- G32"(t,q;0) — A2t —e e MGEV(QY). (23

sentation. Hence, one is left to compute numerically the six-
dimensional integration in Eqg4) and (5). Furthermore, Now we observe that two of the three integralsify can be

such an integration is complicated by the nasty oscillatoryperformed analytically, exploiting the fact that the above
behavior of the integrand, introduced by the phases of th&reen’s function is invariant under spatial rotatiGile ob-
Fourier transform. tain
As a result of these facts, while P2P correlators can be 4
evaluated on an ordinary single-processor computer, W2W p(n) _am - p(n)
correlators typically call for multiprocessor computation. But G3T(ta.0= ] fd|y||y|sm(|q||y|)l“3E (tly.0),
even on a very powerful parallel machine, an accurate evalu- (24)
ation of the form factors at large momentum transfer is still
very hard to achieve, because in such a kinematic regime thghere we have introduced the “charge distribution Green’s
integrand is oscillating very fast. In this section, we proposeunction”
a strategy to overcome these problems. i
We begin by analyzing the many-instanton contribution to (n) _ (n) ik
the electric form factors, for which an important simplifica- 3g™(ty.P) _J 77)3ng (tk,P)et?. (25)

(2
tion occurs, as we shall see below. As a first step, we rewrite - ]
Eq. (4) as I'3°(t,y, 0) represents the probability amplitude for one of

the three quarks that were created at an initial time in a state
with quantum numbers of the prot@neutror) and vanishing
G32"(t,q,P) = f dBxd®ye VPO Tr] 721V (2t,0)3EM(t, y) total momentum to absorb a photon at a distapné®m the
origin of the center of mass frame, at a later titm&/hen the

Euclidean time becomes large such a Green’s function en-

Wq

P
X775 (0X)7]10). (2Y) codes the information about the charge distribution of the
o i . nucleon.
Note that charge conservation implies the identity Calculatingl'3P™(t,|y| ,0) numerically for several values
of |y| is not computationally very challenging, because it
G32"(t,0,P) = G2(2t,P), (22)  requires only a three-dimensional integration over the spatial

position of the source and involves no oscillating phase. This

which can be useful to test the accuracy of the numerical

integration. We can now eliminate one of the complex phasesSNotice that only the electric three-point function and the two-
by settingP=0, which corresponds to going to the nucleon’s point function display such a symmetry property. Hence the method
rest frame. At large Euclidean times, the resulting Green’sresented in this section cannot be applied to compute the magnetic

function has the following spectral representation: form factor.
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FIG. 8. (Color onling (a) Charge distribution Green’s functidn3(t, |y|,0) for proton(circle9 and nucleon(squarey evaluated in the
RILM for t=0.9 fm. (b) Two-point function of the nucleon in the RILNpointy, compared to a single-pole fitlashed ling G2;;(t,|q])

=2A2e7 19 M? With £=0.9 fm.

problem can be handled with traditional adaptive Monte B. Proton form factors in the ILM
Carlo methods and takes a few days of computation on a Th it of lculati f1h ¢ lectric f
regular single-processor machine. Then, for the final integra; . ¢ FeSUlt ob-our caicuiation ol the proton €lectric form

tion in dly|, we can make use of the one-dimensional inte- acto(; m:rr:e RILM is T?S;ntted ”?j F'gt'hgt‘hWhgHK Itis cor\;]V—
gration routines which are optimized for fast-oscillating pared with experimental data and wi e curve. Ve
functions. observe a very good agreement between theory and experi-

We have evaluated the functidi(t,y,0) in the RILM ment. In particular, the inclusion of many-instanton effects

: . . : llows us to explain the experimental data in the low-
by averaging over configurations of 252 pseudoparticles o . :
; _ . S momentum regime, while at large momentum transfer the
size p=0.33fm, in a periodic bok of volume 3.6

