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We calculate the nucleon parameters in nuclear matter using the QCD sum rules approach in gas approxi-
mation. Terms up to I in the operator product expansié®PE are taken into account. The higher moments
of the nucleon structure functions are included. The complete set of the nucleon expectation values of the
four-quark operators is employed. Earlier the lack of information on these values has been the main obstacle
for the further development of the approach. We show that the values of the four-quark condensates are
consistent with the assumptions about the convergence of the OPE. Inclusion of these condensates and of the
nonlocality of the vector condensate are important for the calculation of the nucleon parameters. The nucleon
vector self-energy, and the nucleon effective mass are expressed in terms of the in-medium values of
QCD condensates. The numerical results for these parameters at the saturation value of the density agree with
those obtained by the methods of nuclear physics.
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I. INTRODUCTION characteristics of the lowest hadronic state. Such interpreta-

. ) tion requires that the contribution of the pole to the rhs of Eq.
The QCD sum rules were invented by Shifmemal. [1] 1) oy ceeds the contribution of the continuum.

to express the hadron parameters throu.gh'the vacuum ExXpec-the opE of the Ihs of Eq1) becomes increasingly valid,
tation values of QCD operators. Being initially used for the, \ <\ the value ofq? increases. On the other hand, the

mesons, the method was expanded by I¢#gto the de- “pole+continuum” model becomes more accurate witgh

scription of the baryons. The approach succeeded in describe, .o ases. The important assumption is that the two presen-
ing the static characteristics as well as some of the dynamic

T . tions are close in a certain intermediate region of the values
characteristics of the hadrons in vacuum—see, e.g., the rey @2 To improve the overlap of the QCD and the phenom-
views [3,4].

. . . . . enological descriptions, one usually applies certain math-
The basic idea is to consider the correlation function g X Y app

2 - . ! ematical tools, i.e., the Borel transform. The Borel trans-
I15(q°) describing the propagation of the system with theg, .o 4 dispersion relationd) are known as QCD sum rules
guantum numbers of the hadron, in the different regions Ofl 2.
values of the momentum, where certain information on its =~
behavior is available. The asymptotic freedom of QCD en
ables to preserlly(g?) at g?— - as a power series i >
and the QCD couplingr. On the other hand, the imaginary
part of IT,(g?) at g°>0 can be described in terms of the
observable hadrons. This prompts to consider the dispersi
relation for the functioly(q?) [1]

For example, the QCD sum rules for the nucleon provided
“a connection between the nucleon mass and the scalar quark
condensat€é0|qq|0) [2]. Similar relations have been obtained
for the magnetic moments of the nucled6s, etc.
Later the QCD sum rules were applied for the investiga-
Abn of modified nucleon parameters in nuclear majte8g].
They were based on the Borel-transformed dispersion rela-
5 tion for the functionll,(q) describing the propagation of the
To(q) = lf Im ITo(k )dkz (1) system with the quantum numbers of the nucléthe pro-
T K- ton) in nuclear matter. Considering nuclear matter as a sys-
tem of A nucleons with momentp;, one introduces the vec-
atg?— —=. The coefficients of the expansion of the left-handtor
side (Ihs) of the functionIly(g?) in powers ofq™? are the
expectation values of the local operators constructed of the _ E
quark and gluon fields, which are called “condensates.” Such TOA
presentation, known as the operator product expansion _
(OPB [5] provides the perturbative expansion of the short-Which is thusp~(m,0) in the rest frame of the matter. The
distance effects, while the nonperturbative physics is confunction Tl (q) can be presented d$(q)=I1,(q% ¢(p,q))
tained in the condensates. The usual treatment of the righwith the arbitrary functionp(p,q) being kept constant in the
hand side(rhs) of Eq. (1) consists in “pole+continuum” dispersion relations io?.
presentation, in which the lowest lying pole is singled out The spectrum of the functiohl,(q) is much more com-
while the higher states are approximated by the continuunrplicated than that of the functioHy(g?). The choice of the
Thus, Eq.(1) ties the values of QCD condensates with thefunction ¢(p,q) is dictated by attempts to separate the sin-

(2)
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gularities connected with the nucleon in the matter from Turning to the condensates of dimensin4, we find for
those connected with the properties of the matter itself. Sinctéhe gluon condensa{e]

the latter manifest themselves as singularities in the variable

s=(p+Q)?, the separation can be done by settiap,q) gm(p)=<M|%GZ(O)|M>=go+g(p),

=(p+0q)? and by fixing[7-9] T

¢(p.g) = (p+0)* = 5= 4E5 €) %=0r0), 9(p) =g+ ... (9)

with Eqe being the relativistic value of the nucleon energy atyyith the nucleon expectation value
the Fermi surface.

The general form of the functiohl,, can thus be pre- o' 8
sented as " P gv= (N Z*GHOIN) ~ -~ cm, (10
I1,(q) =g, ¥113(62,s) + p, ¥ 1IR(2,s) + T} (0%, 9). obtained in[12] in a model-independent way.
(4) Also, the nonlocal condensa¢N|a0)qu(x)|N> provides

the contributions ofi=4 and those of the higher dimension.
The in-medium QCD sum rules are the Borel-transformedrhe term of the dimensiod=4 is
dispersion relations for the componentt! (g?,s) (]

- - - 4p,p,
apD. 0,040 = (9,0~ P s (11
oo 1 ImI(Ks)
I(g%s) = - dez- (5 with x, standing for the second moment of the nucleon struc-

ture function[9]. The nonlocality of the scalar operator

It was shown in Refs[7-1Q that the “pole+continuum” q(0)g(x) manifests itself in the higher terms of the operator
model for the rhs of Eq(5) can be used at least until we do expansion. The nonlocality of the product of the gluon op-
not include the higher order terms of the density expansionsrators is not expected to be important because of the minor
of the functionsII! (g?,s). Thus, one can expect that the contribution of the gluon expectation value to the nucleon
characteristics of the nucleon in nuclear matter can be exparameters.

pressed through the in-medium values of QCD condensate. The shift of the position of the nucleon pole, which in the

In the lowest order of OPE the problem was approachedinear approximation can be identified with the single-
in Refs.[7-10. It was noticed that the condensates of theparticle potential energy of the nucleon, was expressed as a
lowest dimensiongd=3,4) can either be calculated or ex- linear combination of the condensates of the lowest dimen-
pressed through the observables. The vector condensa®n([7,8]. The vector and scalar expectation values appeared
v,(p)=(M|Z; 4'(0)y,4'(0)|M) is proportional to the density to be the most important ingredients. Their contributions
of the matterp, being cancelled to large extent, reproducing the familiar features of

the Walecka mod€]13]. An alternative approach was devel-
vu(p) =vnup, N = (N2 T(0)y,d(0[N).  (6) oped in Refs[14-1@ with the dispersion relations in the
i time componenty, at three-dimensional momentujg| be-
ing fixed. It provided a similar result.

The lack of knowledge about the in-medium expectation
values of the higher dimension became the obstacle for the
development of both approaches. One of such expectation
o . values is the scalar four-quark condensé{qqag|M). It
being just the number of the valence quarks in the nucleonyas noticed in Refs[8,16] that the configuration ®qq|0)

The scalar condensate is X (N[qq|N)p (with p standing for the baryon densjtis one
_ —t A\ i _ of those, which composed the in-medium expectation value
i p) = <M|; A0 O)IM) = ko * x(p), of the operatoqag. In the gas approximation the expecta-
tion value of the color-singlet operator is

Here the upper indek denotes the quark flavor. In the rest
frame of the matter we get,(p) =v(p) 0, Un,=UNS,0 With

v(p)=vNp, UN=3

ko= knf0), K(p)= o+ -, k= (NZ TOGON. (M[Gic0i M) = (0[aaiael0) + 20(0[Ge|OXNIGaIN)
- + p(N| (@D N (12

with the last term describing the “internal” action of the op-
erators inside the nucleon. In the “ground-state saturation
approximation” (also called “factorization approximation”

Here the dots denote the terms which are nonlinear ifhe
expectation valugN|Z; g'q|N) is related to themN sigma

term oy, i.e.[11], formulated in Ref[15] the last term of the rhs of Eq12)
o 20 vanishes. This would lead to the chang®|qgqg|M)
xn = (N[uu +dd|N) = m (8)  —(0/qqqa|0)=2p(0[qg|0)N|qg|N) of the value of the scalar
u

four-quark condensate. Assuming this approximation one
with m, 4 standing for the current masses of the light quarkswould be forced to conclude that the four-quark scalar con-
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densate plays the crucial role in QCD sum rules, causingvith the requirements of the chiral symmetry. [A0] a
doubts on the convergence of OPE. The numerical resultsimple version close to the $P)) flavor PCQM, which in-
would contradict the known nuclear phenomenoldi§]. cludes only the pions, has been used.

