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The pN→KY and KY→KY reactions are studied using a dynamical coupled-channel model of meson-
baryon interactions at energies where the baryon resonances are strongly excited. The channels included are:
pN, KL, and KS. The resonances considered are:N*fS11s1650d ,P11s1710d ,P13s1720d ,D13s1700dg;
D*fS31s1900d ,P31s1910d ,P33s1920dg; L*fS01s1670d ,P01s1810dg S*fP11s1660d ,D13s1670dg; and K*s892d. The
basic nonresonantpN→KY andKY→KY transition potentials are derived from effective Lagrangians using a
unitary transformation method. The dynamical coupled-channel equations are simplified by parametrizing the
pN→pN amplitudes in terms of empiricalpN partial-wave amplitudes and a phenomenological off-shell
function. Two models have been constructed. Model A is built by fixing all coupling constants and resonance
parameters using SUs3d symmetry, the Particle Data Group values, and results from a constituent quark model.
Model B is obtained by allowing most of the parameters to vary around the values of model A in fitting the
data. Good fits to the available data forp−p→K0L ,K0S0 have been achieved. The investigated kinematics
region in the center-of-mass frame goes from threshold to 2.5 GeV. The constructed models can be imbedded
into associated dynamical coupled-channel studies of kaon photo- and electroproduction reactions.

DOI: 10.1103/PhysRevC.69.065208 PACS number(s): 11.80.Gw, 13.75.2n, 24.10.Eq

I. INTRODUCTION

Investigation of kaon-nucleon and nucleon-hyperon inter-
actions with hadronic probes has a long history in strange-
ness physics. However, the interactions involving an addi-
tional relevant kaon-hyperon channel have received marginal
attention, because of lack of data. More recently, strangeness
reactions are also receiving considerable attention in associ-
ated strangeness production with incident photon and elec-
tron beams. With the advent of facilities such as JLab,
ELSA, Spring-8, and GRAAL, copious and high precision
data on meson electromagnetic production on both nucleon
and nuclear targets are becoming available. Measurements of
the strangeness associated production channels focus on the
energy region ofEg

labø2.5 GeV, corresponding to the total
center-of-mass energy Wø2.3 GeV, which cover the baryon
resonances region. A result of our earlier work[1] on the
gp→K+L reaction showed that multistep processes, due to
the coupling with thepN channel, can have as much as a
20% effect on the total cross section. To investigate very
recent strangeness production data, it is necessary to extend
that work, which was limited to theKL channel, to include
all of the KS channels:gp→KY, with K;K+,K0 and Y
;L ,S0,S+. Accordingly, a dynamical coupled-channel in-
vestigation of these processes requires realistic models to
describepN→pN,KY, and KY→KY processes. The pur-
pose of this paper is to report on our progress in this direc-
tion.

The importance of developing coupled-channel ap-
proaches to meson-baryon reactions is summarized as fol-
lows:

(1) Such an approach is required for a proper extraction
of fundamental resonance decay properties, which are ulti-
mately to be predicted by basic quark dynamics. In short,
information about baryon resonance properties can only be
reliably extracted within the context of an appropriate reac-
tion theory. The importance of this interplay between extrac-
tion of fundamental information and the need for a consistent
reaction theory has been emphasized by Sato and Lee[2] in
the pion sector. Here we extend their investigation to the
kaon sector.

(2) Impressive amounts of high quality data from JLab
[3], ELSA [4], LEPS [5], and GRAAL [6] offer us the op-
portunity to pin down the underlying reaction mechanism
and to study the role and/or properties of intervening baryon
resonances. Such an effort is a prerequisite for any attempt to
search for missing resonances[7]. Combining models from a
chiral constituent quark formalism[8,9] with a coupled-
channel approach, as presented in this work, is expected to
provide reliable insights into the elementary strangeness
photo- and electroproduction reactions.

In recent years, coupled-channel effects on meson-baryon
reactions with strangeness production have been investigated
using two approaches. Kaiseret al. [10] applied a coupled-
channel approach with chiral SUs3d dynamics to investigate
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pion- and photon-induced meson production near theKY
threshold. Although their recent results[11] include p-wave
multipoles, and thus reproduce data slightly above the
threshold region, their chiral SUs3d dynamics model cannot
provide the higher partial waves that are important in de-
scribing the data at higher energies. Similar approaches have
also been taken in Refs.[12–15]. Given the relevant W range
mentioned above, their simplified dynamics represents of
course only a first step. Indeed, comparisons with thepN
→KY data clearly show that SUs3d models of Refs.[10,15],
even whenp-waves interactions are included[11], greatly
miss fitting the differential cross sections: theoretical predic-
tions produce slopes opposite to that required by the data.

The second coupled-channel approach used in the litera-
ture to investigate photon- and meson-induced reactions is
based on using effective Lagrangians along with aK-matrix
method, developed by the Giessen Group[16–19]. In the
K-matrix approach, all intermediate states are put on-energy
shell and hence possibly important off-shell dynamical ef-
fects are not accounted for. The advantage of thisK-matrix
approach is its numerical simplicity in handling a large num-
ber of coupled channels. However, the extractedN* param-
eters may suffer from interpretation difficulties in terms of
existing hadron models, as explicitly demonstrated in an in-
vestigation[2] of the D resonance.

In this paper, we present a dynamical coupled-channel
model in which the meson-baryon off-shell interactions are
defined in terms of effective Lagrangians. This off-shell ap-
proach is achieved by directly extending existing dynamical
models[2] for pN scattering and pion photoproduction, to
include KY channels. The main feature of our approach is
that the strong interaction matrix elements ofpN→KY and
KY→KY transition operators are derived from effective
Lagrangians using the unitary transformation method of Ref.
[2]. This derivation marks our major differences with chiral
SUs3d coupled-channel models mentioned above[10–15]
since it allows one to include all relevant higher partial
waves and our approach is also applicable at energies way
above threshold. The dynamical content of our approach is
also clearly very different from the on-shellK-matrix
coupled-channel models[16–19].

