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We calculate the nucleon parameters in nuclear matter using the QCD sum rules approach in gas approxi-
mation. Terms up to 1/q2 in the operator product expansionsOPEd are taken into account. The higher moments
of the nucleon structure functions are included. The complete set of the nucleon expectation values of the
four-quark operators is employed. Earlier the lack of information on these values has been the main obstacle
for the further development of the approach. We show that the values of the four-quark condensates are
consistent with the assumptions about the convergence of the OPE. Inclusion of these condensates and of the
nonlocality of the vector condensate are important for the calculation of the nucleon parameters. The nucleon
vector self-energySv and the nucleon effective massm* are expressed in terms of the in-medium values of
QCD condensates. The numerical results for these parameters at the saturation value of the density agree with
those obtained by the methods of nuclear physics.
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I. INTRODUCTION

The QCD sum rules were invented by Shifmanet al. [1]
to express the hadron parameters through the vacuum expec-
tation values of QCD operators. Being initially used for the
mesons, the method was expanded by Ioffe[2] to the de-
scription of the baryons. The approach succeeded in describ-
ing the static characteristics as well as some of the dynamical
characteristics of the hadrons in vacuum—see, e.g., the re-
views [3,4].

The basic idea is to consider the correlation function
P0sq2d describing the propagation of the system with the
quantum numbers of the hadron, in the different regions of
values of the momentumq2, where certain information on its
behavior is available. The asymptotic freedom of QCD en-
ables to presentP0sq2d at q2→−` as a power series inq−2

and the QCD couplingas. On the other hand, the imaginary
part of P0sq2d at q2.0 can be described in terms of the
observable hadrons. This prompts to consider the dispersion
relation for the functionP0sq2d [1]

P0sq2d =
1

p
E Im P0sk2d

k2 − q2 dk2 s1d

at q2→−`. The coefficients of the expansion of the left-hand
side (lhs) of the functionP0sq2d in powers ofq−2 are the
expectation values of the local operators constructed of the
quark and gluon fields, which are called “condensates.” Such
presentation, known as the operator product expansion
sOPEd [5] provides the perturbative expansion of the short-
distance effects, while the nonperturbative physics is con-
tained in the condensates. The usual treatment of the right-
hand side(rhs) of Eq. (1) consists in “pole+continuum”
presentation, in which the lowest lying pole is singled out
while the higher states are approximated by the continuum.
Thus, Eq.(1) ties the values of QCD condensates with the

characteristics of the lowest hadronic state. Such interpreta-
tion requires that the contribution of the pole to the rhs of Eq.
(1) exceeds the contribution of the continuum.

The OPE of the lhs of Eq.(1) becomes increasingly valid,
when the value ofuq2u increases. On the other hand, the
“pole+continuum” model becomes more accurate whenuq2u
decreases. The important assumption is that the two presen-
tations are close in a certain intermediate region of the values
of q2. To improve the overlap of the QCD and the phenom-
enological descriptions, one usually applies certain math-
ematical tools, i.e., the Borel transform. The Borel trans-
formed dispersion relations(1) are known as QCD sum rules
[1,2].

For example, the QCD sum rules for the nucleon provided
a connection between the nucleon mass and the scalar quark
condensatek0uq̄qu0l [2]. Similar relations have been obtained
for the magnetic moments of the nucleons[6], etc.

Later the QCD sum rules were applied for the investiga-
tion of modified nucleon parameters in nuclear matter[7,8].
They were based on the Borel-transformed dispersion rela-
tion for the functionPmsqd describing the propagation of the
system with the quantum numbers of the nucleon(the pro-
ton) in nuclear matter. Considering nuclear matter as a sys-
tem ofA nucleons with momentapi, one introduces the vec-
tor

p =
Spi

A
, s2d

which is thusp<sm,0d in the rest frame of the matter. The
function Pmsqd can be presented asPmsqd=Pmsq2,wsp,qdd
with the arbitrary functionwsp,qd being kept constant in the
dispersion relations inq2.

The spectrum of the functionPmsqd is much more com-
plicated than that of the functionP0sq2d. The choice of the
function wsp,qd is dictated by attempts to separate the sin-
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gularities connected with the nucleon in the matter from
those connected with the properties of the matter itself. Since
the latter manifest themselves as singularities in the variable
s=sp+qd2, the separation can be done by settingwsp,qd
=sp+qd2 and by fixing[7–9]

wsp,qd = sp + qd2 ; s= 4E0F
2 s3d

with E0F being the relativistic value of the nucleon energy at
the Fermi surface.

The general form of the functionPm can thus be pre-
sented as

Pmsqd = qmgmPm
q sq2,sd + pmgmPm

p sq2,sd + IPm
I sq2,sd.

s4d

The in-medium QCD sum rules are the Borel-transformed
dispersion relations for the componentsPm

j sq2,sd s j
=q,p,Id,

Pm
j sq2,sd =

1

p
E Im Pm

j sk2,sd
k2 − q2 dk2. s5d

It was shown in Refs.[7–10] that the “pole+continuum”
model for the rhs of Eq.(5) can be used at least until we do
not include the higher order terms of the density expansions
of the functionsPm

j sq2,sd. Thus, one can expect that the
characteristics of the nucleon in nuclear matter can be ex-
pressed through the in-medium values of QCD condensate.

In the lowest order of OPE the problem was approached
in Refs. [7–10]. It was noticed that the condensates of the
lowest dimensionssd=3,4d can either be calculated or ex-
pressed through the observables. The vector condensate
vmsrd=kMuoi q̄is0dgmqis0duMl is proportional to the density
of the matterr, being

vmsrd = vNmr, vNm = kNuo
i

q̄is0dgmqis0duNl. s6d

Here the upper indexi denotes the quark flavor. In the rest
frame of the matter we getvmsrd=vsrddm0, vNm=vNdm0 with

vsrd = vNr, vN = 3

being just the number of the valence quarks in the nucleon.
The scalar condensate is

kmsrd = kMuo
i

q̄is0dqis0duMl = k0 + ksrd,

k0 = kms0d, ksrd = kNr + ¯ , kN = kNuo
i

q̄is0dqis0duNl.

s7d

Here the dots denote the terms which are nonlinear inr. The
expectation valuekNuoi q̄iqiuNl is related to thepN sigma
term spN, i.e. [11],

kN = kNuūu + d̄duNl =
2spN

mu + md
s8d

with mu,d standing for the current masses of the light quarks.

Turning to the condensates of dimensiond=4, we find for
the gluon condensate[7]

gmsrd = kMu
as

p
G2s0duMl = g0 + gsrd,

g0 = gms0d, gsrd = gNr + . . . s9d

with the nucleon expectation value

gN = kNu
as

p
G2s0duNl < −

8

9
m, s10d

obtained in[12] in a model-independent way.
Also, the nonlocal condensatekNuq̄s0dgmqsxduNl provides

the contributions ofd=4 and those of the higher dimension.
The term of the dimensiond=4 is

kNuq̄is0dgmDnq
is0duNl = Sgmn −

4pmpn

m2 Dmx2 s11d

with x2 standing for the second moment of the nucleon struc-
ture function [9]. The nonlocality of the scalar operator
q̄s0dqsxd manifests itself in the higher terms of the operator
expansion. The nonlocality of the product of the gluon op-
erators is not expected to be important because of the minor
contribution of the gluon expectation value to the nucleon
parameters.

The shift of the position of the nucleon pole, which in the
linear approximation can be identified with the single-
particle potential energy of the nucleon, was expressed as a
linear combination of the condensates of the lowest dimen-
sion [7,8]. The vector and scalar expectation values appeared
to be the most important ingredients. Their contributions
cancelled to large extent, reproducing the familiar features of
the Walecka model[13]. An alternative approach was devel-
oped in Refs.[14–16] with the dispersion relations in the
time componentq0 at three-dimensional momentumuqu be-
ing fixed. It provided a similar result.

The lack of knowledge about the in-medium expectation
values of the higher dimension became the obstacle for the
development of both approaches. One of such expectation
values is the scalar four-quark condensatekMuq̄qq̄quMl. It
was noticed in Refs.[8,16] that the configuration 2k0uq̄qu0l
3kNuq̄quNlr (with r standing for the baryon density) is one
of those, which composed the in-medium expectation value
of the operatorq̄qq̄q. In the gas approximation the expecta-
tion value of the color-singlet operator is

kMuq̄qq̄quMl = k0uq̄qq̄qu0l + 2rk0uq̄qu0lkNuq̄quNl

+ rkNusq̄qq̄qdintuNl s12d

with the last term describing the “internal” action of the op-
erators inside the nucleon. In the “ground-state saturation
approximation” (also called “factorization approximation”)
formulated in Ref.[15] the last term of the rhs of Eq.(12)
vanishes. This would lead to the changekMuq̄qq̄quMl
−k0uq̄qq̄qu0l=2rk0uq̄qu0lkNuq̄quNl of the value of the scalar
four-quark condensate. Assuming this approximation one
would be forced to conclude that the four-quark scalar con-
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densate plays the crucial role in QCD sum rules, causing
doubts on the convergence of OPE. The numerical results
would contradict the known nuclear phenomenology[16].