There have been some attempts to get rid of the contribu- There are three types of contributions to the four-quark
tion of the four-quark condensates, applying the differentialcondensate in the framework of this approach. All four op-
operatorg9] or by choosing the form of the in-medium func- erators can act on the valence quarks. Also, four operators
tion I1,,(g) which does not couple to the four-quark conden-can act on the pion. There is also a possibility that two of the
sateq17]. However, some of the information appeared to beoperators act on the valence quarks while the other two act
lost in the former case, while there still remained some unon the pions. Followind20] we speak of the “interference
known condensates in the latter case. Anyway, there was rie¢rms” in the latter case.
consistent analysis of sum rules with the inclusion of the To obtain the contribution of the pion cloud, we need the
four-quark condensates until now. On the other hand, therexpectation values of the four-quark operators in pions. The
are some indications that the second term of the rhs of Edatter have been deduced in RE23] by using the current
(12) does not provide the true scale for the in-medium modi-algebra technique. We obtain a remarkable cancellation of
fication of the value of the scalar four-quark condensatesthe pion contributions in the functiol,(q). This cancella-
The calculations, carried out in Refl8] predicted strong tion takes place in any model of the nucleon which treats the
cancellation between the second and the third terms in thpion cloud perturbatively. Thus, the contributions of the four-
rhs of Eq.(12). Also, the arguments based on chiral countingquark condensates come from the terms, determined by the
and supporting the violation of the in-medium factorizationvalence quarks only and from the interference terms.
have been given in Refl19]. We find the contribution of the four-quark condensate to

In the present paper we build and solve the QCD sunthe in-medium modificatiohl,,,—IT, of the functionIl, to be
rules in nuclear matter in the gas approximation with themuch smaller, then one could expect by assuming the “in-
account of the condensates up to the dimensie®. This  medium factorization approximation.” These terms are about
means that we include the terms of the ordeg?lof the OPE ~ 4-5 times smaller than the leading ones of the OPE series.
(recall that the leading OPE terms are of the omgiein g?).  This is consistent with the hypothesis of the convergence of
This requires the inclusion of the four-quark condensate©PE.

UrXuaYu, drXddrYd andul™udrd with T%Y standing for Thus, we obtain three sum rules equations for the func-

the basic 4< 4 matrices, corresponding to the scalar, pseudotions ITi(c?,9), II(e?,s), and IT; (o7, s) introduced in Eq.
scalar, vector, pseudovect@xial), and tensor structures. (4). The in-medium characteristics of the nucleon, i.e., the

In the gas approximation the in-medium expectation value/ector self-energy, and the effective mass’ are the un-
of any operator is knowns of these equations. There are two unknown param-

eters more, i.e., the residue at the nucleon pgfeand the
- R - continuum thresholdA2. All these characteristics will be
(M[A[M) =(0|A|0) + p(N|A|N) (13)  obtained from the QCD sum rules.

The dependence of the rhs of E&) on the parameters,
with |N)y standing for the state vector of the free unpolarizedwhich are expected to be determined, is not lieacept the
nucleon. Since we include only terms linear gnwe can  dependence on,?). Thus, even in the gas approximation the
neglect the Fermi motion of the nucleons of the matter. ThU@eha\/ior of these parameters kah|3 linear on|y at suffi-
we set ciently small values of the density. We consider two ap-

proaches to the problem. In the linearized case we determine
s=4nv? (14) only the linear parts of the in-medium modifications of the
hadron(nucleon and continuum parameters. We construct
in Eg. (3). Having in mind the future extension of the ap- the combination of the sum rules for the functibip,—I1, in
proach, we shall keep the dependencesposing Eq.(14)  such a way, that two of the equations determine the values of

for the specific computations. 3, andm’—m separately. Note that it is possible to write the
We consider symmetric nuclear matter with an equal denequation in which the parameter —m s the only unknown,
sity of the protons and neutromg=p,=p/2. only because the proton has a definite space parity. The third

The nucleon expectation values of the lowest dimensiongquation enables to find the in-medium changes of the pa-
can either be calculated in a model-independent way or exametersd\?=\,;?-\3 and SWP=WA-W5. We express the
pressed through the observables. The calculations of theucleon characteristics, andm"—m in terms of the vector,
four-quark condensates require model assumptions on thgealar, gluon, and four-quark condensates and of the mo-
structure of the nucleon. The complete set of the four-quarknents of the structure functions.
condensates was obtained in RgX0] by using features of In the nonlinearized version we do not assume the in-
the perturbative chiral quark mod¢PCQM). The chiral medium changes of the parameters to be small. The three
quark model, originally suggested in R¢21], was devel- equations for the Borel transformed functiobl(q)
oped further in Ref[22]. In the PCQM the nucleon is treated —II;(g?) enable to obtain the values &f, )\:nz, andvvfn. At
as a system of relativistic valence quarks moving in an efdensitiesp of the order of the saturation valyg the values
fective static field. The valence quarks are supplemented byaf 3, and m"—m appear to coincide within 25% and 10%
perturbative cloud of pseudoscalar mesons, in agreementcuracy with the values provided by the linear version. This
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causes somewhat larger difference in the values of the poten- o L1 opELD
tial energyU(p) which still has reasonable values. f(k%) = 2 Allg ) (19
Inclusion of the four-quark condensates and of the higher
moments of the structure functions diminish the OPE valueat k?>|g? with A denoting the discontinuity. The disconti-
of the nucleon vector self-energy, by about 25% each. As nuity is caused by the logarithmic contributions of the per-
to the scalar self-energyr’ —m, the four-quark condensates turbative OPE terms. The usual ansatz consists in extrapola-
provide contribution of the same order as the leading OPHion of Eq. (19) to all the values ok?, replacing also the
term. However, this contribution is almost totally compen-physical thresholtii/\/f)h by the unknown effective threshold
sated by the account of the higher moments of the structurwg, ie.,
functions. Thus, the value of thre"—m is very close to that . 5 . OPE 1.2
given by the leading order of OPE. lj f(k9) dae=-L ATk )dk2
The structure of the paper is as follows. In Sec. Il we 7l K- 2m Jyz K-
present the sum rules in a form, which is convenient for our Pn 0
analysis. In Secs. Il and IV we calculate the contribution of Thus Eq.(1) takes the form
the dimensiord=6, i.e., the expansion of the nucleon struc-
ture functions and the four-quark condensates. In Secs oP AR 1 (* AIG™HK)
urql onder - ecs. Il E(q2):—N+—.f —2 die. (2D
V-VII we present the solutions in the linearized and nonlin- 0 m-o® 2mi

WCZ) k2 _ q2
earized forms. We discuss and summarize the results in Sec.
VIl and IX. The lhs of Eq(21) contains QCD condensates. The rhs of

Eq. (21) contains three unknown parametarsig, andW3.
The OPE becomes increasingly true when the véigein-
creases. The “pole+continuum” model is more accurate at
A. Sum rules in vacuum the smaller values dtf?. Thus one can expect E@®1) to be
true in a certain limited interval of the values @f. To
r?mprove the overlap of the OPE and the phenomenological
description one usually applies the Borel transform defined

(20)

II. GENERAL EQUATIONS

To make the paper self-consistent, we recall the mai
points of the QCD sum rules approach in vacuiin®]. The
functionITy(g?) (often referred to as “polarization operatpr”

: as
is presented as
2\yn+1 n
d ~
_ - Bf(q?) = lim Q@) (- —) f(q?) = f(M?),

Mo(q?) =i f d*x e @(0[Tj(x)j(0)[0) (15 Qe N d@?
with j being the three-quark local operataften referred to Q*=-¢* M?=Q%n (22
aﬁ lcur.renzt’) with the proton quantum numbers. The usualwith M called Borel mass. It is important in the applications
choice is[2] to the sum rules that the Borel transform eliminates the poly-

. nomials and emphasizes the contribution of the lowest state

i00 = &0 Cy, P00 1757,d00), (18) i ths of Eq.(21)pdue to the relation
whereT denotes a transpose a@ds the charge conjugation 1 -
matrix. The upper indices denote the colors. B =g MM, (23)

2 _ 2
The lhs of Eqg.(1) is approximated by several lowest m-q

terms of OPE, i.e.llo(¢?) ~I15"q?). The empirical data The Borel-transformed form of Eq21) reads

are used for the spectral function Iffy(g?) on the rhs of Eq.