It is necessary to indicate more precisely, and within a
more general theoretical framework, the differences between
our and other approaches. Similar to the well-studied meson-
exchange models ofNN andpN scattering, we also start with
relativistic quantum field theory. With a model Lagrangian,
there are two approaches for deriving models of meson-
baryon scattering. The most common approach[20] is to find
an appropriate three-dimensional reduction of the ladder
Bethe-Salpeter equation of the considered model Lagrangian.
Meson-baryon interactions are then identified with the driv-
ing terms of the resulting three-dimensional scattering equa-
tion; such as the Blankenbecler-Sugar[21] or Gross [22]
equations. A fairly extensive study of the three-dimensional
reductions forpN scattering is given by Hunget al. [23].
Extending such reduction methods to derive coupled-channel
equations withstable two-particle channels is straightfor-
ward. In fact, theK-matrix coupled-channel equations em-
ployed in Refs.[16,17] can be derived along this line if one
further neglects that the principal-value parts of the meson-

baryon propagators, which account for the off-shell dynam-
ics. The scattering equations used in SUs3d chiral models of
Refs.[10–13,15] can also be derived from the ladder Bethe-
Salpeter equation using a procedure similar to a three-
dimensional reduction, although this simplification is not
spelled out explicitly by the authors. In Ref.[14], the Bethe-
Salpeter equation is solved directly, but only for the simpli-
fied case that the interaction kernel is of separable form due
to the use of contact interactions. The difficulties in solving
the Bethe-Salpeter equation, even with the ladder approxi-
mation, are well documented[24].

Alternatively, one can construct models of meson-baryon
interactions by deriving an effective HamiltonianHeff de-
fined in a chosen channel-space from a specific model La-
grangian. The scattering equation within the considered
channel-space is then governed by standard scattering theory

SabsEd = da,b − 2piTabsEd, s1d

TabsEd = kauHI + HI
1

E − H0 − HI + ie
HIubl, s2d

wherea ,b represent the relevant channels,S is theS-matrix
and T is the scattering operator. Here we have definedHeff
=H0+HI, with H0 denoting the free Hamiltonian andHI de-
fining the interactions between considered channels. This ap-
proach forpN scattering and pion photo- and electroproduc-
tion reactions has been pursued by Sato and Lee[2]. They
applied the unitary transformation method of Refs.[25,26] to
derive Heff in a D % pN% gN channel space. The essential
idea of the unitary transformation method we adopt is to
eliminate unphysical vertex interactionsMB→B8 with mM
+mB,mB8 from the original field theory Hamiltonian(which
can be constructed from a starting model Lagrangian using
the standard canonical quantization procedure) and absorb
their effects intoMB→M8B8 two-body interactions of the
resulting Heff. For the pN scattering in theD region, the
resulting effective Hamiltonian of the Sato-Lee model is

Heff = H0 + vpN,pN + GD↔pN, s3d

wherevpN,pN is the nonresonant interaction and theD exci-
tation is described by the vertex interactionGpN↔D. With the
Hamiltonian Eq.(3), it is straightforward(as explained in
Ref. [2]) to show that the solution of Eq.(2) can be cast into
the following form:

TpN,pNsEd = tpN,pNsEd + tpN,pN
R sEd, s4d

where the nonresonant scattering operatortpN,pN is defined
by the nonresonant potentialvpN,pN,

tpN,pNsEd = vpN,pN + vpN,pNGpNsEdtpN,pNsEd, s5d

where thepN propagator is defined by

GpNsEd =
1

E − Epskd − ENspd + ie
, s6d

with Easpd=Îp2+ma
2. The resonant amplitudes(in the

center-of-mass frame) is
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tpN,pN
R sEd =

ḠD,pN
† sEdḠD,pNsEd
E − mD

0 − SDsEd
, s7d

with

ḠD,pNsEd = GD→pN + GD→pNGpNsEdtpN,pNsEd, s8d

SDsEd = ḠpNsEdGpNsEdGpN→D. s9d

It is clear from the above equations that the resonant operator
tR contains off-shell effects due to the nonresonant interac-
tion vpN,pN. Such off-shell effects must be accounted for in
order to determine from the data thebarevertexGD↔pN. For
our later discussions, we now point out that the matrix
elements of the effective Hamiltonian, Eq.(3), can be calcu-
lated from the usual Feynman diagrams once one specifies
the time components of the propagators of intermediate
states. For example, thes exchange(Fig. 1) of vpN,pN

derived from the LagrangianL=gsNNc̄NsxdcNsxdfssxd
+gsppfpsxdfpsxdfssxd is of the following form [with the
normalization defined by Eqs.(1) and (2)]

kp8k8uvpN,pN
ssd upkl

=
gsNNgspp

s2pd3

1
Î2Epsk8d

Î mN

ENsp8d
Is

1
Î2Epskd

Î mN

ENspd
,

s10d

with the propagator defined by

Is =
1

2
S 1

fEpsk8d − Epskdg2 − q2 + ms
2 + ie

+
1

fENsp8d − ENspdg2 − q2 − ms
2 + ie

D , s11d

where q=k −k8=p8−p is the three-momentum transfer. In
this Hamiltonian formulation, all particles are on their mass
shell, but the energies are not conserved during the collisions
and henceEpsk8d−EpskdÞENsp8d−ENspd in general. Thes
propagator form, given in Eq.(11), is not an arbitrary choice,
but is rigorously defined by the selected unitary transforma-
tion. It is important to note that the matrix element, Eq.(10),
is independent of the collision energyE of Eqs.(1) and (2).
If other methods, such as the Tamm-Dancoff method, are
chosen, the resulting effective Hamiltonian could be energy
dependent, which then leads to nontrivial gauge invariant
problems in applying the model to study meson photo- and
electroproduction reactions. The energy independence of the

resultingHeff is an important feature of the unitary transfor-
mation method developed in Refs.[2,25]. In this work we
extend Eqs.(3)–(9) to includeKY channel and higher mass
nucleon and hyperon resonances. The starting Lagrangians
will be given later. The resulting effectivevpN,KY andvKY,KY
can be calculated from Feynman amplitudes with the rules
illustrated in Eqs.(10) and (11).