X 5.4 fnf. As in lattice simulations, we have used a ratherR”‘NI gives results completely consistent with the simple
large current quark mag30 MeV), in order to avoid finite-

volume artifacts. The results f#t3(t, |y|,0) for different val- 11 ' ' '
ues of|y| are plotted in Fig 8. The final one-dimensional - .
integration in Eq(24) was handled with a Gauss quadrature T : Eig::m::: SII__:I;)))
routine, combined with a polynomial interpolation of the in- I —— SIA
tegrand. A =—u RILM
In order to extract the form factor, we have adopted the A
ratio of three- and two-point functions similar to the one ‘f:
suggested in Ref§27,28;: "
° 1%
Ge(Q?) = lim 2wq G3g(t,q,0) GZ(t,q). 26 r
=M+ w0y G2(2t,q) G2(t,0) s
X
A. Nucleon mass in the ILM - ﬁ
As in the previous SIA calculation, before extracting the \\\:*E‘
form factor we need to verify that, at the Euclidean time we \i;‘}éi_#__*
work at (t=0.9 fm), the contribution of the nucleon pole to Lp- " > 3__35‘4
the two-point function has been isolated. To this end, in Fig. 2 5
8(b) we compare our numerical results in the RILM with a Q [GeV ]

single-particle fit from Eq(13). The mass extracted from the

fit is M=1.15 GeV, in good agreement with previous esti- FIG. 9. (Color onling Electric form factor of the proton in the
mates in the RILME18 29. ILM and from experiment. Triangles are low-energy SLAC data,

which follow a dipole fit. Circles are experimental data obtained
from the recent JLAB result foGg/ Gy, assuming a dipole fit for
®As usual, in a finite box all momenta are guantize according tahe magnetic form factor. Squares are result of many-instanton
pi=(m/Lj)n, with n=0,+1,+2,.... simulations in the RILM, and the dashed line is the SIA curve.
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FIG. 10. (Color onling (a) Magnetic form factor of the proton in the ILsquaresand from experimentriangles. The ILM curve has
been obtained by combining the analytical SIA prediction for the Dirac form fdetavith the numerical RILM results foGg. (b) Pauli

form factor of the proton in the ILM. The circles are obtained from a fit of the experimental data. Squares are the ILM prediction, obtained
by combining the RILM results fo6g with the SIA results forF;.

single-instanton calculation. Quite remarkably, we find thatproton electric form factor. Our theoretical prediction under-
the RILM prediction follows a dipole fit at low momenta, but shoots experimental data by a factor of 2 or so. We believe
falls off faster at large momentum transfer, in agreement withthat this discrepancy is mainly due to the absence of discon-
what is observed in the recoil polarization measurementsiected graphs. Clearly, the relative contribution of such
Notice that this property of the form factor could not be SU(3) breaking effects is much more important in the case of
understood at the level of the interaction of partons with athe neutron, which has a very small electric form factor com-
single instantorjFig. 3b)]. pared to the proton. This hypothesis is supported by the fact
From the low-momentum points we can extract the protorthat in Ref.[30] the disconnected diagrams were calculated
charge radius, which falls slightly short of the experimentalin lattice QCD and found to give a contribution of the order
value: <R§(R,LM)>:(O.76 fm? [to be compared with of 50% to the form factor. A systematic study of the sea
<R§<expg>:(0-81 fm?2]. The fact that we obtain a slightly contribution coming from disconnected graphs to several
small charge radius is not surprising. Indeed, on the one hadaw-energy observables is currently in progréas].
we recall that in the present calculation we have used quarks

of mass of about 70 MeV, corresponding to a rather heavy 01 '
nucleon(M=1.15 GeV.. On the other hand, we have ne- - e Experiment
glected fermionicaly disconnected graphs, which encode —— SIA

some of the sea contributiofnotice, however, that some
“pion cloud” contribution is present through tizegraphs.