(1). Namely, it is known, that the lowest lying state is the ~ope o 5 op2. 1 (7 I 2M2 x 11OPE/|.2
bound state of three quarks, which manifests itself as a pole Mg (M?) =\{e * o Wzdkz € A TIg7)

in the (unknown point k?=n?. Since the next singularity is

the branching poink?=W5,=(m+m,)?, one can present (24)

and is known as QCD sum rules. Actually, there are two sum
rules for the structure$ld and ITj, of the functionIly(q)
=q, ¥"I13(¢?) +I1Ty(g?) with | standing for the unit matrix.

It appeared to be more convenient to work with E2¢)
multiplied by the numerical factor 32. The two sum rules

Im To(k%) = A§a(K2 = mP) + F(K) 6k = Way)  (17)

with )\ﬁ, being the residue at the nucleon pole. Thus, &3.
takes the form

A2 10" 10 for the nucleon in vacuum can be presented in the fin
gy = Mo Hae g 2 :
m-g* g K-q L3(M2,WG) = Ag(M?), (25)
Of course, the detal'led structure of the spectral derf$k3) . LL(MZWA) = mAy(M?), (26)
cannot be resolved in such an approach. The further approxi-
mations are based on the asymptotic behavior with
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Ao(M2) = \Ze™M?, (27)
Here\3=327"\3,
~ 1 (~
LAMZWE) = 3274 TT*OPEM?) - — f die
2 W
x @ KM HS,OPE(kZ)) ’
~ 1 [~
Lo(M2, W) = 327T4<HO"OPE(M2) - f di
27 W
x g K27 HgopE(kZ)) . (29)

The Ihs of Egs(25) and(26) [2,6] have been obtained by
including the condensates of dimensidr 8, i.e., with the
account of the terms of the orderd/in OPE of the func-
tions TT3°FE

MPE, bEM? 4 1ud
LM% WE) =3 + e * 52" 3
(29
ab 272as , 1
Lo(MZWE) = 2aM*E, - — + ———a’~—5 (30
oM™ o) OETArTRL VRS

with the traditional notationsa=-(27)%0[qq|0)=-27?«,
(we assumed the isotopic invariang@®|uu|0)=(0|dd|0)
=(0[qq|0}), b=(2m)?gy, 13=0.8 Ge\’. HereE; are the func-
tions of the ratioN3/M?: E;=E;(W5/M?). They are given by
the formulas

PHYSICAL REVIEW C 69, 065210(2004)

0.8 GeV < M?< 1.4 GeV
providing the values of the vacuum parameters

A3=1.9 GeP, W5=2.2 GeV (33

if m=0.94 GeV.

B. Sum rules in nuclear matter

The OPE terms of the polarization operator in nuclear
matter

(@) =i f d*x ePM[Tj(x)j(0)[M) (34
contains the in-medium values of QCD condensates. Some
of these condensates vanish in the vacuum, obtaining non-
zero values only in the medium. The other ones just change
their values compared to the vacuum ones.

The spectrum of the functiohl,(q) is much more com-
plicated, than that of the vacuum functibky(g?). However,
[7-10Q the spectrum of the functioH,(q?,s) at fixed value
of s can be described by the “pole+continuum” model at
least until we include the terms of the orgerin the OPE of
Hm(qz,s).

The description of the nucleon pole is based on the gen-
eral expression for the propagator

Gy'=(Gy) -3 (35)
with G(,\’I:(qﬂyf‘—m)‘1 being the propagator of the free
nucleon, while

1
3 :qu'yﬂzq"' ap,u'}"uzp"'zfs (36)

is the general form of the self-energy of the nucleon in

Eosx)=1-€* E;(x)=1-(1+x)e™ (31 nuclear mater. In the kinematics, determined by &).we
obtain
2 *
Ez(x):1—<1 +x+X—)e‘X. Gu=2Z" Qu¥* ~ Py (E,/m) + m (37)
2 N 2 _ 2
q -my
The factor with
In M%/A2 ) . M+3g
L(M?) = —— 2 =, m= : 38
M= 282 (32 1-3, 1-3, 8
accounts for the anomalous dimension, i.e., the most imporlhe new position of the nucleon pole is
tant corrections of the orders enhanced by the “large loga- 2 2. ¥
rithms.” In Eq. (32) A=Aqcp=0.15GeV, while v 2= 8ZM3,m-3, +m= (39)
=0.5 GeV is the normalization point of the characteristic in- " 1+3,/m
volved. Note that the two last terms on the rhs of E2f) il
originate from the four-quark condensat@ul™*uul™ujo) W€
and can be expressed through 'the single té{@hog|0))? S 1 0
only in framework of the factorization hypothe$is 2]. Also, “a ST+ 3, m) .

the last term on the rhs of Eq30) is the six-quark conden-
sate, evaluated in the same approximation.

The matching of the lhs and rhs of Eq®5) and (26)
have been achievd@,6] in the domain

Thus, we shall present the dispersion relations for the
;unctlonsl'['m(qz,s)(l=q,p,|) determined by Eq(4) in the
orm
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zxzb L » AIl"OPHK2 s) fl = — 4°M*Eqp. (51)

2 _
Mmy=* 2 e K- o The functionsv(p), «(p), g(p) are determined by Eqg6),
rules take the form tions depend on the ratM/ﬁq/Mz. Actually, the higher mo-

ments of the structure functions of the nucleon have been
LIMZWA) = A(M?), (42 neglected in Eq(50) and (51).

I1,°P5 P s) = (41)

LP(MZW2) = =3, A(M2), (43 ll. ACCOUNTING FOR x-DEPENDENCE OF THE
OPERATORS. CONTRIBUTIONS OF THE HIGHER
(44) MOMENTS AND OF THE HIGHER TWISTS OF

THE STRUCTURE FUNCTIONS

Li(M2W2) = m' A (M?),

with
X - The calculation of the functiofl,(g?,s) defined by Eq.
Ap(M?) =\ Ze M7, (45 (34) is based on the presentation of the single-quark propa-
Here gator in the medium

(M[Td,(x)q 4(0)[M) = G,5(x) = Z(M[A(0) 7,4 () M) ¥
- {M[T(0)g(X)|M) 8,5 (52

ANZ=N2 - Z (46)

is the effective value of the residue in nuclear matter.

We present the |hs of Eq§42)—(44) as
P 49 with G(X):(iXM’yﬂ)/(27T2X4) being the free propagator of the

quark in the chiral limit. Recall thatdenotes the light quark

o . flavor. In the lowest orders of OPE two of the quarks are
i 2
with £r,(M sz“) standing for the lowest order OPE terms, described by the free propagators and only one of the quarks

2
Ur(M W2m> denoting the contr|but|or; of the higher moments j presented by the second or the third term of the rhs of Eq.
of the structure functions, while;,(M?) provides the contri- 55

bution of thle four-quark condensates. We write, correspond- At x=0 the matrix elements in the second and third terms
ingly, Ly="{o+wy for the Ihs of the vacuum sum rules pre- on the rhs are just the vector and scalar condensates defined

=6 +u + ol (47)

sented by Eqs(25) and(26). We present also
(M2 We) = €,(M2 W) = €6(M% W),

@' (M?) = 0 (M?) — wy(M?), (48)
In these notations the lowest order OPE terms are
MEE 1bM2E,
3= L4/§m " 4 |_4/90m1 €6=0, (p=2aM*Eyp,
(49)
and
€= fIM2 W2 (p) + FAMZ W) g(p),
€P = 2(M2WE)u(p)
€' =1 (M2 W2) k(p), (50)
with
fa=_ 812(3— Mm)M2Eq,, - M Ey,
v 3 mL4/9 !
9= %
g L4/9 ’
o_ 87 AMEy,
fv - 3 L4/9 ’

by Eqgs.(6) and(7). The contribution of the bilocal configu-
rations can be expressed in terms of the higher moments and
twists of the nucleon structure functiof@).