Our goal is to construct models for describing all avail-
able data of differential cross sections and polarization ob-
servables of thepN→KY reactions in the total center-of-
mass energy range ofW<1.3–2.3 GeV. These data[27–32]
have been obtained a few decades ago with low intensity
beams and therefore are not very extensive and not of high
quality. Nevertheless, we will show that they give sufficient
constraints on constructing models ofKY interactions.

In Sec. II, we present the dynamical coupled-channel
equations and explain our strategy in solving these equations.
The results are given in Sec. III. Section IV is devoted to
Summary and Conclusions.

II. DYNAMICAL COUPLED-CHANNEL EQUATIONS

In this work, we consider a coupled-channel formulation
obtained by extending Eqs.(3)–(9) to include theKY chan-
nels. Specifically, we are interested in solving

Ta,bsEd = ta,bsEd + ta,b
R sEd, s12d

wherea ,b;pN,KY. The nonresonant scattering operator is
defined by

ta,bsEd = va,b + o
d =pN,KY

va,d Gd sEdtd,bsEd, s13d

where the propagators are defined by

GpNsEd =
1

E − Epskd − ENspd + ie
, s14d

GKYsEd =
1

E − EKskd − EYspd + ie
, s15d

with Easpd=Îp2+ma
2. The resonant amplitude(in the center-

of-mass frame) is

ta,b
R sEd = o

Ni
*

ḠNi
* ,a

† sEdḠNi
* ,bsEd

E − mNi
*

0 − SNi
*sEd

, s16d

with

ḠNi
* ,asEd = GNi

*→a + o
d =pN,KY

GNi
*→d Gd sEdtd,asEd, s17d

SNi
*sEd = o

d =pN,KY

ḠNi
*→d sEdGd sEdGd→Ni

* . s18d

In momentum space, the matrix element of Eq.(13) in the
center-of-mass frame is

FIG. 1. Graphical representation fors-exchange pN
interaction.
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tbasp8,p,Ed = vbasp8,pd + o
d
E dp9vbdsp,p9d

3
1

E − EMd
sp9d − EBd

sp9d + ie
tdasp9,p,Ed,

s19d

and the matrix element of the dressed vertex interaction Eq.
(17) is

ḠNi
* ,asp,Ed = GN*→aspd + o

d
E dp8GNi

*→dsp8d

3
1

E − EMd
sp8d − EBd

sp8d + ie
td,asp8,p,Ed.

s20d

The integrals in the above equations extend over the relative
momentump, the off-shell dynamics is hence included in
determining the scattering amplitudes. TheK-matrix
coupled-channel equation limit used by others can be ob-
tained from the above equations only if one keeps the on-
shell partf−ipdsE−EMd

sp9d−EBd
sp9dg of the propagators.

Our first task is to define the nonresonant potentials for
solving the coupled-channel equation(19). In theKL thresh-
old energy region, it is reasonable to derive the potentials
involving the KY channel using effective Lagrangians with
SUs3d symmetry. On the other hand, it is not clear how to
derive pN potentialvpN,pN for energies well above thepN
threshold region. We thus circumvent derivingvpN,pN and
instead use a phenomenological procedure to include its ef-
fect using empiricalpN amplitudes[33]. Accordingly, the
main outcome from our calculations are scattering operators
for pN→KY and KY→KY transitions, which are also
needed for dynamical coupled-channel studies ofgN→KY
reactions.

To proceed, we first derive from Eq.(13) the following
equations:

tKY,KYsEd = VKY,KYsEd + VKY,KYsEdGKYsEdtKY,KYsEd,

s21d

tKY,pN = vKY,pN + tKY,KYsEdGKYsEdvKY,pN, s22d

where the effectiveKY potentialVKY,KYsEd is defined by

VKY,KYsEd = vKY,KY + vKY,pNfGpNsEd

+ GpNsEdtpN,pNsEdGpNsEdgvpN,KY, s23d

with

tpN,pNsEd = vpN,pN + vpN,pNGpNsEdtpN,pNsEd. s24d

We see that the operatorsTKY,KY andTKY,pN can be obtained
by solving Eqs. (21)–(23) using the matrix elements of
vKY,KY, vKY,pN and tpN,pN. We will calculatevKY,KY, vKY,pN
from effective Lagrangians. On the other hand, we will use a
phenomenological procedure to set

tpN,pNsp8,p,Ed =
Fsp8d
Fsp0d

TpN,pN
VPI sEd

Fspd
Fsp0d

, s25d

where p0 is the on-shell momentum defined byE=ENsp0d
+Epsp0d, TpN,pN

VPI sEd is the empiricalpN amplitudes taken
from the dial-in program SAID[34], and we have introduced
an off-shell function

Fspd = S Lc
2

Lc
2 + p2D2

. s26d

The matrix elements ofvpN,KY and vKY,KY are calculated
from effective Lagrangians by using the unitary transforma-
tion method of Ref.[2]. The effective Lagrangians we con-
sider are given in Appendix A. The resulting potentials are
the following:

vKY,pN = vND
+ vYE

+ vK* + vYE
* , s27d

vKY,KY = vND
+ vJE

+ vr + vJE
* , s28d

whereJ is a baryon with the strangenessS=−2 and isospin
I =1/2, and J* its excited states;K* indicates possible
strange vector mesons includingK*s892d and K1s1270d; r
here stands for all possible vector mesonssr ,v ,fd.

However, not every term in Eqs.(27) and (28) is com-
puted in our calculation for a variety of reasons. We do not
considerJ andJ* exchange terms,vJE

andvJE
* , because of

their unknown coupling strength. The vector meson
t-channel exchange terms,vr andK1s1270d, are also not in-
cluded because of their unknown couplings as well as the
duality hypothesis[35]. Since on the one hand, our formal-
ism can handle allN* resonances with spinø3/2, in thes
channels, and on the other hand, contributions from higher
spin N*s are found[36] to be negligible in the processes
studied here, it should be a reasonable approximation to keep
only the t-channel contributions fromK*s892d. Due to the
above considerations, the potentials used in this work are

vKY,pN . vND
+ vYE

+ vK* s892d + vYE
* , s29d

vKY,KY . vND
, s30d

as illustrated in Figs. 2 and 3. Their matrix elements can be
calculated from the usual Feynman diagrams except that the
propagators of intermediate particles are defined by the pro-
cedures illustrated in Eqs.(10) and (11). For Y* resonance
exchange termsvYE

* , the width is included in the propagators
using the following Breit-Wigner form:

GsÎsd =
ÎG

Îs− MR +
i

2
G

. s31d

In Appendix B, and in the next section, we show how we
determine the coupling constants associated with the result-
ing potentials using SUs3d symmetry and constituent quark
models. To solve the coupled-channel equations(21)–(24),
the matrix elements of the potentials must be regularized by
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introducing form factors, given in Eq.(28). The cutoffLc of
these form factors are adjusted to fit thepN→KY data
[27–31].