There have been some attempts to get rid of the contribu-
tion of the four-quark condensates, applying the differential
operators[9] or by choosing the form of the in-medium func-
tion Pmsqd which does not couple to the four-quark conden-
sates[17]. However, some of the information appeared to be
lost in the former case, while there still remained some un-
known condensates in the latter case. Anyway, there was no
consistent analysis of sum rules with the inclusion of the
four-quark condensates until now. On the other hand, there
are some indications that the second term of the rhs of Eq.
(12) does not provide the true scale for the in-medium modi-
fication of the value of the scalar four-quark condensates.
The calculations, carried out in Ref.[18] predicted strong
cancellation between the second and the third terms in the
rhs of Eq.(12). Also, the arguments based on chiral counting
and supporting the violation of the in-medium factorization
have been given in Ref.[19].

In the present paper we build and solve the QCD sum
rules in nuclear matter in the gas approximation with the
account of the condensates up to the dimensiond=6. This
means that we include the terms of the order 1/q2 of the OPE
(recall that the leading OPE terms are of the orderq4 ln q2).
This requires the inclusion of the four-quark condensates

ūGXuūGYu, dGXdd̄GYd and ūGXud̄GYd with GX,Y standing for
the basic 434 matrices, corresponding to the scalar, pseudo-
scalar, vector, pseudovector(axial), and tensor structures.

In the gas approximation the in-medium expectation value

of any operatorÂ is

kMuÂuMl = k0uÂu0l + rkNuÂuNl s13d

with uNl standing for the state vector of the free unpolarized
nucleon. Since we include only terms linear inr, we can
neglect the Fermi motion of the nucleons of the matter. Thus
we set

s= 4m2 s14d

in Eq. (3). Having in mind the future extension of the ap-
proach, we shall keep the dependence ons, using Eq.(14)
for the specific computations.

We consider symmetric nuclear matter with an equal den-
sity of the protons and neutronsrp=rn=r /2.

The nucleon expectation values of the lowest dimensions
can either be calculated in a model-independent way or ex-
pressed through the observables. The calculations of the
four-quark condensates require model assumptions on the
structure of the nucleon. The complete set of the four-quark
condensates was obtained in Ref.[20] by using features of
the perturbative chiral quark modelsPCQMd. The chiral
quark model, originally suggested in Ref.[21], was devel-
oped further in Ref.[22]. In the PCQM the nucleon is treated
as a system of relativistic valence quarks moving in an ef-
fective static field. The valence quarks are supplemented by a
perturbative cloud of pseudoscalar mesons, in agreement

with the requirements of the chiral symmetry. In[20] a
simple version close to the SUs2d) flavor PCQM, which in-
cludes only the pions, has been used.

There are three types of contributions to the four-quark
condensate in the framework of this approach. All four op-
erators can act on the valence quarks. Also, four operators
can act on the pion. There is also a possibility that two of the
operators act on the valence quarks while the other two act
on the pions. Following[20] we speak of the “interference
terms” in the latter case.

To obtain the contribution of the pion cloud, we need the
expectation values of the four-quark operators in pions. The
latter have been deduced in Ref.[23] by using the current
algebra technique. We obtain a remarkable cancellation of
the pion contributions in the functionPmsqd. This cancella-
tion takes place in any model of the nucleon which treats the
pion cloud perturbatively. Thus, the contributions of the four-
quark condensates come from the terms, determined by the
valence quarks only and from the interference terms.

We find the contribution of the four-quark condensate to
the in-medium modificationPm–P0 of the functionP0 to be
much smaller, then one could expect by assuming the “in-
medium factorization approximation.” These terms are about
4–5 times smaller than the leading ones of the OPE series.
This is consistent with the hypothesis of the convergence of
OPE.

Thus, we obtain three sum rules equations for the func-
tions Pm

q sq2,sd, Pm
p sq2,sd, and Pm

I sq2,sd introduced in Eq.
(4). The in-medium characteristics of the nucleon, i.e., the
vector self-energySv and the effective massm* are the un-
knowns of these equations. There are two unknown param-
eters more, i.e., the residue at the nucleon polelm

*2 and the
continuum thresholdWm

2 . All these characteristics will be
obtained from the QCD sum rules.

The dependence of the rhs of Eq.(5) on the parameters,
which are expected to be determined, is not linear(except the
dependence onlm

*2). Thus, even in the gas approximation the
behavior of these parameters withr is linear only at suffi-
ciently small values of the density. We consider two ap-
proaches to the problem. In the linearized case we determine
only the linear parts of the in-medium modifications of the
hadron (nucleon) and continuum parameters. We construct
the combination of the sum rules for the functionPm–P0 in
such a way, that two of the equations determine the values of
Sv andm* −m separately. Note that it is possible to write the
equation in which the parameterm* −m is the only unknown,
only because the proton has a definite space parity. The third
equation enables to find the in-medium changes of the pa-
rametersdl2=lm

*2−l0
2 and dW2=Wm

2 −W0
2. We express the

nucleon characteristicsSv andm* −m in terms of the vector,
scalar, gluon, and four-quark condensates and of the mo-
ments of the structure functions.

In the nonlinearized version we do not assume the in-
medium changes of the parameters to be small. The three
equations for the Borel transformed functionPmsqd
−P0sq2d enable to obtain the values ofSv, lm

*2, andWm
2 . At

densitiesr of the order of the saturation valuer0 the values
of Sv and m* −m appear to coincide within 25% and 10%
accuracy with the values provided by the linear version. This
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causes somewhat larger difference in the values of the poten-
tial energyUsrd which still has reasonable values.

Inclusion of the four-quark condensates and of the higher
moments of the structure functions diminish the OPE value
of the nucleon vector self-energySv by about 25% each. As
to the scalar self-energym* −m, the four-quark condensates
provide contribution of the same order as the leading OPE
term. However, this contribution is almost totally compen-
sated by the account of the higher moments of the structure
functions. Thus, the value of them* −m is very close to that
given by the leading order of OPE.

The structure of the paper is as follows. In Sec. II we
present the sum rules in a form, which is convenient for our
analysis. In Secs. III and IV we calculate the contribution of
the dimensiond=6, i.e., the expansion of the nucleon struc-
ture functions and the four-quark condensates. In Secs.
V–VII we present the solutions in the linearized and nonlin-
earized forms. We discuss and summarize the results in Sec.
VIII and IX.

II. GENERAL EQUATIONS

A. Sum rules in vacuum

To make the paper self-consistent, we recall the main
points of the QCD sum rules approach in vacuum[1,2]. The
functionP0sq2d (often referred to as “polarization operator”)
is presented as

P0sq2d = i E d4x eisqxdk0uTjsxd j̄s0du0l s15d

with j being the three-quark local operator(often referred to
as “current”) with the proton quantum numbers. The usual
choice is[2]

jsxd = «abcfuaTsxdCgmubsxdgg5gmdcsxd, s16d

whereT denotes a transpose andC is the charge conjugation
matrix. The upper indices denote the colors.

The lhs of Eq. (1) is approximated by several lowest
terms of OPE, i.e.,P0sq2d<P0

OPEsq2d. The empirical data
are used for the spectral function ImP0sq2d on the rhs of Eq.
(1). Namely, it is known, that the lowest lying state is the
bound state of three quarks, which manifests itself as a pole
in the (unknown) point k2=m2. Since the next singularity is
the branching pointk2=Wph

2 =sm+mpd2, one can present

Im P0sk2d = lN
2dsk2 − m2d + fsk2dusk2 − Wph

2 d s17d

with lN
2 being the residue at the nucleon pole. Thus, Eq.(1)

takes the form

P0
OPEsq2d =

lN
2

m2 − q2 +
1

p
E

Wph
2

` fsk2d
k2 − q2dk2. s18d

Of course, the detailed structure of the spectral densityfsk2d
cannot be resolved in such an approach. The further approxi-
mations are based on the asymptotic behavior

fsk2d =
1

2i
DP0

OPEsk2d s19d

at k2@ uq2u with D denoting the discontinuity. The disconti-
nuity is caused by the logarithmic contributions of the per-
turbative OPE terms. The usual ansatz consists in extrapola-
tion of Eq. (19) to all the values ofk2, replacing also the
physical thresholdWph

2 by the unknown effective threshold
W0

2, i.e.,

1

p
E

Wph
2

` fsk2d
k2 − q2dk2 =

1

2pi
E

W0
2

` DP0
OPEsk2d

k2 − q2 dk2. s20d

Thus Eq.(1) takes the form

P0
OPEsq2d =

lN
2

m2 − q2 +
1

2pi
E

W0
2

` DP0
OPEsk2d

k2 − q2 dk2. s21d

The lhs of Eq.(21) contains QCD condensates. The rhs of
Eq. (21) contains three unknown parameters:m,lN

2, andW0
2.