The bilocal operators on the rhs of E§2) are not gauge
invariant. The gauge invariant expression, achieved by sub-
stitution [24]

q'(x) ='(0) +X,D,4 (0) + 5X,X5D,Dsq(0) + -+ (53

with D, standing for the covariant derivatives, provides the
infinite set of the local condensates. The expectation values
depend on the variablgpx) andx?. In the gas approxima-
tion we only need the nucleon matrix elements Ec). For

the vector structure the general form is

6,0 = (N[g(0) v, (9)|N)
= P gl (p.0) + ixma((p00) (59
with g'(x) defined by Eq(53).
Expansion in powers aof? corresponds to the expansion
of the functionI,,(q) in powers ofg?. To obtain the terms of

the orderq it is sufficient to include two lowest terms of
the expansions in powers &f. One can preserj®,25

1
b (X)) = J da € PIf (@) (55)
0

with
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i (@57) = Ty (@) + XM ey (). (56) d'x( 6"+ 6"
TR ST @ = [ e s
Here 7,(a)=f(«,0) is the contribution of the quarks with (aw
the flavori to the a%ymptotics of the nucleon structure func- XET-p, (61)
tion #(a)=73(@)+ 75(a), normalized by the condition contributing to the vector structur@sand p of the polariza-
. tion operator1(q). Here we denoted
f da 7(a) =3 (57) a=a,y". (62
0

Using Eq.(54) we obtain
with the rhs presenting just the number of the valence quarks )
in the nucleon. Thus, expansion of the functigh(px) Iy () =TI3(q) + Iy () (63)
:qbia((px),O) in powers of(px) is expressed through the mo-

ments of the distributionsy,(a). The moments are well with
known—at least, those, which are numerically important. 4i i+ gl
Also, the first moment of the distributior,(e)=£(a) ()= f 8( Zp—= a+X(XD)
+&(a),
1 X (e + ¢§>)é<qx> p
ngo (&a) + &(a))da=-0.3, (58)

C6m (A% g
was calculated in Ref26] by QCD sum rules method. The (o) = o f Fx(¢b+ e p. 64)
moments of the functiomj(a) can be obtained by using the
equations of motiorD,y*q'(x)=mg'(x). Thus, in the chiral We_present each of the termig?” as the sumIl;®
limit [9] +Hz"’1 b) , corresponding to the two terms of the expansron in
powers ofx? in Eq. (56). In particular, the contrrbutrorﬂn,,

<(Pib> - %(soga), which is numerically most important, can be presented as

1 1 _qr2
. . . Hﬁa = _J da A/ ’ I ( ) e
(ebet) = &gha®) = 48, @ {Gmﬂz o 4 4 pain{ =5 el
ﬁ 1 _q/2
JRL o 12 o
(&) =s&a). (59) +3m772fo da q In( A2 )ﬂa( )}P (65)
Here we denoted with 7,(@)=7%@)+ 7% (a), q'=q-pa (see Appendix A

From Egs.(3) and (14) one finds(pg) =(s—-n?-g?)/2. The
1 cutoff A; will be eliminated by the Borel transform.
<f>:f da f(a) (60) Presentingq’?=-(1+a)(Q?+A? where Q*°=-¢°, A%(«a)
0 =a(s-mP—-mPa)/(1+a) we see that the second term of the
expression Irg’2=In g?+In(q'?/g?) does not have a cut, run-
for any functionf(a). ning to infinity, but has a finite cut. This singularity requires
Note that the nonlocality of the scalar condensate, i.e., o& special treatment in QCD sum rules. On the other hand, it
the last term on the rhs of E¢62) does not manifest itself in is the singularity in theu channel of the interaction of the
terms up to 1¢°. The first derivative in(px), as well as all baryon current with the quark of the nucleon of matter. It
the derivatives of the odd order vanish in the chiral limit duecorresponds to the exchange terms on the rhs of the sum
to QCD equation of motion. The next to leading order of therules. In this paper we neglect the nonlocal singularities, thus
expansion in powers of’ vanishes due to certain cancella- claiming for the description of the nucleon in the Hartree
tions[8] as well as in the case of vacuyj for the particu- approximation. However, we include the regular smooth de-
lar choice of the operatgi(x) presented by Eq16). We do  pendence on the higher moments.
not account for the nonlocality of the gluon operators, since The contrlbutronsH and H2a b can be expressed in
the gluon expectation values play the minor role in our sumerms of the moments of the functlomg and éab (see Ap-
rules. pendix A). Since the higher moments of the functroﬁ§a)
Now we are ready to calculate the contributidihg(q) of  as well as the value of are small, we include only the
the nonlocal vector condensate to the polarization operatdowest moments of the functiong(a) and the first moments
II,(q). We expresdl,, in terms of the proton expectation of the funct|ons§* (a)—Eq. (59). The last of the equalities
valuesé (x) (p|q (O)yﬂq (X)|p). Employing the isotopic in- (59 enables us to neglect the contribution of the functions
varrance we obtain &(a).
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Finally, the higher moments and higher twists of the hXY:§(<O|UFXU|O><N|UFYU|N>+<0|UFYu|O><N|UFXu|N>)
nucleon structure functions provide the contributiansto . —y
the lhsL!, of the sum rules—Eq47), +(N[(uTl™u - Ul )i N); (72)

2\ — ([ 2 _ _
UM = UM, PXY = 2((0[d™ o O)(NJUI™u[N) + (O[Tl Yu0)(N[d™ d]N))

87 | 5 3 X
(M) = 3L_4/9m{_ Mo () + > (s - m2)<§>] ’ +(NI(@ d U U)nN)- (72)
Here the lower index “int” means that all the four operators
P(M2) = UP(M? are acting inside the nucleon. The coefficients 5/6 and 2/3
uP(M?) = u\(M9p, on rhs of Eqs(71) and(72) present the weights of the color-

82 antisymmetric states—see Appendix B. These equations are

W(M?) = 4,9{—5(M4E1m—(s—mZ)MZEOm)wa) c9n5|stent.W|th Eq(13) if VYG assume that some of the
3L single-particle operators which compose the operatoan
12 18 act on the vacuum state vector—see disg).

- Em2M2E0m<7/a2> + €m2M2E0m<§> , The contribution of the four-quark expectation values to
the in-medium change of the polarization operator can be
written as

u'(M?) =0. (66)
Here we denotd.=L(M?). Parametert is defined by Eq. (1) 4q = (M) aq = (Mo)aq = %(E Y+ > TXYrXY).
(58). "\ xy XY
(73

IV. CONTRIBUTION OF THE FOUR-QUARK

CONDENSATES Here uyxy and 7¢y are certain matrices in Dirac space. They

can be obtained by using the general expression for the func-
The four-quark expectation values contribute to the OPHion I1,,(q) presented if16]
terms 142 of the functionII(q). Now only one quark is
determined by the free propagatGy(x). Two other quarks
are described by the last term of the two-quark propagator,

(M|Ta,(x)04(0)q,(x)q,(0)[M)

) .
xy = TETF( Yol %5l ") 5V 0¥ vs,

7 R N
— [Gq(x)]2 _ ;1‘<|\/| |al-‘xq| M)Gq(X)Fﬁlg XY = ZYTI’( yaquFY) Y5y TPy, 0= q.Y" (74)
= #M[ATXaM)G()T;, + 1M[AT*qal eAM)T5l),  Here =1 if I'Y has a vector or tensor structure, while
(67) =-1 in the scalar, pseudoscalar and axial cases. The sign is
. V. i ) determined by that of the commutator between mdtband
with T'*Y being the basic X 4 matrices the charge conjugation matr@—Eq. (16).
I'=1, TP=y5 IV=y,, (69) The productsu,/h*Y obtain nonzero values if the matri-

cesI andI'Y have the same Lorentz structure. In this case
i all the structures presented by E§8) contribute to(11,) 4.
A=y, 7. FTZE(YWV_ YV, The productsryy™" do not turn to zero only il has a
vector or axial structure. In the latter caE& should be an

acting on the Lorentz indices of the quark operators. Equa@xial matrix as well. In the former case® can be either
tion (67) is analogous to Eq52) for the single-quark propa- L-orentz scalar or Lorentz vector. =~

gator. We did not display the color indices in B§7), keep- ~ We denoteh™=h", uxx=ux, r""=r", mx=7x for the
ing in mind that the quark operators are color Similar Lorentz structureX andY. The scalar and pseudo-

antisymmetric—Eq(16). One can write an equation similar scalar expectation values are Lorentz scalars. Thus, their
to Eq.(67) for the quarks of different flavors. contributions can be expressed through single parameters.
Introducing the notations The latter is true also for the scalar-vector expectation value

B rSV. We obtain
HX(p) = (M[ur™udlYulMy,  RXY(p) =(M|dI"™* dul"Yu|M) .