The calculation of the resonant termstpN,KY
R and tKY,KY

R

using Eqs.(16)–(18) requires bare form factorsGN* ,pN and
GN* ,pN from a hadron model. The number of the resonances
we need to consider is rather large and such calculations are
not very certain at the present time. To make progress, we
postpone that more fundamental approach and simply adopt
the following Breit-Wigner form:

ta,b
R sEd = o

N*

ḠN* ,a
*

ḠN* ,b

E − EN* +
i

2
GN*

stotd
, s32d

with the total width

GN*
stotd = o

a

uḠN* ,au2. s33d

We will only consider the known resonances and hence the
above resonant amplitudes can be evaluated using the infor-
mation provided by the Particle Data Group[37]. For poorly

determined decay strengthsḠN* ,pN and ḠN* ,KY, we use a
SUs3d quark model[38,39] to fix them.

III. RESULTS AND DISCUSSION

In this section we will first use the formalism developed
in the previous sections to build models by fitting the exist-
ing differential cross section and hyperon polarization asym-
metry data for the following processes:

p−p → K+L, s34d

p−p → K+S+, s35d

in the center-of-mass energy region ranging from threshold
to W<2.3 GeV. We then present our predictions based on

this coupled-channel model for the following reactions:

K+L → K+L, s36d

K+L → K+S+, s37d

K+S+ → K+S+. s38d

To our knowledge no empirical or theoretical information
about the aboveKY→KY reactions is available, although it
constitutes an important ingredient in strangeness physics,
especially in dynamical coupled-channel studies of hyperon
photoproduction reactions, as discussed in Sec. I.

To proceed, we need to construct the driving termsvKY,pN,
Figs. 2(a)–2(d) and vKY,KY, Fig. 3(a), for solving Eqs.(21)
and (22).

To produce numerical results for observables, the first step
is to select a set of resonances relevant to the reaction
mechanism, to be included in the calculation. To keep the
number of adjustable parameters reasonable, we need some
guidance from independent investigations on the relevant re-
action mechanism, or in other words, on the intervening
resonances in differents-, u-, and t-channels. As mentioned
in previous sections, our final aim is to apply this formalism
to study associated strangeness production using electromag-
netic probes. We therefore consider resonant states that were
found to be important in this realm(see, e.g., Refs.[9,40,41])
(though our formalism allows us to introduce any nucleon
and/or hyperon resonance with spinø3/2). These reso-
nances are:s-channel:

N* :S11s1650d,P11s1710d,P13s1720d,D13s1700d,

D* :S31s1900d,P31s1910d,P33s1920d.

u-channel:

L* :S01s1670d,P01s1810d,

FIG. 2. Graphical representation of the poten-
tials in pN→KY, (a) direct nucleon polevND

, (b)
hyperon exchangevYE

, (c) strange vector meson
exchangevK* , and (d) hyperon resonance ex-
changevYE

* .

FIG. 3. Graphical representation of the poten-
tials in KY→KY, (a) direct nucleon polevND

, (b)
J exchangevJE

, (c) vector meson exchangevr,
and (d) J resonance exchangevJE

* .
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S* :P11s1660d,D13s1670d.

t-channel:K*s892d.
Notice that the above set ofs-channel resonances is in line

with the findings of the Giessen Group[18]. The next step is
to choose the coupling constants for various meson-baryon-
baryon vertices of the mechanisms considered as shown in
Figs. 2(a)–2(d) and Fig. 3(a).

We will construct two models. The first model, henceforth
called model A, is obtained by fitting the data with most of
coupling constants fixed by combining SUs3d-symmetry,
with central values reported in the Particle Data Group[37],
and the predictions from constituent quark models[38]. In
the second model, henceforth called model B, in fitting the
data, we let the rather poorly determined coupling constants
used in model A, vary within the ranges permitted by the
estimated broken SUs3d-symmetry or by the uncertaintiessdd
corresponding to the ranges reported in the PDG[37]. More
precisely, those adjustable parameters are allowed to vary
within ±2d. Accordingly, the fixed and adjustable parameters
within our models can be classified into three sets, as ex-
plained below.

Set I: The coupling constantspNN, pNN* , and KNY*

channels can be found in the literature. They are determined
from using either the SUs3d predictions or from the partial
decay widths listed by the Particle Data Group[37]. Those
coupling constants are listed in Table I and are used, without
any adjustments, in constructing both models A and B.

Set II: This set includes the following coupling constants:
KYN, KYN* , KYD* , pYY, and pYY* . The coupling con-
stants,fKYN and fpYY, needed for evaluating the Born terms,
Figs. 2(a)–2(c), are not very well known. So we adopt the
predictedcentral valuesusing the SUs3d flavor symmetry
with the well known [42] pion-nucleon coupling constant
fpNN as input. For the coupling constants associated with the
decay ofN* , L* , andS* into pY or KY, we use the results of
constituent quark models(QM) [38,39], which have modest
success in predicting baryon resonances and their properties.

Using theN* →KY,pN andY* →pY,K̄N decay amplitudes
tabulated in Refs.[38,39], the resonance coupling constants,
as defined by the effective Lagrangians given in Appendix A,

can be determined straightforwardly. These coupling con-
stants are listed in the fourth column of Table II and are used,
with no adjustments, in our construction of model A. In
model B, they are treated as adjustable parameters, within
±2d as explained above.

Set III: The set includes three categories, and were treated
as free parameters in constructing both models A and JLab,
as listed in Table III.

(i) The cutoff parameterssLs,Lu,Lt ,andLpNd were al-
lowed to vary between 500 and 1200 MeV/c.