The OPE becomes increasingly true when the valueuq2u in-
creases. The “pole+continuum” model is more accurate at
the smaller values ofuq2u. Thus one can expect Eq.(21) to be
true in a certain limited interval of the values ofuq2u. To
improve the overlap of the OPE and the phenomenological
description one usually applies the Borel transform defined
as

Bfsq2d = lim
Q2,n→`

sQ2dn+1

n!
S−

d

dQ2Dn

fsq2d ; f̃sM2d,

Q2 = − q2, M2 = Q2/n s22d

with M called Borel mass. It is important in the applications
to the sum rules that the Borel transform eliminates the poly-
nomials and emphasizes the contribution of the lowest state
in rhs of Eq.(21) due to the relation

B
1

m2 − q2 = e−m2/M2
. s23d

The Borel-transformed form of Eq.(21) reads

P̃0
OPEsM2d = lN

2e−m2/M2
+

1

2pi
E

W0
2

`

dk2 e−k2/M2
D P0

OPEsk2d

s24d

and is known as QCD sum rules. Actually, there are two sum
rules for the structuresP0

q and P0
I of the function P0sqd

=qmgmP0
qsq2d+ IP0

I sq2d with I standing for the unit matrix.
It appeared to be more convenient to work with Eq.(24)

multiplied by the numerical factor 32p4. The two sum rules
for the nucleon in vacuum can be presented in the form[2]

L0
qsM2,W0

2d = L0sM2d, s25d

L0
I sM2,W0

2d = mL0sM2d, s26d

with
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L0sM2d = l0
2e−m2/M2

. s27d

Herel0
2=32p4lN

2,

L0
qsM2,W0

2d = 32p4SP̃0
q,OPEsM2d −

1

2pi
E

W0
2

`

dk2

3e−k2/M2
D P0

q,OPEsk2dD ,

L0
I sM2,W0

2d = 32p4SP̃0
I,OPEsM2d −

1

2pi
E

W0
2

`

dk2

3e−k2/M2
D P0

I,OPEsk2dD . s28d

The lhs of Eqs.(25) and(26) [2,6] have been obtained by
including the condensates of dimensiond=8, i.e., with the
account of the terms of the order 1/q4 in OPE of the func-
tions P0

q,OPE,

L0
qsM2,W0

2d =
M6E2

L4/9 +
bE0M

2

4L4/9 +
4

3
a2L4/9 −

1

3

m0
2

M2a2,

s29d

L0
I sM2,W0

2d = 2aM4E1 −
ab

12
+

272

81

as

p
a3 1

M2 s30d

with the traditional notationsa=−s2pd2k0uq̄qu0l=−2p2k0

(we assumed the isotopic invariancek0uūuu0l=k0ud̄du0l
=k0uq̄qu0l), b=s2pd2g0, m0

2=0.8 GeV2. HereEi are the func-
tions of the ratioW0

2/M2: Ei =EisW0
2/M2d. They are given by

the formulas

E0sxd = 1 −e−x, E1sxd = 1 − s1 + xde−x, s31d

E2sxd = 1 −S1 + x +
x2

2
De−x.

The factor

LsM2d =
ln M2/L2

ln n2/L2 s32d

accounts for the anomalous dimension, i.e., the most impor-
tant corrections of the orderas enhanced by the “large loga-
rithms.” In Eq. (32) L=LQCD=0.15 GeV, while n
=0.5 GeV is the normalization point of the characteristic in-
volved. Note that the two last terms on the rhs of Eq.(29)
originate from the four-quark condensatesk0uūGXuūGXuu0l
and can be expressed through the single termsk0uq̄qu0ld2

only in framework of the factorization hypothesis[1,2]. Also,
the last term on the rhs of Eq.(30) is the six-quark conden-
sate, evaluated in the same approximation.

The matching of the lhs and rhs of Eqs.(25) and (26)
have been achieved[2,6] in the domain

0.8 GeV2 , M2 , 1.4 GeV2

providing the values of the vacuum parameters

l0
2 = 1.9 GeV6, W0

2 = 2.2 GeV2 s33d

if m=0.94 GeV.

B. Sum rules in nuclear matter

The OPE terms of the polarization operator in nuclear
matter

Pmsqd = i E d4x eisqxdkMuTjsxd j̄s0duMl s34d

contains the in-medium values of QCD condensates. Some
of these condensates vanish in the vacuum, obtaining non-
zero values only in the medium. The other ones just change
their values compared to the vacuum ones.

The spectrum of the functionPmsqd is much more com-
plicated, than that of the vacuum functionP0sq2d. However,
[7–10] the spectrum of the functionPmsq2,sd at fixed value
of s can be described by the “pole+continuum” model at
least until we include the terms of the orderr2 in the OPE of
Pmsq2,sd.

The description of the nucleon pole is based on the gen-
eral expression for the propagator

GN
−1 = sGN

0d−1 − S s35d

with GN
0 =sqmgm−md−1 being the propagator of the free

nucleon, while

S = qmgmSq +
1

m
pmgmSp + Ss s36d

is the general form of the self-energy of the nucleon in
nuclear mater. In the kinematics, determined by Eq.(3) we
obtain

GN = Z ·
qmgm − pmgmsSv/md + m*

q2 − mm
2 s37d

with

Sv =
Sp

1 − Sq
, m* =

m+ Ss

1 − Sq
. s38d

The new position of the nucleon pole is

mm
2 =

ss− m2dSv/m− Sv
2 + m*2

1 + Sv/m
, s39d

while

Z =
1

s1 − Sqds1 + Sv/md
. s40d

Thus, we shall present the dispersion relations for the
functions Pm

i sq2,sdsi =q,p,Id determined by Eq.(4) in the
form
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Pm
i,OPEsq2,sd =

Zlm
2 bi

mm
2 − q2 +

1

2pi
E

Wm
2

` Dk2Pi,OPEsk2,sd

k2 − q2 s41d

with bq=1, bp=−Sv, bI =m* . The Borel-transformed sum
rules take the form

Lm
q sM2,Wm

2 d = LmsM2d, s42d

Lm
p sM2,Wm

2 d = − SvLmsM2d, s43d

Lm
I sM2,Wm

2 d = m*LmsM2d, s44d

with

LmsM2d = lm
*2e−mm

2 /M2
. s45d

Here

lm
*2 = lm

2 ·Z s46d

is the effective value of the residue in nuclear matter.
We present the lhs of Eqs.(42)–(44) as

Lm
i = ,m

i + um
i + vm

i s47d

with ,m
i sM2,Wm

2 d standing for the lowest order OPE terms,
um

i sM2,Wm
2 d denoting the contribution of the higher moments

of the structure functions, whilevm
i sM2d provides the contri-

bution of the four-quark condensates. We write, correspond-
ingly, L0

i =,0
i +v0

i for the lhs of the vacuum sum rules pre-
sented by Eqs.(25) and (26). We present also

,isM2,Wm
2 d = ,m

i sM2,Wm
2 d − ,0

i sM2,Wm
2 d,

visM2d = vm
i sM2d − v0

i sM2d. s48d

In these notations the lowest order OPE terms are

,0
q =

M6E2m

L4/9 +
1

4

bM2E0m

L4/9 , ,0
p = 0, ,0

I = 2aM4E1m,

s49d

and

,q = fv
qsM2,Wm

2 dvsrd + fg
qsM2,Wm

2 dgsrd,

,p = fv
psM2,Wm

2 dvsrd,

,I = fk
I sM2,Wm

2 dksrd, s50d

with

fv
q = −

8p2

3

ss− m2dM2E0m − M4E1m

mL4/9 ,

fg
q =

p2M2E0m

L4/9 ,

fv
p = −

8p2

3

4M4E1m

L4/9 ,

fk
I = − 4p2M4E1m. s51d

The functionsvsrd, kspd, gsrd are determined by Eqs.(6),
(7), and(9). The notationEkmsk=0,1,2d means that the func-
tions depend on the ratioWm

2 /M2. Actually, the higher mo-
ments of the structure functions of the nucleon have been
neglected in Eqs.(50) and (51).

III. ACCOUNTING FOR x-DEPENDENCE OF THE
OPERATORS. CONTRIBUTIONS OF THE HIGHER

MOMENTS AND OF THE HIGHER TWISTS OF
THE STRUCTURE FUNCTIONS

The calculation of the functionPmsq2,sd defined by Eq.
(34) is based on the presentation of the single-quark propa-
gator in the medium

kMuTqa
i sxdq̄ b

i s0duMl = Gabsxd − 1
4kMuq̄is0dgmqisxduMlgab

m

− 1
4kMuq̄is0dqisxduMldab s52d

with Gsxd=sixmgmd / s2p2x4d being the free propagator of the
quark in the chiral limit. Recall thati denotes the light quark
flavor. In the lowest orders of OPE two of the quarks are
described by the free propagators and only one of the quarks
is presented by the second or the third term of the rhs of Eq.
(52).