(69) Ms= "~ gi Mps= s (TS\/),LL == qu, (75)

N |

we write in the gas approximation
9 P In the other channels the four-quark condensates have more

HX"(p) = HXY(0) + ph®Y,  RX"(p) = RXY(0) + pr*. complicated structure. In the vector and axial channels
(70) D,p
i =ay Vg, + oy BB

The characteristice*” andr*XY can be presented as m
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i =al g, + b AP, (76
Using Eqgs.(71) and(72) we obtain
~_vP(pg) ~ . aP(P9)
mh'=-an8-bi= 5=, ' =and+ bQ\F’

rnz il
(77)
and
nrY = (- 108 - 2bY)g - 2brVM,
me
o= (a2 2 PBL 7
In the tensor channel
h-;rw,pr = a-fll—s;w,pr + b?;t,uv,p'r (79)
with
S,uv,p'r = g,ung'r - g,u/)'ng'
1
t,uV,pT = @(ppppgvr + pvprg,up - p;x,prgvp - prpg,uT) 1
(80)
and
q _ 2p(pa)
hT= bT<— 9,709 81
M h\ "5 + 2 (81)

PHYSICAL REVIEW C 69, 065210(2004)

states. Using the values of the four-quark operators averaged
over pions[23], we find that

> ol ulXuulul ) + 4, TX<7TQ|EFX dul™*u|=*) = 0.
X,a X,a

(83

Due to Eq.(83) we can omit the contributions to the sec-
ond terms of the rhs of Eq§71) and(72) which are caused
by the pions only. Since the terni8|qq|0){=|qq|=) emerge
as the ingredients of the expectation valtegiqqg| =) [23],
the cancellatior{83) influences the first terms of rhs of Egs.
(71) and(72) as well. Thus, in order to calculate the rhs of
Eq.(73) it is sufficient to substitute for the operators with the
same flavor,

h¥ = 2 - 2(0[ul™ ul0)(N| I™u),IN) + (N| (UIUtl ™), N)
(84)

Here the lower indexs” means that the operators act on the
valence quarks only. The lower index “1” corresponds to the
sum of the term in which all four operators act on the valence
guarks and the term in which two of the operators act on the
valence quarks while the other two act on pions. Of course,
the first term on the rhs of E¢84) obtains a nonvanishing
value only in the scalar cad&=1.

The expectation values of the operators of different fla-
vors, providing nonvanishing contributions to the rhs of Eg.
(72) are the scalar-vector condensate,

V=2 §<0|aj|0><N|UyMU|N> + <N|(ajU7MU)1|N> (85

and

The complete set of the four-quark expectation values

X

a’,bX,a’,b’ was obtained in Ref[20] by using the ap-

proach motivated by the perturbative chiral quark model
(PCQM) [21,23. As explained in Introduction, the valence
quarks are treated as the relativistic constituent quarks, whil

rX, = (N|(dl% dul™u),|N), (86)

with X standing for vector or axial structures. In the first term
6n the rhs of Eq(85) the nonlocality of the vector conden-

the sea quarks are approximated by those of perturbatively,ia is included.

treated pions.

There are three types of contributions to the expectatio
values in the approach of RgR0]. All four operators can act

The meaning of the lower index “1” is the same as in Eq.

84).

Using the complete set of the nucleon four-quark expec-

on the constituent quarks. Also, four operators can act on thgiion valueg20], we obtain
pions. There are also the “interference terms” with two of the ’

operators acting on the valence quarks while the other two

act on the pions.

The contribution, corresponding to all four operators act-

_(a0 @ PP, o 1) @
O PR

ing on pions is expressed in terms of the pion expectatioRith the coefficients
values of the four-quark operators. The distribution of the

pion field is determined by the PCQM. The contribution is

1 ey —
(H4q)pi0ns: (2 <7Ta|,LLXUFXU UFXU

:I-6q2 X,a

— _ J
+ Aredl™ dul“xu|7-r“)> —22 82)
aom

T

Aiq =0.25, A’jq =-0.57, ALq =1.90 (88)
and with the conventional notation
a=—(2m)X0[uul0). (89)

We use the valuéO[uu|0)=(-241 MeW)3, corresponding to
a=0.55 Ge\}, employed in Ref[6]. Note thata is just a

with 2 standing for the sum of the self-energy and pion-convenient scale for presentation of the results. It does not
exchange contributions, whilex” denotes the pion isotopic reflect the chiral properties dil 4.

065210-9



E.G. DRUKAREVet al. PHYSICAL REVIEW C 69, 065210(2004)

We can trace the structure of the three terms, composing L'(MZ,VV?WWS) =m A (M?) = mAg(M?) (94)
I1,, determined by Eq(87)—see Appendix C. Thg term ] , . _ .
results mainly as the sum of the expectation value of thavith L'(M2, W5 WE)=L} (M2, W5) ~Lo(M2,W2). The ingre-
product of the four-quark operators, described by the first dients of Eqs(92)—(94) are defined by Eqg25), (26), (42—
(factorized term on the rhs of Eq(84), and that of the prod- (44), and(47).
uct of twou and twod quark operators in the axial channel—  Note that we took into account the anomalous dimensions
Eq.(86). Thep term is determined mostly by the expectation only for the leading OPE termig In g? and Ing?, neglecting
value (86) in the vector channel. The contribution propor- the anomalous dimensions of theqt /IOPE terms.
tional to the unit matriX is determined by the scalar-vector ~ Although the anomalous dimensions of the four-quark
expectation valug85). It is dominated by the firstfactor- ~ condensates are knowW@sg], the anomalous dimension ma-
ized) term on the rhs, while the second term diminished thelrix is not diagonal in the basis determined by &8g). The

value by about 30%. calculation of this matrix in our basis is a separate work
The contributions of the four-quark condensates to the Ihghich will be presented in further publications. We use the
of the Borel transformed sum rulg42)—(44) are nucleon structure functions presented in R2€], which in-
clude the anomalous dimensions of the structure functions.
= wlp L= AL fi We §olve Eqs(92)—(94). in the same interval of the values
@ TONP ONT Paalaq M2 as it has been done in vacuum.

Since EQs.(92—94) are not linear, the behavior of the
s—m? | in-medium parameters is not linear ;even if we limit
fgy=—8m"a, fh=- 8772%*’* faq=—8m’ma. ourselves to the gas approximation. However, if the demsity
is small enough, we can try the linear approximation, assum-
(90) ing the linear dependence of the nucleon characteristics on

Note that we can modify our model approach by employ-the density of matter.
ing a more sophisticated model for the pion. Namely, among
the interference terms contributing to the four-quark conden- v|. SUM RULES IN THE LINEAR APPROXIMATION
sates, there is so-called “vertex interference,” in which one o ) o )
of the vertices of the self-energy of the valence quark is Itis instructive to express the density in units of the ob-
replaced by the four-quark operator. Some of such terms cors€rvable saturation density

tain the matrix elementé0[uysd| =) and<0|ay5u|7r+>, con- po=0.17 fm3=1.3x 103 Ge\P. (95)

tributing to the expectation value(NEySd(j_)/5u|N>, being The parameters which will be determined from the sum rules
connected with the matrix element|dl™ dul™u|N) of all  can be presented as

structured™® by the Fierz transform. On the other hand, they

depend on the values of the quark masses, since P © _ A 2_y*2_y2_, P
Oty )=[-v2 FM2/(m+mg] with M, (F,) denot- 0 gy M =M¥a, A=hn mho=ar
ing the mass(decay constantof pion. In a somewhat
straightforward approach one substitutes the current quark p
masses. Following more sophisticated models of the pions MZ:\N%_VV%:aW_- (96)
[27] one should substitute the constituent quark masses, thus Po
obtaining much smaller values. In the latter approach To obtain the parameters in the linear approximation we set
Z=1 and find
q —_
Al,=-0.11, (91) =%, m=ml+S)+s, N2=A2,

while the values ofA}, and A}, remain unchanged. In this X
case we find the larger cancellation between the first term on Mp=M(1+3)+3,+3=m +3, (97
the rhs of Eq(84) and the contribution coming from the rhs . a0
. . .~ in EQs.(38)—(40) and(46). We sets=4m- in Eq. (39).
of Eq.(86). The latter is dominated by the vector expectation Expansion of the Ihs of Eq§92)~94) provides the equa-

values. tions
an2 a/p2 q 2
V. SUM RULES IN NUCLEAR MATTER (fo(MZ WoJun + F5(M2 WE)g + U (M?) + Wil o
2mA3 9 LAM? WA
Actually, we shall solve the sum rules for the difference of = (ax -(asta,) Zo)e' e aw%,

the operators in nuclear matter and in vacuum, M IWo

(98)
LIMZ,Wa, WE) = A(M?) = Ag(M?), (92
(M, Woop + MR (M?) + M) po

LP(M2W2) = =5, An(M?), (93) = — g \Ze ™M’ (99)
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(M2 W) + o (M2)po e S