TABLE I. Set I coupling constants taken from the
SUs3d-symmetry predictions or PDG partial decay widths[37], as
discussed in Appendix B.

Notation Resonance Coupling Value

fpNN 0.997

N4 S11s1650d1/2− fpNN4 0.272

N5 D13s1700d3/2− fpNN5 0.608

N6 P11s1710d1/2+ fpNN6 0.093

N7 P13s1720d3/2+ fpNN7 0.246

L3 S01s1670d1/2− fKNL3 0.078

L5 P01s1810d1/2+ fKNL5 0.194

S1 P11s1660d1/2+ fKNS1 0.183

S4 D13s1670d3/2− fKNS4 1.054

TABLE II. Set II coupling constants inpN→KY and KY
→KY. For model A, resonance pseudovector couplings are taken
from either the prediction of constituent quark models(QM) [38,39]
or PDG partial decay widths[37], for model B the values are ex-
tracted from our minimization procedure.

Notation Resonance Coupling Model A Model B

fKLN −0.950 −0.610

fKSN 0.270 0.120

fpSL 0.741 0.010

fpSS 0.710 0.010

N4 S11s1650d1/2− fKLN4 −0.204 −0.254

fKSN4 0.0 −0.200

N5 D13s1700d3/2− fKLN5 −0.665 −1.179

fKSN5 0.0 −0.468

N6 P11s1710d1/2+ fKLN6 0.372 0.286

fKSN6 −0.162 −0.237

N7 P13s1720d3/2+ fKLN7 −0.508 −0.969

fKSN7 0.507 0.461

D1 S31s1900d1/2− fKSD1 0.0 −0.156

D2 P31s1910d1/2+ fKSD2 0.0 −0.200

D3 P33s1920d3/2+ fKSD3 −0.190 −0.010

L3 S01s1670d1/2− fpSL3 −0.094 −0.200

L5 P01s1810d1/2+ fpSL5 −0.111 −0.010

S1 P11s1660d1/2+ fpLS1 0.0 −0.064

fpSS1 −0.098 −0.200

S4 D13s1670d3/2− fpLS4 0.977 0.252

fpSS4 2.110 0.230

TABLE III. Set III parameters, as extracted from minimizations
for models A and B.

Parameter Symbol Model A Model B

Cutoffs Ls 500.0 500.0

Lu 730.1 1200.0

Lt 1200.0 1199.6

LpN 1017.8 1199.9

Off-shell X 1.178 1.484

K*NY couplings fK*NL
V 0.437 0.367

fK*NL
T −2.161 −2.676

fK*NS
V −0.286 −0.291

fK*NS
T 0.031 0.186
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(ii ) The off-shell parameter for describing the propagator
of the spin 3/2 resonances, as introduced in Ref.[41]. For
simplicity, we assume this off-shell parameter,X in Table III,
is the same for all three spin 3/2 resonances considered.

(iii ) The K*NY coupling constants for evaluating
K* -exchange mechanism illustrated in Fig. 2(c).

At this point, we wish to summarize the content of our
models A and B, and discuss briefly the extracted free pa-
rameters. In the fitting procedure, to save computation time,
we have used a database of about 500 points for differential
cross sections and polarization asymmetries in the whole en-
ergy range of interest. However, the resulting fits are com-
pared with the complete database, and a representative set of
data are shown in the rest of this section.

Model A. As described above, only parameters listed in
Table III are varied in constructing model A. All coupling
constants for defining potentialsvKY,pN andvKY,KY are fixed,
as listed in Table I and the fourth column of Table II. We
note that the resulting cutoff parameters for model A, Table
III, are reasonable, while theK*NY parameters so determined
remain to be examined theoretically. It is clear that model A
can only give a very qualitative description of the data. The
model A gives a reducedx2 of 3.28.

Model B. As mentioned above, the parameters in Table I
are taken from the literature and are not adjusted. The cou-
pling constants listed in Table II for model A come from the
predictions of exact SUs3d-symmetry and/or taking the cen-
tral values of the partial decay widths listed by PDG[37].
Since the SUs3d-symmetry is only an approximate symmetry,
the predicted values could have uncertainties of up to about
30%. Furthermore, the ranges specified by PDG for most of
partial decay widths of resonances are very large. To obtain a
better fit to the data and to shed light on the relative impor-
tance of different resonances, model B is constructed by also
varying the parameters listed in Table II in fitting the data.
However, the ranges of these parameters are constrained by
about 30% deviation from exact SUs3d values or by ±2d for
central values taken from PDG. The resulting parameters of
model B are compared with the values of model A in Tables
II and III. It is clear that, according to our study, the central
values for the relevant parameters as reported in literature,
are not the most appropriate ones. However, the extracted
values, allowed to vary within the ranges established by
other sources, lead to a significantly reduced, improvedx2. It
goes down by roughly a factor of 2: model B leads tox2

=1.77.
In the following, we compare the results of models A and

B with relevant data.

A. Differential cross section for p−p\KŒL ,KŒSŒ processes

Differential cross section at nine center-of mass total en-
ergies are shown in Figs. 4 and 5 for the reactionsp−p
→K+L ,K+S+, respectively.

For the p−p→K+L channel, the model B(full curves)
results are comparable to those of the model A(dashed
curves) up to W<1.7 GeV, and aboveW<2.0 GeV. In the
intermediate energy range, the model B gives a better ac-
count of the data. However, fromW<1.8 GeV up, both

models fail to reproduce the far backward angle data.
For thep−p→K+S+ reaction, the situation is different: the

model B shows a significantly better agreement with the data
up to W<2.1 GeV. At the two highest energies, models A
and B produce comparable results and they both miss the
bump around cossud<0.3.

The main gross features of our results might be explained
by the ingredients of the reaction mechanisms in our models.
The K+L channel is dominated by theN* resonances. In our
models the included resonances are aroundM <1.7 GeV. To
cure the above short comings, we probably need to include
higher mass resonances, especially theP13s1900d. This hy-
pothesis is endorsed by the results reported in Ref.[18]. In
the case of theK+S+ channel, theD resonances embodied in
our models are aroundM <1.9 GeV and ensure a much bet-
ter reproduction of the data.