At x=0 the matrix elements in the second and third terms
on the rhs are just the vector and scalar condensates defined
by Eqs.(6) and (7). The contribution of the bilocal configu-
rations can be expressed in terms of the higher moments and
twists of the nucleon structure functions[9].

The bilocal operators on the rhs of Eq.(52) are not gauge
invariant. The gauge invariant expression, achieved by sub-
stitution [24]

qisxd = qis0d + xaDaqis0d + 1
2xaxbDaDbqis0d + ¯ s53d

with Da standing for the covariant derivatives, provides the
infinite set of the local condensates. The expectation values
depend on the variablesspxd and x2. In the gas approxima-
tion we only need the nucleon matrix elements Eq.(13). For
the vector structure the general form is

um
i sxd = kNuq̄is0dgmqisxduNl

=
pm

m
fa

i sspxd,x2d + ixmmfb
i sspxd,x2d s54d

with qisxd defined by Eq.(53).
Expansion in powers ofx2 corresponds to the expansion

of the functionPmsqd in powers ofq2. To obtain the terms of
the orderq−2 it is sufficient to include two lowest terms of
the expansions in powers ofx2. One can present[9,25]

fasbd
i sspxd,x2d =E

0

1

da e−iaspxdfasbd
i sa,x2d s55d

with
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fasbd
i sa,x2d = hasbd

i sad + 1
8x2m2jasbd

i sad. s56d

Here ha
i sad= fa

i sa ,0d is the contribution of the quarks with
the flavori to the asymptotics of the nucleon structure func-
tion hsad=ha

usad+ha
dsad, normalized by the condition

E
0

1

da hsad = 3 s57d

with the rhs presenting just the number of the valence quarks
in the nucleon. Thus, expansion of the functionwa

i spxd
=fa

i sspxd ,0d in powers ofspxd is expressed through the mo-
ments of the distributionsha

i sad. The moments are well
known—at least, those, which are numerically important.
Also, the first moment of the distributionjasad=ja

usad
+ja

dsad,

j =E
0

1

sja
usad + ja

dsaddda < − 0.3, s58d

was calculated in Ref.[26] by QCD sum rules method. The
moments of the functionhb

i sad can be obtained by using the
equations of motionDagaqisxd=miq

isxd. Thus, in the chiral
limit [9]

kwb
i l = 1

4kwa
i al,

kwb
i al = 1

5kwa
i a2l − 1

4kjil,

kjb
i l = 1

6kja
i al. s59d

Here we denoted

kfl =E
0

1

da fsad s60d

for any functionfsad.
Note that the nonlocality of the scalar condensate, i.e., of

the last term on the rhs of Eq.(52) does not manifest itself in
terms up to 1/q2. The first derivative inspxd, as well as all
the derivatives of the odd order vanish in the chiral limit due
to QCD equation of motion. The next to leading order of the
expansion in powers ofx2 vanishes due to certain cancella-
tions [8] as well as in the case of vacuum[2] for the particu-
lar choice of the operatorjsxd presented by Eq.(16). We do
not account for the nonlocality of the gluon operators, since
the gluon expectation values play the minor role in our sum
rules.

Now we are ready to calculate the contributionsPnlsqd of
the nonlocal vector condensate to the polarization operator
Pmsqd. We expressPnl in terms of the proton expectation
valuesum

i sxd=kpuq̄is0dgmqisxdupl. Employing the isotopic in-
variance we obtain

Pnlsqd =
4i

p4 E d4x

x8 Sx2ûu + ûd

2
+ x̂sx,uu + uddD

3eisqxd · r, s61d

contributing to the vector structuresq̂ and p̂ of the polariza-
tion operatorPmsqd. Here we denoted

â = amgm. s62d

Using Eq.(54) we obtain

Pnlsqd = Pnl
a sqd + Pnl

b sqd s63d

with

Pnl
a sqd =

4i

p4 E d4x

x8 Sx2p̂
fa

u + fa
d

2
+ x̂sxpd

3sfa
u + fa

ddDeisqxd · r,

Pnl
b sqd = −

6m

p4 E d4x

x6 x̂sfb
u + fb

ddeisqxd · r. s64d

We present each of the termsPnl
asbd as the sumPnl

1asbd

+Pnl
2asbd, corresponding to the two terms of the expansion in

powers ofx2 in Eq. (56). In particular, the contributionPnl
1a,

which is numerically most important, can be presented as

Pnl
1asqd = F 1

6mp2E
0

1

da q̂8spq8dlnS− q82

Lc
2 Dhasad

+
p̂

3mp2E
0

1

da q82 lnS− q82

Lc
2 DhasadGr s65d

with hasad=ha
usad+ha

dsad, q8=q−pa (see Appendix A).
From Eqs.(3) and (14) one findsspqd=ss−m2−q2d /2. The
cutoff Lc will be eliminated by the Borel transform.

Presentingq82=−s1+adsQ2+A2d where Q2=−q2, A2sad
=ass−m2−m2ad / s1+ad we see that the second term of the
expression lnq82= ln q2+ lnsq82/q2d does not have a cut, run-
ning to infinity, but has a finite cut. This singularity requires
a special treatment in QCD sum rules. On the other hand, it
is the singularity in theu channel of the interaction of the
baryon current with the quark of the nucleon of matter. It
corresponds to the exchange terms on the rhs of the sum
rules. In this paper we neglect the nonlocal singularities, thus
claiming for the description of the nucleon in the Hartree
approximation. However, we include the regular smooth de-
pendence on the higher moments.

The contributionsPnl
1b and Pnl

2asbd can be expressed in
terms of the moments of the functionshb

i and ja,b
i (see Ap-

pendix A). Since the higher moments of the functionsha
i sad,

as well as the value ofj are small, we include only the
lowest moments of the functionshb

i sad and the first moments
of the functionsja

i sad—Eq. (59). The last of the equalities
(59) enables us to neglect the contribution of the functions
jb

i sad.
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Finally, the higher moments and higher twists of the
nucleon structure functions provide the contributionsui to
the lhsLm

i of the sum rules—Eq.(47),

uqsM2d = uN
qsM2dr,

uN
qsM2d =

8p2

3L4/9m
F−

5

2
m2M2E0mkhal +

3

2
m2ss− m2dkjlG ,

upsM2d = uN
psM2dr,

uN
psM2d =

8p2

3L4/9F− 5sM4E1m − ss− m2dM2E0mdkhal

−
12

5
m2M2E0mkha2l +

18

5
m2M2E0mkjlG ,

uIsM2d = 0. s66d

Here we denoteL=LsM2d. Parameterj is defined by Eq.
(58).

IV. CONTRIBUTION OF THE FOUR-QUARK
CONDENSATES

The four-quark expectation values contribute to the OPE
terms 1/q2 of the functionPmsqd. Now only one quark is
determined by the free propagatorGqsxd. Two other quarks
are described by the last term of the two-quark propagator,

kMuTqasxdq̄bs0dqrsxdq̄ts0duMl

= fGqsxdg2 − 1
4kMuq̄GXquMlGqsxdGab

X

− 1
4kMuq̄GXquMlGqsxdGrt

X + 1
16kMuq̄GXqq̄GYquMlGab

X Grt
Y

s67d

with GX,Y being the basic 434 matrices

GI = I, GPs= g5, GV = gm, s68d

GA = gmg5, GT =
i

2
sgmgn − gngmd,

acting on the Lorentz indices of the quark operators. Equa-
tion (67) is analogous to Eq.(52) for the single-quark propa-
gator. We did not display the color indices in Eq.(67), keep-
ing in mind that the quark operators are color
antisymmetric—Eq.(16). One can write an equation similar
to Eq. (67) for the quarks of different flavors.

Introducing the notations

Hm
XYsrd = kMuūGXuūGYuuMl, Rm

XYsrd = kMud̄GX dūGYuuMl
s69d

we write in the gas approximation

Hm
XYsrd = Hm

XYs0d + rhXY, Rm
XYsrd = Rm

XYs0d + rrXY.

s70d

The characteristicshXY and rXY can be presented as

hXY = 5
6sk0uūGXuu0lkNuūGYuuNl + k0uūGYuu0lkNuūGXuuNld

+ kNusūGXu · ūGYudintuNl; s71d

rXY = 2
3sk0ud̄GX du0lkNuūGYuuNl + k0uūGYuu0lkNud̄GX duNld

+ kNusd̄GX d · ūGYudintuNl. s72d

Here the lower index “int” means that all the four operators
are acting inside the nucleon. The coefficients 5/6 and 2/3
on rhs of Eqs.(71) and(72) present the weights of the color-
antisymmetric states—see Appendix B. These equations are
consistent with Eq.(13) if we assume that some of the

single-particle operators which compose the operatorÂ can
act on the vacuum state vector—see also[10].