2mP\5 s | -

:(a)\m_(as+av) M20>e_mZ/M2 ;3/ [ 3 T
9 L5(M2,W3) -0.1 F

+ap e ™M g, (100

A -
Note that in this form all three equations are tied. One can
build up another set of equations with the functidrfs L'

—-mLY9 andL9 as the Ihs. In this case the unknowaysandag -ozr
are determined from the separate equations. The third equa- A TN SN SN U S PO I

tion determines the values af anday. We introduce 07 0.9 e s
M?, (GeV?)
. . emIM?
L(MZ,VV(Z)):pofL(MZ,VV(Z))T (k=v,0,x), 1.2
0
T bor——
. ) em2/M2 os |
T,(M2W)) = poU'N(MZ,WS)T, '
’ 05 | (b)
, g’ 04 |
T, (M?) = pofye——— (101
Ao 0.2 |
with the functionsf, and f,, defined by Eqs(51) and(90). o
We present 07 08 09 1 1.1 12 1.3 1.4
M2, (GeV?)

TOM2 Wa)uy + mTR(MZWE) + mTPAf, = —a,, (102
FIG. 1. Solution of Eqs(102—104). In (&) the lines 1 and 2
show the Ihs of Eqs(102 and (103 for the self-energies. Line 3

TIK(MZvW%)KN‘ ng(MZ,WS)UN_ ng(M21VV%)gN shows the potential energy. The dashed lines show the constant
_ 2 +T (M2Al — 2 — values, corresponding ta, and a5 on the rhs of these equations.
MTHM?, W) + T, (M Wi = MT M)A, = 2, The line in(b) shows the ratio of the lhs and rhs of H404).
(103
value of o can be extracted from the data on low-energy
TIMZ Wo)oy + TYMZWE) gy + THMZ, W) + TE(MA)AY, «N scattering, being expressed through the observable
. 2_m-a l_a ng(MZ,Wé) 104 term (2 ,n) [30]. The value
BTRI T AW T we o= (45£7) MeV (105

corresponds t&. ,y=64 MeV [31]. We shall present the spe-

: cific values, corresponding tey=8. This value corresponds
as are found from Eqs(102) and (103) and are substituted 10 o =45 MeV and the sum of the light quark massas

into Eqg.(104). The latter determines the valuesagfanday,. +my=11 MeV. There is an uncertainty in the valuesgfdue

Note that there is one more approximation on the rhs 0{0 the errors in determination of the values gy and m
Eqg. (102. Namely, we negl| he val uoo.
d- (102). Namely, we neglected the value +my. We also present the dependence of the characteristics

( (955 MS) vv2< m\Ng of thﬁ nuclleon ofn k:he value ady.
ayl —5-—-m—|=a -2a+ The values of the parameters
Mowg  Tgwg) T e 2149 P

with Aq being defined by Eq27). The characteristica, and

a,=0.108 GeV, a,=-0.178 GeV,
a,=-1.29 GeV, a,=-0.81GeV (106

) . . are obtained by minimization of the relative difference of the
since there is about 80% cancellation between the two termsys and Ihs of Eqs(102~(104) by the chi-square method.
This is due to the positive parity of the nucleon state—seerpg sojution of these equations is illustrated in Fig. 1. Note,
Appendix D. _ that if we construct the equation which is the difference of

The values of the QCD parameters which enter the lhs 0f£qs.(104) and(105), the function oM in the Ihs should be
Eq. (102~(104) are det(_armlned by Eqe6), (8), (10_)’ (65, approximated by the constant valagra,, having the mean-
and (86). The expectation valuay=(N[uu+dd|N) is con-  ing of the potential energy. Such approximation holds with
nected to the pion-nucleon sigma termy by Eq.(8). The  much better accuracy than the separate Ef3) and (105

mb _WAIM2
+4V\/3L4/9>e oM
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for the self-energies. The solutigd06) corresponds to the 1.4 T
values 121 _
3,=108 MeV, m -m=-178 MeV, B e
D% W2 os | 77
— =-0.67, —=-0.37. (107 | 37
¥ W
Although the sets of Eq998)—«100) and (102—104) are o4t
mathematically identical, a procedure of matching of the two 02 f
sides of the equations may lead to somewhat different solu- e
tions. Applying the same procedure of minimization to the 67 08 09 1 11 12 1.5 1.4

set of Egs. (981000 we find a,=0.108 GeV, as= M, (GeV’)

-0.254 GeV, a;)\:—l.Gl 2Ge\?, aW:—O..Ql Ge\'?. Thus the FIG. 2. Curves 1, 2, and 3 show the |hs to rhs ratios of Egs.
parametersé\” and oW are determined with somewhat (g3, (94 correspondingly, at the values of the nucleon and con-
larger uncertainties than the self-eneiXjy tinuum parameters given by E€L13).

As we noted at the end of Sec. IV, our model approach to
the calculation of the four-quark condensates can be modi- b_ p_
fied by using more sophisticated models of the pif2ig, C,=-0.095, Cy=0.094.

..e., by the account of the constituent quark masses. Usingquationg110) and(111) reproduce the values &f, andm’
the value ofA}, given by Eq.(91), we obtain from Eqgs. provided by Eqs(107) with the accuracy of 15% and 6%

(102104, correspondingly.
3,=108 MeV, m -m=-203 MeV,
2 VIl. BEYOND THE LINEAR APPROXIMATION
Nz =-0.71, W =-0.41 (108 Now we do not assume the linear dependence of the

nucleon parameters on the dengityWe find the valueg,,

at the saturation densiy=p,. Thus, this change of the value m’, \.?, andW2, which minimize the difference between the

oy results in the change of the nucleon parameters by ledbs and rhs of Eq992)—(94). The consistency of the Ihs and

than 15%. _ rhs is illustrated by Fig. 2. At the saturation dengitypy we
Note that the functionﬁ'}(Mz) defined by Eq.(101) (j obtain

=v,0,k,U,w;i=q,p,|) depend onM? rather weakly. Thus,

o 3,=150 MeV, m -m=-200 MeV,
approximating

_ _ (113
T(M) =C], (109 AZ=1.25 GeV, W2 =211 GeV.

we can replace in the |hs of Eql02—(104) the functions The two last numbers correspond to the relative shifts
T/(M?) by the constant coefficients!. Numerically the most ~ S\?/\§=-0.35 andsW?/W;=-0.03. Thus the linear approxi-
important functionsT?(M?) andT! (M?) can be approximated mation is true ap = p, with the accuracy of about 25% for
by the constant values with the errors of about 4% and 8%the vector self-energy and about 10% for the scalar one. The
The largest errors of about 25% emerge in the averaging dfnear approximation overestimates the shift of the effective
the functionsT! . This solves the problem of expressing the threshold.

in-medium change of nucleon parameters through the values Recall, that we presented the numerical results<er 8.

of the condensates The dependence on the value if is shown in Fig. 3. The
density dependence of the nucleon parameterg,at8 is
R b\ P shown in Fig. 4.
3, == (Cun+ mQG + mCAL) 00’ (110 Using Eq.(91) for the value ofAj, we obtain the results
which are close to those presenteé by Ed.3),
m’ - m= (Clxn ~ MCluy - mClgy - MGl + CLA, 3,=142 MeV, m'-m=-223 MeV,
p . (1149
- ij,Aﬂq);)- (111 \2=1.24 GeV, W2 =2.09 GeV.