We have noticed that by loosening the constraints on the
adjustable parameters(±3d instead of ±2d), the model-data

FIG. 4. Differential cross section for the reactionp−p→K+L.
The curves are from models A(dashed curves) and B(full curves).
Data are from Refs.[27,29].

FIG. 5. Differential cross section for the reactionp−p→K+S+.
The curves are as in Fig. 4. Data are from Refs.[28,31].
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agreement gets improved for theK+L channel, especially at
backward angles. However, we feel that the extracted values
are less meaningful.

Interpretation of recent data from JLab[3] and ELSA[4]
within a constituent quark model is in progress[9]. That
work will allow us to determine the most pertinent reso-
nances with respect to strangeness electromagnetic produc-
tion. Afterwards, the present formalism will be used to imbed
those resonances into planned future coupled-channel inves-
tigations of associated strangeness photo- and electroproduc-
tion.

B. Polarization asymmetry for p−p\KŒL ,KŒSŒ processes

The quality of the final state hyperon polarization asym-
metry data, shown in Figs. 6 and 7 is clearly very poor.
Nevertheless, as already noticed by the Giessen Group[18],
the inclusion of those data in the fitting procedure has a

significant effect on the extracted coupling constants re-
ported in Tables II and III.

The main features of the polarizedL asymmetries(Fig. 6)
are that they are large and positive up toW<1.8 GeV, and
above they show nodal structures. The model B shows a
better agreement with the data at lower energies. The short-
comings at higher energies could again be attributed to the
lack of higher massN*s in our models.

The most noticeable differences between models A and B
are in the shapes of theS− polarization asymmetry forW
ø1.8 GeV (Fig. 7). The higher massD resonances seem to
play a less important role here than in the case of the differ-
ential cross sections(Fig. 5).

C. Role of the nucleon resonances in the reactions
p−p\KŒL ,KŒSŒ

It is interesting to identify the role of nucleon resonances
within our model B. To do so, we have turned off the
nucleon resonances, one at a time, by putting the relevant
couplings in Table II to zero, and have calculated the observ-
able without any readjustment of the other parameters. The
excitation functions, at three angles, for the cross sections
and the polarization asymmetries are depicted in Figs. 8 and
9 for the reactionsp−p→K+L andK+S+, respectively.

The notation used in the figures for the resonances are
those in Table II; namely,N4:S11s1650d, N5:D13s1700d,
N6:P11s1710d, andN7:P13s1720d.

The most striking feature here is the angular dependence
of the role played by each resonance.

In theK+L channel(Fig. 8, left column), the effects on the
differential cross sections due to theS11s1650d goes from
highly dominant at forward angles to marginal at large back-
ward angles.

FIG. 6. L-polarization asymmetries for the reactionp−p
→K+L. The curves are as in Fig. 4. Data are from Refs.[27,30].

FIG. 7. S-polarization asymmetries for the reaction
p−p→K+S+. The curves are as in Fig. 4. Data are from Ref.[31].

FIG. 8. Excitation function at three angles for the reaction
p−p→K+L from threshold up toW=2.3 GeV. The curves are from
model B (full curve), and the same model without one nucleon
resonance:N4 (dotted), N5 (dashed), N6 (long dashed), and N7
(dash-dotted).
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For theP-wave resonances,P11s1710d andP13s1720d, we
observe strong effects at extreme angles, which also reveal
large interference phenomena.

TheD-wave resonance,D13s1700d, has a significant effect
only below<1.7 GeV and show a sharp increase at interme-
diate and large angles. The possible role played byD-wave
resonances has not been investigated in other recent works
[11,18]. The polarizedL asymmetries(Fig. 8, right column),
show very different behavior. At the forward angles, different
resonances have comparable effects. Around 90+, the spin
3/2 resonances,D13s1700d and P13s1720d, produce impor-
tant interference effects. Finally, at large backward angles, all
resonances show significant contributions below<1.9 GeV.

The results of a similar study on the role of the resonances
for the processp−p→K+S+ are depicted in Fig. 9.

Here theS11s1650d resonance has a significant effect on
both observables and at all angles. TheP11s1710d shows
small contributions in the whole phase space for both observ-
ables, while the otherP-wave with higher spin,P13s1720d,
produces significant effects at forward angles in the differen-
tial cross section belowW<2.0 GeV, and even more at large
backward angles. The role played by theD-wave resonance,
D13s1700d, in the differential cross section increases with
angle and becomes comparable to that ofS11s1650d at large
backward angles. Finally, the polarization observable does
not show any significant sensitivity to theP13s1720d and
D13s1700d resonances.

Such a partial-wave decomposition has been also per-
formed by the Giessen Group[18] on the total cross-section
observables, leading also to small contributions from theP11
resonances. Effects found there for the other three reso-
nances are compatible with our findings.

Finally, we have performed a similar decomposition for
the D resonances included in our model B. However, no
noteworthy effect was observed.

D. Total cross section for the reactionsp−p\KŒL

and p−p\KŒSŒ

Total cross-section data were not included in our fitting
database. Our results, shown in Fig. 10, are, hence, postdic-
tions.

For the reactionp−p→K+L the two models give compa-
rable results, and model B does slightly better at lower ener-
gies.

In the case ofp−p→K+S+ channel the situation is very
different: model B gives a significantly better agreement
with the data than does model A.

Both features reflect our comments about the differential
cross sections, showing that the method used to extracted
total cross-section data from differential cross-section mea-
surements is sufficiently reliable.

E. Total cross sections ofKY\KY processes

Using the models we have constructed, one can predict
the KY→KY amplitudes. These amplitudes, although pres-
ently inaccessible experimentally, are needed for dynamical
coupled-channel investigations of the electromagnetic pro-
duction of hyperons. As an example, in Fig. 11 we show the
predicted total cross sections for theK+L→K+L, K+L
→K+S+, andK+S+→K+S+ processes.

For each of the models, we show two curves:(i) contri-
butions due only to the resonant terms(dotted curve for
model A and dash-dotted for model B), (ii ) full calculation
(dashed curves for model A and full curves for model B).