The contribution of the four-quark expectation values to
the in-medium change of the polarization operator can be
written as

sPd4q = sPmd4q − sP0d4q =
r

q2So
X,Y

mXYh
XY + o

X,Y
tXYr

XYD .

s73d

HeremXY andtXY are certain matrices in Dirac space. They
can be obtained by using the general expression for the func-
tion Pmsqd presented in[16]

mXY =
uY

16
TrsgaGXgbGYdg5gaq̂gbg5,

tXY =
uY

4
Trsgaq̂gbGYdg5gaGXgbg5, q̂ = qmgm. s74d

Here uY=1 if GY has a vector or tensor structure, whileuY
=−1 in the scalar, pseudoscalar and axial cases. The sign is
determined by that of the commutator between matrixGY and
the charge conjugation matrixC—Eq. (16).

The productsmXYh
XY obtain nonzero values if the matri-

cesGX andGY have the same Lorentz structure. In this case
all the structures presented by Eq.(68) contribute tosPmd4q.
The productstXYr

XY do not turn to zero only ifGY has a
vector or axial structure. In the latter caseGX should be an
axial matrix as well. In the former caseGX can be either
Lorentz scalar or Lorentz vector.

We denotehXX=hX, mXX=mX, rXX=rX, tXX=tX for the
similar Lorentz structuresX and Y. The scalar and pseudo-
scalar expectation values are Lorentz scalars. Thus, their
contributions can be expressed through single parameters.
The latter is true also for the scalar-vector expectation value
rSV. We obtain

mS= −
q̂

2
, mPs=

q̂

2
, stSVdm = − 2qm. s75d

In the other channels the four-quark condensates have more
complicated structure. In the vector and axial channels

hmn
VsAd = ah

VsAdgmn + bh
VsAd pmpn

m2 ,
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rmn
VsAd = ar

VsAdgmn + br
VsAd pmpn

m2 . s76d

Using Eqs.(71) and (72) we obtain

mVhV = − ah
Vq̂ − bh

Vp̂spqd
m2 , mAhA = ah

Aq̂ + bh
Ap̂spqd

m2 ,

s77d

and

tVrV = s− 10ar
V − 2br

Vdq̂ − 2br
Vp̂spqd

m2 ,

tArA = s− 6ar
A − 2br

Adq̂ + 2br
Ap̂spqd

m2 . s78d

In the tensor channel

hmn,rt
T = ah

Tsmn,rt + bh
Ttmn,rt s79d

with

smn,rt = gmrgnt − gmtgnr,

tmn,rt =
1

m2spmprgnt + pnptgmr − pmptgnr − pnprgmtd,

s80d

and

mThT = bh
TS−

q̂

2
+

2p̂spqd
m2 D . s81d

The complete set of the four-quark expectation values
ar

X,br
X,ah

X,bh
X was obtained in Ref.[20] by using the ap-

proach motivated by the perturbative chiral quark model
sPCQMd [21,22]. As explained in Introduction, the valence
quarks are treated as the relativistic constituent quarks, while
the sea quarks are approximated by those of perturbatively
treated pions.

There are three types of contributions to the expectation
values in the approach of Ref.[20]. All four operators can act
on the constituent quarks. Also, four operators can act on the
pions. There are also the “interference terms” with two of the
operators acting on the valence quarks while the other two
act on the pions.

The contribution, corresponding to all four operators act-
ing on pions is expressed in terms of the pion expectation
values of the four-quark operators. The distribution of the
pion field is determined by the PCQM. The contribution is

sP4qdpions=
1

16q2So
X,a

kpaumXūGXuūGXu

+ 4tXd̄GX dūGXuupalD ] S

] mp
2 s82d

with S standing for the sum of the self-energy and pion-
exchange contributions, while “a” denotes the pion isotopic

states. Using the values of the four-quark operators averaged
over pions[23], we find that

o
X,a

mXkpauūGXuūGXuupal + 4o
X,a

tXkpaud̄GX dūGXuupal = 0.

s83d

Due to Eq.(83) we can omit the contributions to the sec-
ond terms of the rhs of Eqs.(71) and(72) which are caused
by the pions only. Since the termsk0uq̄qu0lkpuq̄qupl emerge
as the ingredients of the expectation valueskpuq̄qq̄qupl [23],
the cancellation(83) influences the first terms of rhs of Eqs.
(71) and (72) as well. Thus, in order to calculate the rhs of
Eq. (73) it is sufficient to substitute for the operators with the
same flavor,

hX = 2 · 5
6k0uūGXuu0lkNusūGXudvuNl + kNusūGXuūGXud1uNl.

s84d

Here the lower index “v” means that the operators act on the
valence quarks only. The lower index “1” corresponds to the
sum of the term in which all four operators act on the valence
quarks and the term in which two of the operators act on the
valence quarks while the other two act on pions. Of course,
the first term on the rhs of Eq.(84) obtains a nonvanishing
value only in the scalar caseGX= I.

The expectation values of the operators of different fla-
vors, providing nonvanishing contributions to the rhs of Eq.
(72) are the scalar-vector condensate,

rm
SV= 2 ·

2

3
k0ud̄du0lkNuūgmuuNl + kNusd̄dūgmud1uNl s85d

and

rmn
X = kNusd̄Gm

X dūGn
Xud1uNl, s86d

with X standing for vector or axial structures. In the first term
on the rhs of Eq.(85) the nonlocality of the vector conden-
sate is included.

The meaning of the lower index “1” is the same as in Eq.
(84).

Using the complete set of the nucleon four-quark expec-
tation values[20], we obtain

sPd4q = SA4q
q q̂

q2 + A4q
p spqd

m2

p̂

q2 + A4q
I m

I

q2D a

s2pd2r s87d

with the coefficients

A4q
q = 0.25, A4q

p = − 0.57, A4q
I = 1.90 s88d

and with the conventional notation

a = − s2pd2k0uūuu0l. s89d

We use the valuek0uūuu0l=s−241 MeVd3, corresponding to
a=0.55 GeV3, employed in Ref.[6]. Note thata is just a
convenient scale for presentation of the results. It does not
reflect the chiral properties ofP4q.
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We can trace the structure of the three terms, composing
P4q determined by Eq.(87)—see Appendix C. Theq̂ term
results mainly as the sum of the expectation value of the
product of the fouru-quark operators, described by the first
(factorized) term on the rhs of Eq.(84), and that of the prod-
uct of twou and twod quark operators in the axial channel—
Eq. (86). The p̂ term is determined mostly by the expectation
value (86) in the vector channel. The contribution propor-
tional to the unit matrixI is determined by the scalar-vector
expectation value(85). It is dominated by the first(factor-
ized) term on the rhs, while the second term diminished the
value by about 30%.

The contributions of the four-quark condensates to the lhs
of the Borel transformed sum rules(42)–(44) are

vi = vN
i r, vN

i = A4q
i f4q

i ,

f4q
q = − 8p2a, f4q

p = − 8p2s− m2

2m
a, f4q

I = − 8p2ma.

s90d

Note that we can modify our model approach by employ-
ing a more sophisticated model for the pion. Namely, among
the interference terms contributing to the four-quark conden-
sates, there is so-called “vertex interference,” in which one
of the vertices of the self-energy of the valence quark is
replaced by the four-quark operator. Some of such terms con-

tain the matrix elementsk0uūg5dup−l and k0ud̄g5uup+l, con-

tributing to the expectation valueskNuūg5dd̄g5uuNl, being

connected with the matrix elementskNud̄GX dūGXuuNl of all
structuresGX by the Fierz transform. On the other hand, they
depend on the values of the quark masses, since
k0uūg5dup−l=f−iÎ2 FpMp

2 / smu+mddg with Mp sFpd denot-
ing the mass(decay constant) of pion. In a somewhat
straightforward approach one substitutes the current quark
masses. Following more sophisticated models of the pions
[27] one should substitute the constituent quark masses, thus
obtaining much smaller values. In the latter approach

A4q
q = − 0.11, s91d

while the values ofA4q
p and A4q

I remain unchanged. In this
case we find the larger cancellation between the first term on
the rhs of Eq.(84) and the contribution coming from the rhs
of Eq. (86). The latter is dominated by the vector expectation
values.

V. SUM RULES IN NUCLEAR MATTER

Actually, we shall solve the sum rules for the difference of
the operators in nuclear matter and in vacuum,

LqsM2,Wm
2 ,W0

2d = LmsM2d − L0sM2d, s92d

LpsM2,Wm
2 d = − SvLmsM2d, s93d

LIsM2,Wm
2 ,W0

2d = m*LmsM2d − mL0sM2d s94d

with LisM2,Wm
2 ,W0

2d=Lm
i sM2,Wm

2 d−L0
i sM2,W0

2d. The ingre-
dients of Eqs.(92)–(94) are defined by Eqs.(25), (26), (42)–
(44), and(47).

Note that we took into account the anomalous dimensions
only for the leading OPE termsq2 ln q2 and lnq2, neglecting
the anomalous dimensions of the 1/q2 OPE terms.