Note that the difference between the linear and nonlinear
solutions has a strong effect on the value of the nucleon

CJ=-0.062, CJ=0.011 GeV', C!=-0.067, potential energy
U(p) =3,(p) + m (p) —m, (115

which is about —40 MeV and -70 MeV for the solutions

113 and (114 at the phenomenological saturation pgint
Cl =-0.064 GeV,CP=-0.090 GeV, (112 (:pj) (119 P J s

The coefficients on the rhs of Eq410) and(111) are

Cl=-0.074, C\.=-0.042 GeV,
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T T T T T T 1 ~1_ T T
T W/
08 | m/m T TSN
0.6 .
0.4 |
0.2 | %,/m [
0.2 5,/m e
O 7 5 9 0 11 12 0 2 el
Kn 0 02 04 06 08 1 12 14
P/Po
FIG. 3. Dependence of the solutions of E¢82)—(94) on the o
value of the nucleon expectation valug at p=p,. The values of FIG. 5. Sum-rule predictions for the dependence of the nucleon
WS, )\g are given by Eq(33). parametersn’ /m and2,/m on the ratiop/ py at ky=8. The curves
correspond to the successive inclusion of more complicated conden-
VIIl. DISCUSSION sates. Dashed lines, only expectation values of the operators of the

- . lowest dimensiorg(0)y,q(x=0) andq(0)q(x=0) and of the gluon
It is instructive to follow how the values of the nucleon operators(a/ mG2(0) are included[see Eq.(50)]. Dotted lines,

self-energies change, while we include the various contrlbul-tocal four-quark condensates are addEds. (85) and (86)]: solid

tions (.)f the Ins of the sum rules. The _solutlons of the generq nes,x dependence of the vector condensétepressed in terms of
equationg92)+94) are illustrated by Fig. 5. At the saturation .o cleon structure functions included.

density p, the vector self-energ¥, and the effective mass
m" are 340 MeV and 750 MeV correspondingly, if only the
termsl/—Eq. (50) are included in_} of Eq.(47). One can see
from Fig. 5 that the higher moments of the structure func
tions and the four-quark condensates subtract abo
100 MeV each from the value df,. On the contrary, the p )
two contributions tan” cancel to Iarvge extent, with the four- scalar self-energy —m=-140 MeV. Thus, we find for the
quark condensate subtracting about 200 MeV, and the de-Otent'al ene_rgyU>0_ if x=8. However, the value o_fn
ments of the structure functions adding about this value. decreases with:, while the_ vector self-e_nergy pracpcally
We come to similar results in the linear approximationdoes not change. We find that <0 if «>10, ie.,
Sec. VI. The moments of the structure functions and the’=\~ 22 MeV—Eq.(109. . . .
four-quark condensate subtract 60 MeV and 110 MeV from The authors of Refl16] parned out t.he detailed Ianalys!s
the lowest dimension valug, =270 MeV. The OPE value of of the nucleon self-energies depending on the in-medium
the scalar self-energyn’ —m is —140 MeV. The four-quark values of the four-quark condensates_. They qonsu_jered the
condensates and the moments of the structure functions a&)lCD sum _rules_, based on the dispersion relations in energy
100 MeV and +100 MeV, correspondingly. Qo at|q| being fixed. The authors of RefL6] found that the

Turning to the role of the anomalous dimensions, we noté’allues of the self-energies depenq strongly on the value of
’ the scalar-scalar condensate, while the dependence on the

that their inclusion into the moments of the structure func- .
values of the other four-quark expectation values appeared to
———— be negligible small. Actually, they presentéM|qqqq|M)
1 LA —(0[qqqg|0) = 2f(0[qq|0)(N[qq|N)p, and studied the depen-
dence of the nucleon parameters on the valuef.oOur
model calculations correspond fe=0.14. It was found in
Ref. [16], that the values & f<0.3 provide the results,
% which are consistent with the nuclear phenomenology. We
o can deduce from Fig. 1 of Ref16], that there values are
04 | m'/m=0.65 andX,/m=0.28 for f=0.14. Neglecting all the
5/m other four-quark condensates, we find the close values
0.2 | m'/m=0.67 and3,/m=0.25. Note, however, that our ap-
proach is based on the dispersion relations in another vari-
0 0 07 02 06 08 1 12 132 a_lble,i.e., i_n q?, with the relativi_stic pair_energg_being kept
0/ 5% f|>§ed. (This e;na_bles us to a_v0|d the singularities, conn_ected
with the excitations of mediuni8—1Q.) In our case the in-
FIG. 4. Density dependence of the nucleon and continuum pafluence of the vector-scalar expectation value is stronger than
rameters beyond the linear approximationgt8. The horizontal  in Ref. [16]. For example, if we assume factorization ap-
axis corresponds to the density of the matter, related to the phenonproximation for the vector-scalar condensate, our value of
enological saturation value. the nucleon effective mass is about twice smaller than the

tions lead to minor changes of several MeV of the values of
vector and scalar self energies. Neglecting the anomalous
LHimensions of all the in-medium contributions increases the
values of the vector self-energy,=230 MeV, and of the

0.8

0.6
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value obtained in Ref[16]. The values of the vector self- parameters in terms of the in-medium values of QCD
energy are still close in the two approaches. condensates—EQ6110) and (111).

In the paperf17] the calculations of the four-quark con-  The terms, containing the four-quark condensates provide
densate were avoided by a specific choice of the functiothe corrections of the order 20—25 % to the leading terms of
IM.(q). The Ilimits 160 MeW 3, ,<310MeV and the OPE of the functiodl,,~II,, which are determined by
0.62 Ge\<m" <0.83 GeV have been obtained. In REg]  the local vector and scalar condensates. This is consistent
the authors got rid of the four-quark condensates, applyingvith the hypothesis about the convergence of the OPE series.
the differential operators. They found the vector and scalafhe four-quark condensates diminish the OPE value of the
fields to be about 220 MeV and —350 MeV in the gas ap-vector self-energy,, by about 25%. The scalar self-energy
proximation. m’—mis more sensitive to the four-quark expectation values.

These results are consistent with each other and with thiclusion of these condensates makes the OPE value' of
results of nuclear physics calculations. Various approaches inm about 80% larger. Inclusion of the nonlocality of the
the nuclear physics studi¢see, e.g., Ref.32]) provide the vector condensate, which manifests itself in terms of the
values between 180 MeV and 350 MeV for the vector fieldshigher moments of the structure functions subtracts 25%
and between -200 MeV and —400 MeV for the scalar fieldsmore from the value oE,, and almost totally compensates

There is agreement with the earlier results in some othethe contribution of the four-quark condensates to the shift
points. The 30% reduction of the vector field, caused bym —m. Thus the value ofn"—m appears to be very close to
nonlocality of the vector condensate, was found in Refsthe one, determined by the lowest orders of OPE.

[8,9]. The strong reduction of the nucleon pole residue was The contribution of the four-quark condensate to the vec-
obtained in Refg[8,9,164. Also, it was first noted in Ref16] tor self-energyy, is caused mainly by the vector-vector
that the shift of the continuum threshold is very small. structure. The contribution to the scalar parameter m is

of more complicated origin, with the scalar-vector, scalar-
scalar, vector-vector, and axial-axial terms being numeri-
cally important.