In the previous section, we have shown that the proton
Dirac form factor is already completely saturated by the one-
instanton contribution at relatively low moment&Q (5'“
=0.5 Ge\®). We can use this result to combine the RILM
result for Gg(Q?) and the SIA result foiF,(Q?%) and obtain
the magnetic and the Pauli form factors of the proton in the
ILM, for Q=0.5 Ge\~. The results for such form factors are
reported in Fig. 10. In these two cases also we see that the
inclusion of many-instanton effects is sufficient to explain +
the low-energy data. 0

2 2
C. Electric form factor of the neutron in the ILM Q [GeV ]

The results for the electric form factor of the neutron are  FIG. 11. (Color onling Electric form factor of the neutron in the
shown in Fig. 11. In this case, the agreement with experimer®ILM and from experimen{24]. Circles are experimental data,
is somewhat worse than the corresponding results for thequares are RILM points, while the dashed line is the SIA curve.
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V. CONCLUSIONS APPENDIX: ANALYTIC RESULTS IN THE SIA

The present study was motivated by the observation that Everywhere, we choosg pointing along the direction:
recent JLAB data show that electromagnetic form factors aré=(d,0,0). Let us define the following functions:
very sensitive to some short-distance nonperturbative dy-

namics. Instantons are known to play the leading role in the €1 =(t-29+ %,
spontaneous breaking of chiral symmetry and in the satura-

tion of the chiral anomaly, i.e., in two very important non- EN() == \(t+24)2+ p?,
perturbative phenomena which occur at the GeV scale. In a

previous analysis we showed that instantons saturate the pion Q1) = \‘"m-

charged form factor and, at the same time, explain why the

perturbative regime is reached much earlier in thg*

— 1y transition form factor. In this work, we asked whether

they can also explain some existing puzzles concerning the

nucleon form factors. The SIA result for the two-point function defined in Eq.
We found that large-momentum-transfer data of Sachs agl2) is

well as Pauli and Dirac form factors can already be repro- e

duced by accounting for the scattering of the partons on a G2(t,q) = 32np dlk|di|d|m|

single instanton. These calculations were carried out in the ' m*248

SIA. On the other hand, form factors at low momenta cannot N .

be calculated in the SIA because, in such a kinematic regime, 21121112

many-instanton effects are very important. The only excep- X [miFkf f_ldckdqdcmf_m dz(A+B),

tion is the proton Dirac form factor, which is already satu-

rated by one instanton at relatively low momentum transfeivhere

1. Two-point function

0

(@*~0.5 GeV). -~ _

We evaluated numerically the electric form factors in the A = 2K[[k[ € (/2) IKol|m[ £ (1/2) IK [ Xim€ " (1/2)]
full-instanton vacuum, i.e., to all orders in the 't Hooft inter- XKO[X;{(tIZ)]e‘tXS,
action, using the RILM. In the case of the proton, we found
that RILM predictions are consistent with SIA calculations at - +
large momentum transfer and quantitatively reproduce the B := Ko[|k[ € (1/2) IKo[[m[ £ (1/2) K[ X" (1/2)]
available body of experimental data. In particular, we XKO[X‘k“g'(tIZ)]e'tXQ,

showed that in the ILM the electric form factor follows a
dipole fit at low momenta, but falls off faster at large mo- and
menta, in quantitative agreement with the recent JLAB re-
sults. On the other hand, the electric form factor of the neu-
tron seems to be rather sensitive to fermionically

xo =17+ 1al?+2lallllc,

disconnected graphs and &) breaking effects, which have xo = VP +|a>= 2lallllc,
been neglected in the present approach.
We combined our SIA result for the proton Dirac form X = V12 +|m2 + 2ml|cy,

factor with our numerical RILM results for the electric form

factors and obtained predictions for the magnetic and Pauli
form factors. As in the previous cases, we found very good
agreement with experiment for all proton form factors. In the

o= I+ 2 = 2l

. . [
future we are planning to use the framework developed in xic = V1P + [k [? + 2/K][l |,
this work to investigate the role of the pion cloud in low-
energy observables. Xe = V112 + k]2 - 2k] |l ¢
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UM(k,I,m) := UY' + UY' + UY + UY,
and
DM(k,I,m) := D} + D}".