We see that the predictions from model A and model B
are strikingly different. Within model B, the resonant terms
play a more significant role in all three channels. Moreover,
the magnitude of the total cross sections are higher by
roughly a factor of 4 for model B than for model A.

We therefore expect that the more realistic model B will
generate very different final stateKY scattering effects on
kaon electromagnetic production reactions. Our investiga-

FIG. 9. Same as Fig. 8, but for thep−p→K+S+ channel.

FIG. 10. Total cross section for the reactionsp−p→K+L (upper
box), andp−p→K+S+ (lower box). Curves are the same as in Fig. 4.
Data are from Refs.[27,29–31].
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tions in this direction will be published elsewhere.

IV. SUMMARY AND CONCLUSIONS

Based on an extension of the dynamical model of Ref.[2],
we have developed an approach to construct the coupled-
channel models for describing thepN→KY and KY→KY
reactions at energies where the baryon resonances are
strongly excited. As a start, we only considerpN and KY
s;KL ,KSd channels. Furthermore, the resonances which
were found to be important in thepN→KY and kaon pho-
toproduction reactions are included in the investigations.
Thus the models we construct can be consistently used to
also investigate kaon electromagnetic production reactions.
Undoubtedly, our objective is very limited compared to a
more rigorous coupled-channel approach, which necessarily
includes more channels, such aspD, rN, andvN. However,
our approach can be used to include additional nucleon and
hyperon resonances with spinø3/2.

Given that no attempt is made to also fit thepN elastic
scattering data, we solve the coupled-channel equations with
a simplification that thepN→pN scatteringt-matrix ele-
ments are parameterized in terms of the empiricalpN
partial-wave amplitudes and a phenomenological off-shell
function. On the other hand, the basic nonresonantpN
→KY and KY→KY transition potentials are derived rigor-
ously from effective Lagrangians using a unitary transforma-
tion method.

We have constructed two models. The first one(model A)
is built by assuming that all coupling constants and reso-
nance parameters can be fixed using SUs3d-symmetry infor-
mation from the Particle Data Group, plus values from a
constituent quark model. The second model B is obtained by

allowing most of the parameters to vary around the values of
model A in fitting the data. Good fits to the available differ-
ential cross section and spin observable data forp−p
→K+L ,K+S+ have been achieved. The investigated kinemat-
ics region in the center-of-mass frame goes from threshold to
2.5 GeV.

The constructed models will facilitate coupled-channel
studies of kaon photo- and electro-production reactions. In
particular, the predictedKY→KY amplitudes, which are in-
accessible experimentally, are needed to predict coupled-
channel effects, such as that due to thegN→KL→KS tran-
sition. Our effort in this direction will be published
elsewhere.
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APPENDIX A: LAGRANGIANS

The effective Lagrangians used in this work are given in
this appendix for reference.

1. Born term interaction

The 0−meson−1/2+baryon interactions are usually de-
scribed using either pseudoscalar(PS) or pseudovector(PV)
coupling,

LMBB8
sPSd = − igMBB8c̄g5c8f + H.c., sA1d

LMBB8
sPVd = −

fMBB8

mp

c̄g5gmc8]mf + H.c. sA2d

If baryonsB andB8 are on-shell, thenL
MBB8
sPSd andL

MBB8
sPVd are

equivalent, and the pseudoscalar couplinggMBB8 and
pseudovector couplingfMBB8 are related by

fMBB8

mp

=
gMBB8

MB + MB8
. sA3d

In this work, the pseudovector coupling is used for bothp
andK sectors. Using SUs3d symmetry as discussed later, we
can express the interaction Lagrangians in each particle ba-
sis. For example, the Lagrangian for thesK+pLd vertex can
be written as

LK+pL
sPVd = −

fKLN

mp

sp̄g5gmL]mK+ + L̄g5gmp]mK̄−d,

where the field operators are denoted by the particle’s iden-
tity.

FIG. 11. Total cross section for the reactionsK+L→K+L (upper
box), K+L→K+S+ (middle box), and K+S+→K+S+ (lower box).
Curves come from only resonant terms for models A and B(dotted
and dash-dotted, respectively, and full A and B models(dashed and
full curves, respectively).
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2. SU„3… symmetry

The notation used to described the particle fields is de-
fined here:

N ; Sp

n
D, N̄ ; sp̄,n̄d, sA4d

K ; SK+

K0D, K̄ ; sK−,K0d, sA5d

t · p ; S p0 Î2p+

Î2p− − p0 D , sA6d

t · S ; S S0 Î2S+

Î2S− − S0 D, S̄ · t ;S S̄0 Î2S̄−

Î2S̄+ − S̄0
D ,

sA7d

D ;1
D++

D+

D0

D−
2, D̄ ; sD̄++,D̄+,D̄0,D̄−d. sA8d

Suppressing the factorsg5gm]m for PV coupling(or ig5 for
PS coupling), the explicit interaction Lagrangians in the
SUs3d sector for octet baryons are:

LpNN = −
fpNN

mp

N̄tN · p

= −
fpNN

mp

sp̄pp0 − n̄np0 + Î2p̄np+ + Î2n̄pp−d,

LpLS = −
fpLS

mp

sL̄S + S̄Ld · p

= −
fpLS

mp

sL̄sS+p− + S0p0 + S−p+d

+ sS̄+p+ + S̄0p0 + S̄−p−dLd,

LpSS = i
fpSS

mp

sS̄ 3 Sd · p

= −
fpSS

mp

fsS̄+S+ − S̄−S−dp0 + sS̄0S− − S̄+S0dp+

+ sS̄−S0 − S̄0S+dp−g, sA9d

LKLN = −
fKLN

mp

fL̄sK̄Nd + sN̄KdLg

= −
fKLN

mp

fsp̄K+ + n̄K0dL + L̄sK−p + K̄0ndg,

LKSN = −
fKSN

mp

fS̄ · sK̄tNd + sN̄tKd · Sg

= −
fKSN

mp

fS̄0sK−p − K̄0nd + Î2S̄+K0p + Î2S̄−K−n

+ sp̄K+ − n̄K0dS0 + Î2p̄K0S+ + Î2n̄K+S−g.