We analyzed QCD sum rules in nuclear matter by taking AS it was noted earlief9,10], the QCD sum rules can be
into account terms of the order qf In ¢ In g2, and 142 of ~ Viewed as a connection between the exchange of uncorre-
the operator product expansion. The consistency of the lowatedqg pairs and the exchange of strongly correlated pairs
est OPE terms in QCD sum ruldg—10,14—1% with the with the same quantum numbeirmesons This results in a
nuclear phenomenology was known for a long time. How-certain connection between the Lorentz structures of the in-
ever the lack of information on the four-quark condensatesmedium expectation values and of the nucleon propagator. In
contributing to the terms of the order ¢ was the main the leading orders of OPE the vectscalay structure of the
obstacle for the further development of the approach. propagator is determined by the vectscalay expectation

In this paper we studied the sum rules, treating the Qcryalue. The scalar-vector four-quark condensate is determined
condensates in the gas approximation and included the cofainly by the contribution which is proportional to the vec-
tribution of the four-quark condensates, expressed througi’ expectation value. On the other hand, it contributes to the
the nucleon expectation values. The latter were obtained ifcalar Lorentz structure of the nucleon propagator. In the
Ref. [20] by employing results of the perturbative chiral meson-exchange picture such terms can be explained by the
quark model[21,27. We included also the higher moments complicated structure of the nucleon-meson vertices. This
of the nucleon structure functions which contribute to thecan be instructive for model building of nuclear forces.
terms of the order Im? and 142 Taking into account the ~ The values of the nucleon parametérsand m —m are
four-quark condensate we included all Lorentz structures. (at least qualitativelyconsistent with those, obtained earlier

We took into account the nonlocal structure of the vectorin framework of nuclear physid$2] and of QCD sum rules
condensate, which manifests itself through the higher mo@pproach[7-9,14-17. The four-quark condensates, as well
ments of the structure functions. We include corrections@s the higher moments of the structure functions provide
which have the smooth dependence on these moments. Hol@'ge contributions to the nucleon parameters. This future
ever, we did not include the nonlocal singularities in the accounting for the main radiative corrections is expected to
channel. Such singularities correspond to the exchange intefdake the results more accurate.
action between the nucleon and the matter. Thus, our ap- Another direction of the development of the approach is
proach corresponds to Hartree description of the in-mediuni® 9o beyond the gas approximation. The presentation of the
nucleon. The nonlocal structure of the scalar condensaté€sults, especially Eq111) for m" enables to make the next
manifests itself in the higher orders of OPE. step, studying the self-consistent set of equations for the

Considering only the linear changes of the nucleon pahucleon effective mass and the quark condensates, as sug-
rameters we obtained a linear combination of the QCD sungested in Ref[10].
rules equations in which the nucleon effective massand
the vector self-energ},, are the only unknown parameters.
A more detailed analysis going beyond the linear approxima-
tion shows that this approach works well at densities close to We thank V. E. Lyubovitskij for discussions. Two of us
the saturation valu@=p,. In this approach we solved the (E.G.D. and V.A.S. are grateful for the hospitality of Uni-
problem of expressing the in-medium change of the nucleowersity of Tubingen during their visit. The work was sup-
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with AP standing for the S(B) Gell-Mann matrices
APPENDIX A Tr \PA7=287. o _
The factorization approximation for the quarks of differ-
The contributionX;,(q) expressed by Eq65) can be ob-  ent flavors is
tained by direct substitution of E¢h3) into Eq.(55) and by

using the formula <M|@‘u%€3d'§/|M> :<M|@‘u2'|M><M|J;d§'|M> (B3)
4 , ’ 4 with «, 3, v, being the Lorentz indices, and only the first
J d—g((ax)(bx)ei(q'” = }[( b) + Z(aq—?gbq)} f d—g(ei(q"‘) term on the rhs of EqB2) contributes. Using also E@13)
X 6 q X we come to Eqs(71) and(84).
(A1) The factorization approximation formula for the quarks of

the same flavor, e.gg't=qf2=u is
for any vectors a” and “b.” Thus, all the contributions to the

function X,, are expressed through the integral (M[TEu3 WU M) = (M[UBuZ [M)(M[uuS | M)
X g7 - (MIGUS [MYM[U3UE (M) (B4)
f =gl in-g Y+ e (A2) | - A
X 8 Thus in the factorization approximation

Here the dots denote the terms which will be killed by the (MUl utl™u/M) = &[Tr IX. Tr 1Y = 3Tr(I*TY) ]
Borel transform. This leads to E(65). — 5
To establish the connection between Ep) and the two X((M[uu[M)) (BS)
terms on the rhs of Eq41) note, that the rhs of Eq65) and
consists of the terms of the forfsee Eq(61)] o - . -
(M| 2 Ul™\Pu - ulAPUIM) = = STRICTY) ((M[uu|M)) 2.
P

1
X:f da IN(Q? + AXa))f(a)

o (B6)

) 1 Thus, for the factorized part of the expectation value of the
=InQ j de f(a) color-antisymmetric operatof' 'V is (IX=T"Y=1)
0
N fl ta &A@ 3) (MU Wi M) = C((M[uu|M))? (B7)
o 2 with
=2(1-L)_L1(_4 =5
The first term on the rhs contains the standard logarithmic C= 3(1 12) 2( 9) 6" (B8)

factor containing the cut, running to infinity. It is described Empjoying also Eq(13) we come to Eqgs(70) and (83).
by our “pole+continuum” model in a usual way. The second

term contains a finite cut. Such terms need special treatment.
The cut of the second term describes the singularities in the
u channel, caused by the nonlocal structure of the vector Here we present for illustration the calculation of the most
condensate. They correspond to the exchange terms on thiportant contributions of the four-quark condensatesjto

rhs of the sum rules. We neglect such contributions, thustrycture. Using Eq(73) we find for the contribution of the
coming to the Hartree description of the nucleon in nucleatirst term on the rhs of Eq84),

APPENDIX C

matter. .
1\_ 5 (OJuu|O)
APPENDIX B = <_ 5)2 6 [{p|(uu),|p)pp
To obtain the coefficients of the firglactorized terms in +(n|(uu),|n)pp]. (C1)

the rhs of Egs(83) and(84), recall that we need the expec- Thjs is equivalent to
tation values of the color-antisymmetric operators

5(0[uu|0)
! ! Hl = . J
TNVhf2 = (;qharXqf? . g2 1) (8,0 Soby — Saby Spar) 4

(B1) with J:fZ(x) J(x)d3x, while (x) is the renormalized PCQM

with f,, f, standing for the quark flavors. The dots denote theVave function of the constituent quark, normalized by the
normal ordering of the operators,a’,b,b’ represent the condition [(X)yo(X)d®=1. Using the value)=0.54[22],
color indices. It is convenient to present one finds

(C2
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OJuul0 BII®=-8m°mY . c7
__06<| U ©3 P (€7
Here
The interval contribution is determined mostly by the ex- 1
pectation values of the operatod§* dul*u. This happens Y= 3 ‘<§> - ‘mz<77> (C8
just due to the large numerical coefficients on the rhs of Eq.
(76). Using Eq.(76) we find the contribution to be The first term, that is the pure local contribution, would give
Y=3.0, the higher order contributions subtract 0.32 from this
2 1maV_ mcA oV oA P value. Thus, the factorized term would provuéé =2.68.
I1%= (= 10a; - 62~ 207 ~ 20;) o (C4 Account of the second term on the rhs(86) Ieads toA4q
=1.90.
Substituting the valuesar -0.0743, a*=0.0843, b’
=0.31s3, b/'=0.063 (g9=241 MeV) [20], we obtain T12= APPENDIX D
-0. 5(183/‘12) and Present vacuum sum rules given by E@9) and(30) in
the form

3
M +112=017°%. (C5) Py
q 53(M2,W§)=Ao+f ——ZdW?,
. . _ w2 W2
A more accurate calculation, accounting for the internal 0
contributions of the operatorsl™*uul*u leads to the first 2
term on the rhs of Eq(88). _ _ S (M2, W) = mA, + 0 W2 (D1)
The contribution tg structure is obtained in similar way. W2 WP
Turning tol structure, note that the contribution comes from ) o
- with Ag(M?) determined by Eq(27). In the combination

the scalar-vector condensadeiﬁyﬂu—Eq. (85). The first / a which is i h o h . .
(“factorized”) term on the rhs provides the contribution o~ Méq which is just the projection on the negative-parity
component of the lowest state the contribution of the residue

. d*x ) vanishes
3= = X4(x “(x))€@(0[ddj0)p  (C6) el M
€h-med= f —V\;’z \/\72 dW2. (D2)
with 6(x) defined by Eq(54). If ¢%(x)=¢"(0), we obtain wg \d J
oo (pq) The condition
a(€h-med) 93"
9 W? WP

Taking into account the dependencejfon x we actually
include the higher moments and twists of the nucleon strucat W2= VV2 means that we cannot imitate the contribution of
ture functions. Proceeding in the same way as in Sec. Ill, we¢he negat|ve parity pole of the ordéri on the rhs of Eq.

obtain for the Borel transform dfl® (D2) by changing the value oh2.
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