Although the anomalous dimensions of the four-quark
condensates are known[28], the anomalous dimension ma-
trix is not diagonal in the basis determined by Eq.(68). The
calculation of this matrix in our basis is a separate work
which will be presented in further publications. We use the
nucleon structure functions presented in Ref.[29], which in-
clude the anomalous dimensions of the structure functions.

We solve Eqs.(92)–(94) in the same interval of the values
M2 as it has been done in vacuum.

Since Eqs.(92)–(94) are not linear, the behavior of the
in-medium parameters is not linear inr even if we limit
ourselves to the gas approximation. However, if the densityr
is small enough, we can try the linear approximation, assum-
ing the linear dependence of the nucleon characteristics on
the density of matter.

VI. SUM RULES IN THE LINEAR APPROXIMATION

It is instructive to express the density in units of the ob-
servable saturation density

r0 = 0.17 fm−3 = 1.33 10−3 GeV3. s95d

The parameters which will be determined from the sum rules
can be presented as

Sv = av
r

r0
, m* = m+ as

r

r0
, dl2 = lm

*2 − l0
2 = al

r

r0
,

dW2 = Wm
2 − W0

2 = aW
r

r0
. s96d

To obtain the parameters in the linear approximation we set
Z=1 and find

Sv = Sp, m* = ms1 + Sqd + Ss, lm
*2 = lm

2 ,

mm = ms1 + Sqd + Sv + Ss = m* + Sv s97d

in Eqs.(38)–(40) and (46). We sets=4m2 in Eq. (39).
Expansion of the lhs of Eqs.(92)–(94) provides the equa-

tions

sfv
qsM2,W0

2dvN + fg
qsM2,W0

2dgN + uN
qsM2d + wN

qdr0

= Sal − sas + avd
2ml0

2

M2 De−m2/M2
− aW

] ,0
qsM2,W0

2d
] W0

2 ,

s98d

sfv
psM,W0

2dvN + muN
psM2d + mvN

pdr0

= − avl0
2e−m2/M2

, s99d
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sfk
I sM2,W0

2dkN + vN
I sM2ddr0

= Salm− sas + avd
2m2l0

2

M2 De−m2/M2

+ asl0
2e−m2/M2

− aW

] ,0
I sM2,W0

2d
] W0

2 . s100d

Note that in this form all three equations are tied. One can
build up another set of equations with the functionsLp, LI

−mLq, andLq as the lhs. In this case the unknownsav andas
are determined from the separate equations. The third equa-
tion determines the values ofal andaW. We introduce

Tk
i sM2,W0

2d = r0fk
i sM2,W0

2d
em2/M2

l0
2 sk = v,g,kd,

Tu
i sM2,W0

2d = r0uN
i sM2,W0

2d
em2/M2

l0
2 ,

Tv
i sM2d = r0f4q

i em2/M2

l0
2 s101d

with the functionsfk
i and f4q

i defined by Eqs.(51) and (90).
We present

Tv
psM2,W0

2dvN + mTu
psM2,W0

2d + mTv
pA4q

p = − av, s102d

Tk
I sM2,W0

2dkN − mTv
qsM2,W0

2dvN − mTg
qsM2,W0

2dgN

− mTu
qsM2,W0

2d + Tv
I sM2dA4q

I − mTv
qsM2dA4q

q = as,

s103d

Tv
qsM2,W0

2dvN + Tg
qsM2,W0

2dgN + Tu
qsM2,W0

2d + Tv
qsM2dA4q

q

+ sas + avd ·
2m

M2 = al

1

l0
2 − aW

1

L0

] ,0
qsM2,W0

2d
] W0

2 s104d

with L0 being defined by Eq.(27). The characteristicsav and
as are found from Eqs.(102) and (103) and are substituted
into Eq.(104). The latter determines the values ofal andaW.

Note that there is one more approximation on the rhs of
Eq. (102). Namely, we neglected the value

aWS ] ,0
I

] W0
2 − m

] ,0
q

] W0
2D = aWW0

2S− 2a +
mW0

2

2L4/9

+
mb

4W0
2L4/9De−W0

2/M2

since there is about 80% cancellation between the two terms.
This is due to the positive parity of the nucleon state—see
Appendix D.

The values of the QCD parameters which enter the lhs of
Eq. (102)–(104) are determined by Eqs.(6), (8), (10), (65),
and (86). The expectation valuekN=kNuūu+ d̄duNl is con-
nected to the pion-nucleon sigma termspN by Eq. (8). The

value of spN can be extracted from the data on low-energy
pN scattering, being expressed through the observableS
term (SpN) [30]. The value

spN = s45 ± 7d MeV s105d

corresponds toSpN=64 MeV [31]. We shall present the spe-
cific values, corresponding tokN=8. This value corresponds
to spN=45 MeV and the sum of the light quark massesmu
+md=11 MeV. There is an uncertainty in the value ofkN due
to the errors in determination of the values ofspN and mu
+md. We also present the dependence of the characteristics
of the nucleon on the value ofkN.

The values of the parameters

av = 0.108 GeV, as = − 0.178 GeV,

al = − 1.29 GeV6, aW = − 0.81 GeV2 s106d

are obtained by minimization of the relative difference of the
rhs and lhs of Eqs.(102)–(104) by the chi-square method.
The solution of these equations is illustrated in Fig. 1. Note,
that if we construct the equation which is the difference of
Eqs.(104) and(105), the function ofM2 in the lhs should be
approximated by the constant valueas+av, having the mean-
ing of the potential energy. Such approximation holds with
much better accuracy than the separate Eqs.(104) and(105)

FIG. 1. Solution of Eqs.(102)–(104). In (a) the lines 1 and 2
show the lhs of Eqs.(102) and (103) for the self-energies. Line 3
shows the potential energy. The dashed lines show the constant
values, corresponding toav and as on the rhs of these equations.
The line in (b) shows the ratio of the lhs and rhs of Eq.(104).
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for the self-energies. The solution(106) corresponds to the
values

Sv = 108 MeV, m* − m= − 178 MeV,

dl2

l0
2 = − 0.67,

dW2

W0
2 = − 0.37. s107d

Although the sets of Eqs.(98)–(100) and (102)–(104) are
mathematically identical, a procedure of matching of the two
sides of the equations may lead to somewhat different solu-
tions. Applying the same procedure of minimization to the
set of Eqs. (98)–(100) we find av=0.108 GeV, as=
−0.254 GeV, al=−1.61 GeV6, aW=−0.91 GeV2. Thus the
parametersdl2 and dW2 are determined with somewhat
larger uncertainties than the self-energySv.

As we noted at the end of Sec. IV, our model approach to
the calculation of the four-quark condensates can be modi-
fied by using more sophisticated models of the pions[27],
i.e., by the account of the constituent quark masses. Using
the value ofA4q

q given by Eq. (91), we obtain from Eqs.
(102)–(104),

Sv = 108 MeV, m* − m= − 203 MeV,

dl2

l0
2 = − 0.71,

dW2

W0
2 = − 0.41 s108d

at the saturation densityr=r0. Thus, this change of the value
vN

q results in the change of the nucleon parameters by less
than 15%.

Note that the functionsTj
i sM2d defined by Eq.(101) s j

=v ,g,k ,u,v ; i =q,p,Id depend onM2 rather weakly. Thus,
approximating

Tj
i sM2d = Cj

i , s109d

we can replace in the lhs of Eqs.(102)–(104) the functions
Tj

i sM2d by the constant coefficientsCj
i . Numerically the most

important functionsTv
psM2d andTk

I sM2d can be approximated
by the constant values with the errors of about 4% and 8%.
The largest errors of about 25% emerge in the averaging of
the functionsTv

i . This solves the problem of expressing the
in-medium change of nucleon parameters through the values
of the condensates

Sv = − sCv
pvN + mCu

p + mCv
pA4q

p d
r

r0
, s110d

m* − m= sCk
I kN − mCv

qvN − mCg
qgN − mCu

q + Cv
I A4q

I

− mCv
qA4q

q d
r

r0
. s111d

The coefficients on the rhs of Eqs.(110) and (111) are

Cv
q = − 0.062, Cg

q = 0.011 GeV−1, Cv
q = − 0.067,

Cu
q = − 0.074, Ck

I = − 0.042 GeV,

Cv
I = − 0.064 GeV, Cv

p = − 0.090 GeV, s112d

Cv
p = − 0.095, Cu

p = 0.094.

Equations(110) and(111) reproduce the values ofSv andm*

provided by Eqs.(107) with the accuracy of 15% and 6%
correspondingly.

VII. BEYOND THE LINEAR APPROXIMATION

Now we do not assume the linear dependence of the
nucleon parameters on the densityr. We find the valuesSv,
m* , lm

*2, andWm
2 which minimize the difference between the

lhs and rhs of Eqs.(92)–(94). The consistency of the lhs and
rhs is illustrated by Fig. 2. At the saturation densityr=r0 we
obtain

Sv = 150 MeV, m* − m= − 200 MeV,
s113d

lm
*2 = 1.25 GeV6, Wm

2 = 2.11 GeV2.