The functionsLJ'i"_4 correspond to sets of diagrams in which the virtual photon is absorbedutgyuark. They are defined
as follows.
U s= Ui+ ugh+ U,

m§+m§+qrrh—m§—lmllm+q|e

Ul ==~ 256 mlim + A K & (DK€ (DIKola/2 +m + K€ (DKoo +m + 1€ )],
ugh =+ 25%‘9_“k+ql+2Il)Ko[|k|§0(t)]Ko[|q/2 +1+KIEOIKLmIE K]/ +m + 1€ W],

—myly +myly —mgls + |m||||e_t

Ui = + 256 il (2K Im + o (KK € (O TKollar2 =1 = K|& (O TKola/2 +m +1[£°(0)].

M. M, M
U3 s=Ug,t+ Uy,

my(l, +my)

2 e 2P i (Ol m + 0l QORI LE DA D)

uy == — 102

o (|2_k2+m2)(m2+|2) ~t(2q/2+m+|+|m+q—k+| _
U = 1024|q/2+m+|||q—k+m+l|e t@larzemfmrazk DR k| £ (1) K[l +m = k| K[ I (1) K[ Im& (D)].

M. Mo M, M
Uz’ :=Uga+Ugp+ U,

N 128
[m+1-k+q|lm+q/2+l|

Uy = (= 2l 1ky + 213 + 3qmy — 2myky + 4myl; + 2mé— gk + 215 + 3ql;y — 25ks + 215 - 2mgks

+4mgly + 0 = 212 = 2m2- 4myl, + 2mpk, + 215k, + 2m2 + 2g/2 +m +1||g + m + 1 - K|)
x g @azmmatetmh fm & (01K €' () IKo[ K€ (DKol Im + 1 = k|€(1)],

I+
Ugh =~ ZS%W’W'+q/2'*'m'>r<o[|klﬂt)]Ko[ll|§*<t)]Ko[|q +mEOIKa -k +m+1l£ O],

_m; —mg+mg +qmy - |m|/m + g

M ~t(2m+ql+|m]
U := — 256 m{m +q| e AK€ () 1Kol |ar2 +m + 1|70 Kol [k|€ () Kl |a/2 +m + k[ & ()],
Ui\lﬁ::ui\lﬁai
- 2 -
= - 102 LT AT T G0 s g -2+ + Kl 0]

Imllq +m|
XKolla/2 +m+1|g W) IKJ[I[E (]
The functionsDQ"_2 correspond to sets of diagrams in which the photon is absorbeditmuark. They are defined as follows.

M, M M
Dy :=dyy+dyp,

I
dia = - 102%6“““*2'q’2+'*m'>Ko[|m +0 €O TKIIIE O KAITIKIE OTKolla—k +m + 1€ O],

o) (ky =1, -
= + 10q T T am A m - Kl OKIE ORI O

M. M 4 AM . M, M
D3 =, +day+ e+ dag,
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dbh=+ ZSGW@W““KOW +q[£0 K IKIE O K L|a/2 +m +11E 0 Kl |a/2 -k = 1[£ (1],

my(my + 1)

dbp:=—25
* m +q/2 +1[|m|

e t@mrarzHiHmic [1m + 1 - k + gl (D) IKo[|m + a2 KL k| € (O KL I, £ (D)1,

= 256, 2 e A 4+ T2 O K IE OOz +m -+ 1,0,
o 256
207 2lm+1 -k +ql|g/2 +m+1]|

g tme-kerae2ra2emie 11| £ () ](2mé + 3myq — gky — 2myky — 21 kg — 2mgkg — 21 ks + 62

+ 330+ 4lmy + 212 + 2m3 + 4l gmg + 213 + 4l,m, — 2mpk, — 21k, + 215+ 2m5 + 2|g/2 + m+ ||+ m + 1 —k|)
XKollm =k + 1120 K[ [k|& (OTKo[Im], £"(1)].