The two last numbers correspond to the relative shifts
dl2/l0

2=−0.35 anddW2/W0
2=−0.03. Thus the linear approxi-

mation is true atr<r0 with the accuracy of about 25% for
the vector self-energy and about 10% for the scalar one. The
linear approximation overestimates the shift of the effective
threshold.

Recall, that we presented the numerical results forkN=8.
The dependence on the value ofkN is shown in Fig. 3. The
density dependence of the nucleon parameters atkN=8 is
shown in Fig. 4.

Using Eq.(91) for the value ofA4q
q we obtain the results

which are close to those presented by Eq.(113),

Sv = 142 MeV, m* − m= − 223 MeV,
s114d

lm
*2 = 1.24 GeV6, Wm

2 = 2.09 GeV2.

Note that the difference between the linear and nonlinear
solutions has a strong effect on the value of the nucleon
potential energy

Usrd = Svsrd + m*srd − m, s115d

which is about −40 MeV and −70 MeV for the solutions
(113) and (114) at the phenomenological saturation pointr
=r0.

FIG. 2. Curves 1, 2, and 3 show the lhs to rhs ratios of Eqs.
(92)–(94) correspondingly, at the values of the nucleon and con-
tinuum parameters given by Eq.(113).
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VIII. DISCUSSION

It is instructive to follow how the values of the nucleon
self-energies change, while we include the various contribu-
tions of the lhs of the sum rules. The solutions of the general
equations(92)–(94) are illustrated by Fig. 5. At the saturation
densityr0 the vector self-energySv and the effective mass
m* are 340 MeV and 750 MeV correspondingly, if only the
termsl j—Eq. (50) are included inLj

i of Eq. (47). One can see
from Fig. 5 that the higher moments of the structure func-
tions and the four-quark condensates subtract about
100 MeV each from the value ofSv. On the contrary, the
two contributions tom* cancel to large extent, with the four-
quark condensate subtracting about 200 MeV, and the mo-
ments of the structure functions adding about this value.

We come to similar results in the linear approximation
Sec. VI. The moments of the structure functions and the
four-quark condensate subtract 60 MeV and 110 MeV from
the lowest dimension valueSv=270 MeV. The OPE value of
the scalar self-energym* −m is −140 MeV. The four-quark
condensates and the moments of the structure functions add
−100 MeV and +100 MeV, correspondingly.

Turning to the role of the anomalous dimensions, we note
that their inclusion into the moments of the structure func-

tions lead to minor changes of several MeV of the values of
vector and scalar self energies. Neglecting the anomalous
dimensions of all the in-medium contributions increases the
values of the vector self-energySv=230 MeV, and of the
scalar self-energym* −m=−140 MeV. Thus, we find for the
potential energyU.0 if k=8. However, the value ofm*

decreases withk, while the vector self-energy practically
does not change. We find thatU,0 if k.10, i.e.,
spN.55 MeV—Eq.(105).

The authors of Ref.[16] carried out the detailed analysis
of the nucleon self-energies depending on the in-medium
values of the four-quark condensates. They considered the
QCD sum rules, based on the dispersion relations in energy
q0 at uqu being fixed. The authors of Ref.[16] found that the
values of the self-energies depend strongly on the value of
the scalar-scalar condensate, while the dependence on the
values of the other four-quark expectation values appeared to
be negligible small. Actually, they presentedkMuq̄qq̄quMl
−k0uq̄qq̄qu0l=2fk0uq̄qu0lkNuq̄quNlr, and studied the depen-
dence of the nucleon parameters on the value off. Our
model calculations correspond tof =0.14. It was found in
Ref. [16], that the values 0, f ,0.3 provide the results,
which are consistent with the nuclear phenomenology. We
can deduce from Fig. 1 of Ref.[16], that there values are
m* /m=0.65 andSv /m=0.28 for f =0.14. Neglecting all the
other four-quark condensates, we find the close values
m* /m=0.67 andSv /m=0.25. Note, however, that our ap-
proach is based on the dispersion relations in another vari-
able,i.e., in q2, with the relativistic pair energys being kept
fixed. (This enables us to avoid the singularities, connected
with the excitations of medium[8–10].) In our case the in-
fluence of the vector-scalar expectation value is stronger than
in Ref. [16]. For example, if we assume factorization ap-
proximation for the vector-scalar condensate, our value of
the nucleon effective mass is about twice smaller than the

FIG. 3. Dependence of the solutions of Eqs.(92)–(94) on the
value of the nucleon expectation valuekN at r=r0. The values of
W0

2, l0
2 are given by Eq.(33).

FIG. 4. Density dependence of the nucleon and continuum pa-
rameters beyond the linear approximation atkN=8. The horizontal
axis corresponds to the density of the matter, related to the phenom-
enological saturation value.

FIG. 5. Sum-rule predictions for the dependence of the nucleon
parametersm* /m andSv /m on the ratior /r0 at kN=8. The curves
correspond to the successive inclusion of more complicated conden-
sates. Dashed lines, only expectation values of the operators of the
lowest dimensionq̄s0dg0qsx=0d and q̄s0dqsx=0d and of the gluon
operatorssas/pdG2s0d are included[see Eq.(50)]. Dotted lines,
local four-quark condensates are added[Eqs. (85) and (86)]; solid
lines,x dependence of the vector condensates(expressed in terms of
the nucleon structure functions) is included.
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value obtained in Ref.[16]. The values of the vector self-
energy are still close in the two approaches.

In the paper[17] the calculations of the four-quark con-
densate were avoided by a specific choice of the function
Pmsqd. The limits 160 MeV,Sv,310 MeV and
0.62 GeV,m* ,0.83 GeV have been obtained. In Ref.[9]
the authors got rid of the four-quark condensates, applying
the differential operators. They found the vector and scalar
fields to be about 220 MeV and −350 MeV in the gas ap-
proximation.

These results are consistent with each other and with the
results of nuclear physics calculations. Various approaches in
the nuclear physics studies(see, e.g., Ref.[32]) provide the
values between 180 MeV and 350 MeV for the vector fields,
and between −200 MeV and −400 MeV for the scalar fields.

There is agreement with the earlier results in some other
points. The 30% reduction of the vector field, caused by
nonlocality of the vector condensate, was found in Refs.
[8,9]. The strong reduction of the nucleon pole residue was
obtained in Refs.[8,9,16]. Also, it was first noted in Ref.[16]
that the shift of the continuum threshold is very small.

IX. SUMMARY

We analyzed QCD sum rules in nuclear matter by taking
into account terms of the order ofq2 ln q2, ln q2, and 1/q2 of
the operator product expansion. The consistency of the low-
est OPE terms in QCD sum rules[7–10,14–16] with the
nuclear phenomenology was known for a long time. How-
ever the lack of information on the four-quark condensates,
contributing to the terms of the order 1/q2 was the main
obstacle for the further development of the approach.

In this paper we studied the sum rules, treating the QCD
condensates in the gas approximation and included the con-
tribution of the four-quark condensates, expressed through
the nucleon expectation values. The latter were obtained in
Ref. [20] by employing results of the perturbative chiral
quark model[21,22]. We included also the higher moments
of the nucleon structure functions which contribute to the
terms of the order lnq2 and 1/q2. Taking into account the
four-quark condensate we included all Lorentz structures.

We took into account the nonlocal structure of the vector
condensate, which manifests itself through the higher mo-
ments of the structure functions. We include corrections,
which have the smooth dependence on these moments. How-
ever, we did not include the nonlocal singularities in theu
channel. Such singularities correspond to the exchange inter-
action between the nucleon and the matter. Thus, our ap-
proach corresponds to Hartree description of the in-medium
nucleon. The nonlocal structure of the scalar condensate
manifests itself in the higher orders of OPE.

Considering only the linear changes of the nucleon pa-
rameters we obtained a linear combination of the QCD sum
rules equations in which the nucleon effective massm* and
the vector self-energySv are the only unknown parameters.
A more detailed analysis going beyond the linear approxima-
tion shows that this approach works well at densities close to
the saturation valuer=r0. In this approach we solved the
problem of expressing the in-medium change of the nucleon

parameters in terms of the in-medium values of QCD
condensates—Eqs.(110) and (111).

The terms, containing the four-quark condensates provide
the corrections of the order 20–25 % to the leading terms of
the OPE of the functionPm−P0, which are determined by
the local vector and scalar condensates. This is consistent
with the hypothesis about the convergence of the OPE series.
The four-quark condensates diminish the OPE value of the
vector self-energySv by about 25%. The scalar self-energy
m* −m is more sensitive to the four-quark expectation values.
Inclusion of these condensates makes the OPE value ofm*

−m about 80% larger. Inclusion of the nonlocality of the
vector condensate, which manifests itself in terms of the
higher moments of the structure functions subtracts 25%
more from the value ofSv, and almost totally compensates
the contribution of the four-quark condensates to the shift
m* −m. Thus the value ofm* −m appears to be very close to
the one, determined by the lowest orders of OPE.

The contribution of the four-quark condensate to the vec-
tor self-energySv is caused mainly by the vector-vector
structure. The contribution to the scalar parameterm* −m is
of more complicated origin, with the scalar-vector, scalar-
scalar, vector-vector, and axial–axial terms being numeri-
cally important.

As it was noted earlier[9,10], the QCD sum rules can be
viewed as a connection between the exchange of uncorre-
lated q̄q pairs and the exchange of strongly correlated pairs
with the same quantum numbers(mesons). This results in a
certain connection between the Lorentz structures of the in-
medium expectation values and of the nucleon propagator. In
the leading orders of OPE the vector(scalar) structure of the
propagator is determined by the vector(scalar) expectation
value. The scalar-vector four-quark condensate is determined
mainly by the contribution which is proportional to the vec-
tor expectation value. On the other hand, it contributes to the
scalar Lorentz structure of the nucleon propagator. In the
meson-exchange picture such terms can be explained by the
complicated structure of the nucleon-meson vertices. This
can be instructive for model building of nuclear forces.

The values of the nucleon parametersSv and m* −m are
(at least qualitatively) consistent with those, obtained earlier
in framework of nuclear physics[32] and of QCD sum rules
approach[7–9,14–17]. The four-quark condensates, as well
as the higher moments of the structure functions provide
large contributions to the nucleon parameters. This future
accounting for the main radiative corrections is expected to
make the results more accurate.

Another direction of the development of the approach is
to go beyond the gas approximation. The presentation of the
results, especially Eq.(111) for m* enables to make the next
step, studying the self-consistent set of equations for the
nucleon effective mass and the quark condensates, as sug-
gested in Ref.[10].
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APPENDIX A

The contributionX1asqd expressed by Eq.(65) can be ob-
tained by direct substitution of Eq.(53) into Eq. (55) and by
using the formula

E d4x

x8 saxdsbxdeisq8xd =
1

6
Fsabd +

2saq8dsbq8d
q82 G E d4x

x6 eisq8xd

sA1d

for any vectors “a” and “b.” Thus, all the contributions to the
function X1a are expressed through the integral

E d4x

x6 eisq8xd = −
ip2

8
q82 lns− q82d + ¯ . sA2d

Here the dots denote the terms which will be killed by the
Borel transform. This leads to Eq.(65).

To establish the connection between Eq.(65) and the two
terms on the rhs of Eq.(41) note, that the rhs of Eq.(65)
consists of the terms of the form[see Eq.(61)]

X =E
0

1

da lnsQ2 + A2saddfsad

= ln Q2E
0

1

da fsad

+E
0

1

da ln
Q2 + A2sad

Q2 fsad. sA3d

The first term on the rhs contains the standard logarithmic
factor containing the cut, running to infinity. It is described
by our “pole+continuum” model in a usual way. The second
term contains a finite cut. Such terms need special treatment.
The cut of the second term describes the singularities in the
u channel, caused by the nonlocal structure of the vector
condensate. They correspond to the exchange terms on the
rhs of the sum rules. We neglect such contributions, thus
coming to the Hartree description of the nucleon in nuclear
matter.

APPENDIX B

To obtain the coefficients of the first(factorized) terms in
the rhs of Eqs.(83) and(84), recall that we need the expec-
tation values of the color-antisymmetric operators

TXY,f1f2 = s:q̄f1aGXq̄f1a8 · q̄f2bGYqf2b8:dsdaa8dbb8 − dab8dba8d

sB1d

with f1, f2 standing for the quark flavors. The dots denote the
normal ordering of the operators,a,a8 ,b,b8 represent the
color indices. It is convenient to present

daa8dbb8 − dab8dba8 =
2

3
daa8dbb8 −

1

2o
r

laa8
r

lbb8
r sB2d

with lr standing for the SUs3d Gell-Mann matrices
Tr lrls=2drs.

The factorization approximation for the quarks of differ-
ent flavors is

kMuūa
aub

a8d̄g
bdd

b8uMl = kMuūa
aub

a8uMlkMud̄g
bdd

b8uMl sB3d

with a ,b ,g ,d being the Lorentz indices, and only the first
term on the rhs of Eq.(B2) contributes. Using also Eq.(13)
we come to Eqs.(71) and (84).

The factorization approximation formula for the quarks of
the same flavor, e.g.,qf1=qf2=u is

kMuūa
aub

a8ūg
bud

b8uMl = kMuūa
aub

a8uMlkMuūg
bud

b8uMl

− kMuūa
aud

b8uMlkMuūd
bub

a8uMl. sB4d

Thus in the factorization approximation

kMuūGXuūGYuuMl = 1
16fTr GX · Tr GY − 1

3TrsGXGYdg
3skMuūuuMld2 sB5d

and

kMuo
r

ūGXlru · ūGYlruuMl = − 1
9TrsGXGYdskMuūuuMld2.

sB6d

Thus, for the factorized part of the expectation value of the
color-antisymmetric operatorTII ,uu is sGX=GY= Id

kMuūaua8ūbub8uMl = CskMuūuuMld2 sB7d

with

C = 2
3s1 − 1

12d − 1
2s− 4

9d = 5
6 . sB8d

Employing also Eq.(13) we come to Eqs.(70) and (83).

APPENDIX C

Here we present for illustration the calculation of the most
important contributions of the four-quark condensates toq̂
structure. Using Eq.(73) we find for the contribution of the
first term on the rhs of Eq.(84),

P1 = S−
1

2
D2 ·

5

6
·

k0uūuu0l
q2 fkpusūudvuplrp

+ knusūudvunlrng. sC1d

This is equivalent to

P1 = −
5

4

k0uūuu0l
q2 ·Jr sC2d

with J=ec̄sxdcsxdd3x, while csxd is the renormalized PCQM
wave function of the constituent quark, normalized by the

condition ec̄sxdg0csxdd3x=1. Using the valueJ=0.54 [22],
one finds
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P1 = − 0.67
k0uūuu0l

q2 r. sC3d

The interval contribution is determined mostly by the ex-

pectation values of the operatorsd̄GX dūGXu. This happens
just due to the large numerical coefficients on the rhs of Eq.
(76). Using Eq.(76) we find the contribution to be

P2 = s− 10ar
V − 6ar

A − 2br
V − 2br

Ad
r

q2 . sC4d

Substituting the valuesar
V=−0.074«0

3, ar
A=0.084«0

3, br
V

=0.31«0
3, br

A=0.06«0
3 s«0=241 MeVd [20], we obtainP2=

−0.50s«0
3/q2d and

P1 + P2 = 0.17
«0

3r

q2 . sC5d

A more accurate calculation, accounting for the internal
contributions of the operatorsūGXuūGXu leads to the first
term on the rhs of Eq.(88).

The contribution top̂ structure is obtained in similar way.
Turning toI structure, note that the contribution comes from

the scalar-vector condensated̄dūgmu—Eq. (85). The first
(“factorized”) term on the rhs provides the contribution

P3 = −
2

3
E d4x

p2x4sx,uusxddeisqxdk0ud̄du0lr sC6d

with uqsxd defined by Eq.(54). If um
usxd=um

us0d, we obtain

P3 = −
2spqd

q2 k0ud̄du0l
r

m
.

Taking into account the dependence ofum
u on x we actually

include the higher moments and twists of the nucleon struc-
ture functions. Proceeding in the same way as in Sec. III, we
obtain for the Borel transform ofP3

BP3 = − 8p2mYar. sC7d

Here

Y =
1

3
Ss− m2

m2 khl − kahl −
1

2
kjl −

1

4

m0
2

m2khlD . sC8d

The first term, that is the pure local contribution, would give
Y=3.0, the higher order contributions subtract 0.32 from this
value. Thus, the factorized term would provideA4q

I =2.68.
Account of the second term on the rhs of(85) leads toA4q

I

=1.90.

APPENDIX D

Present vacuum sum rules given by Eqs.(29) and(30) in
the form

,0
qsM2,W0

2d = L0 +E
W0

2

] ,0
q

] W2dW2,

,0
I sM2,W0

2d = mL0 +E
W0

2

] ,0
I

] W2dW2 sD1d

with L0sM2d determined by Eq.(27). In the combination
,0

I −m,0
q which is just the projection on the negative-parity

component of the lowest state the contribution of the residue
vanishes

,0
I − m,0

q =E
W0

2
S ] ,0

I

] W2 − m
] ,0

q

] W2DdW2. sD2d

The condition

U ] s,0
I − m,0

qd
] W2 U ! U ] ,0

q,I

] W2U
at W2=W0

2 means that we cannot imitate the contribution of
the negative-parity pole of the orderL0

2 on the rhs of Eq.
(D2) by changing the value ofW0

2.
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