3. Electric three-point function
The proton(neutron electric three-point function reads
np* &%k [ & [ d®m

(n) =
CRECN= % | omi ) 2md ) @m?

2 1
{éUE(D)(k,I,m)—éDE(U)(k,I,m) ,
where

UE(k,I,m):=UF + U5 + US + U
and
DE&(k,I,m):=DE + DS.

As in the case of the magnetic three-point functiblli4 correspond to sets of diagrams in which the photon is absorbed by
au quark. They are defined as follows:
UE::uEa+uEb+ch'

m?2+gmy + |m||m +
(i 25T+ I m[jm +q

mimeg C KKl WIKLE IR /2 +m +klE I /2 +m + 1],

U, :=— 2567 k+al* 2K [ k| £2(t) IK o[ | a/2 +1 + k[ & () K[| M| (1) IK o[ |a/2 + m + 1| £ (1)],

U i=— zsewét(”%um +9|&0 K[ K| € (O TK L |ar2 =1 - k|E® Kl |a/2 +m +1]£(D)].
U5:2u5a+u§b’
US,:=— 1024 @@/2emHlmDic [lg — k + | +m|& (8 K[| m + g €20 KLk & (O TKL[IE (D),

U5, :=— 10245 Aw/2smilmea-kelby 11| () K[|l + m — k| £24) K[ [1] £ ()KL Im| £ (1)].
U§==u§a+ u§b+ ugc*
128

+
[m+1-k+q|lm+q/2+l|

+2lg/2+m +1[[q +m+1 = kKe[|m[& O IKJ 1€ (O TK[|k[€ (TR m +1 = k[T,

US,i= g t@a/zemlHla-kelem (om?2 4+ 212 + 4m| - 21k - 2mk + 3qmy + 3qly + ¢7 - qky

u§,:=— 256 @AM a2 M [k | & (1) K1 €7 () IK o[ g + M| ) TKl|g — k +m + 1] (1],

m? + gy + |m||m + g
Im|m +q

uS:=— 256 e t@mralmbi 1 E (O TKoL|a/2 +m + 1] £ O IKo[ [k |€ (O IKo[a/2 +m +K[E ()]
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DE:dEa'

“+amy +mim+qf

UE,i=— 1024
o Imllg +m|

mea DK o k| €0 TK ol [a/2 +m + k| € (0Kl |a/2 +m + 1| @ KLl €7(0)].

The functionsDE_2 correspond to sets of diagrams in which the photon is absorbeditguark. They are defined as follows:
DT:=df, +df,

df,:=— 102457t Imi+2lar2+mby 11 + g 2() KL £ () TKLIK|E (D TKL|q = k + m +1]£ ()],

df,:=— 10247 1@ a/2HRHa+mKDK [1m + 1 = k[0 IKo[|m| € (0 KLk [E O TK 1€ (D)]-

E._4E , NE 4E . AE
D3 =03, +dzpdy+dyy,

A=+ 25Me‘“‘m‘+z“'>i<o[|m +q[&O K |k|E O KL |a/2 +m +1[E W 1K [ [a/2 -k = [ (D)],
Imi|

d5,:=— 256 A a24HMIK [1m +1 -k + g|¢ (O KJ|m + al O TK [k |€ O TK [ €701,
d5,:=— 256 1Ak 2IDK 1 + K + q/2]& (1) IKoL M| € () IKL|K[ O K| a/2 +m +11E ()],

. - 256
272lm+1 -k +qlg/2 +m+]]|

grtm=ieral2ra/2emi 111 £ () J(2mé + 3myq — gkq — 2myky — 211Ky — 2mgks — 21gks +

+ 31,0 + 4lmy + 212 + 2m3 + 4l gmg + 213 + 4l,m, — 2mpk, — 21k, + 215+ 2m3
+2/q/2 +m+1{jg +m +1 = k|)Ko[|m =k + 1[0 IKc[ k| € () IKL M| (D)].
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