For interactions involving theD, which is a decouplet baryon
with isospin 3/2, the Lagrangians are

LpND =
fpND

mp

fD̄mTN + N̄T†Dmg · ]mp,
fpND

mp
F− D̄++p+p

+ D̄+SÎ2

3
p0p −Î1

3
p+nD + D̄0SÎ1

3
p−p

+Î2

3
p0nD + D̄−p−n + H.c.G ,

LKSD =
fKSD

mp

fD̄mT · S]mK + ]mK̄S̄ ·TDmg

=
fKSD

mp
F− D̄++S+K+ + D̄+SÎ2

3
S0K+ −Î1

3
S+K0D

+ D̄0SÎ1

3
S−K+ +Î2

3
S0K0D + D̄−S−K0 + H.c.G ,

sA10d

where the four-vector indices and derivatives are suppressed
in the second lines. The couplings in Eqs.(A9) and (A10)
can be related using SUs3d symmetry[43].

3. Baryon resonance interaction

The general interaction Lagrangians for baryon reso-
nances(for spin-1/2 and 3/2) are described here. As in the
Born terms, the explicit form for each SUs3d sector can be
obtained by making appropriate substitutions in Eqs.(A9)
and (A10),

L
MBRs1

2
±d

sPSd
= − gMBRR̄Gcf + H.c.,

with G ;H ig5 for Rs 1
2

+d
1 for Rs 1

2
−d ,

sA11d

L
MBRs1

2
±d

sPVd
= −

fMBR

mp

R̄Gmc]mf + H.c.,

with Gm ;Hg5gm for Rs 1
2

+d
igm for Rs 1

2
−d ,

sA12d

where the pseudovector couplingsfMBR and the pseudoscalar
couplingsgMBR for resonanceRs 1

2
±d are related by

fMBR

mp

=
gMBR

MR ± MB
.
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LMBRs3
2

±d =
fMBR

mp

fR̄mGQmnsZdc]nw + c̄GQnmsZdRm]nf†g,

sA13d

with G ;H 1 for Rs 3
2

+d
ig5 for Rs 3

2
−d ,

andQmnsZd ; gmn − SZ +
1

2
Dgmgn. sA14d

4. Vector meson interaction

For vector meson interactions, the corresponding
Lagrangians are:

LK*YN
sVd = − gK*LN

V sN̄g mLKm
* + K̄m

* L̄g mNd − gK*SN
V sN̄g mt · SKm

*

+ K̄m
* S̄ · tg mNd,

LK*YN
sTd = −

gK*LN
T

ML + MN
sN̄smnL]mKn

* + ]mK̄n
*L̄smnNd

−
gK*SN

T

MS + MN
sN̄smnt · S]mKn

* + ]mK̄n
*S̄ · tsmnNd,

LK1YN
sVd = − igK1LN

V sN̄g mg5LKm
* + K̄m

* L̄g5g mNd

− igK1SN
V sN̄g mg5t · SKm

* + K̄m
* S̄ · tg5g mNd,

LK1YN
sTd = −

igK1LN
T

ML + MN
sN̄smng5L]mKn

* + ]mK̄n
*L̄g5smnNd

−
igK1SN

T

MS + MN
sN̄smng5t · S]mKn

* + ]mK̄n
*S̄ · tg5smnNd.

APPENDIX B: COUPLING CONSTANTS

1. Hadronic couplings

In Sec. III A, we give the interaction LagrangiansLMBR
for spin-1/2 and 3/2 baryon resonancesR s=N* ,D* ,Y*d,
where B=N,D ,Y and M =p ,K. The coupling constants in
Eqs. (A11)–(A14) can be derived from partial widthsG in
the decayR→MB. The derivation is straightforward, and the
formulas are given here.

For resonances withJP=1/2±,

G1/2± = Ciso
gMBR

2

4p

EB 7 MB

MR
q,

=Ciso
f MBR

2

4p
SMR ± MB

mp
D2EB 7 MB

MR
q, sB1d

and for resonances withJP=3/2±,

G3/2± = Ciso
f MBR

2

12pmp
2

EB ± MB

MR
q3, sB2d

whereEB is the energy of the final baryon, andq denotes the
three momentum of the meson and baryon in the rest frame
of the decaying resonance.Ciso is the isospin factor, and
Ciso=3 for decaysN* →pN andN* →KS, andCiso=1.

2. KYN and pYY couplings

In this section we summarize the situation with respect to
the free parametersfKLN, fKSN, fpSL, and fpSS (see Table II).

Given that in the literature pseudoscalar couplings are
more commonly used, we would like to make clear the rela-
tion between those and the pseudovector ones used in our
work.

3. Expressions

Actually the issues related to the use of pseudoscalar(PS)
versus pseudovector(PV) couplings have been discussed by
several authors(see, e.g., Refs.[44,45]), but at the present
time there is no strong argument to prefer one to the other.

Using de Swart convention, we have the following rela-
tions for the PS couplings:

gKLN = −
gpNN

Î3
s3 − 2aDd, sB3d

gKSN = gpNNs2aD − 1d, sB4d

gpLS =
2
Î3

aD gpNN, sB5d

gpSS = 2s1 − aDdgpNN, sB6d

with aD=D /D+F the standard fraction ofD and F cou-
plings.

The relations between PV and PS couplings are(see, e.g.,
Refs.[45,46]:

fpNN =
mp

2MN
gpNN, sB7d

fKLN =
mK

MN + ML

gKLN, sB8d

fKSN =
mK

MN + MS

gKSN, sB9d

fpLS =
mp

ML + MS

gpLS, sB10d

fpSS =
mp

2MS

gpSS. sB11d

Expressions relating PS and PV couplings forKNN* and
KNY* , for S andP resonances, can be found in[45].
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4. Numerical considerations

The central values of two main KYN couplings are deter-
mined using Eqs.(B3) and(B4), with aD=0.644(Ref. [47]),
and gpNN=14.11 (Ref. [42]). For those couplings, the al-
lowed ranges in the fitting procedure are in line with the
findings of a recent work[48] based on generalized
Goldberger-Treiman relation combined with the Dashen-
Weinstein sum rule, which puts the following uncertainties
on thegKLN and gKSN couplings: ±36% and ±55%, respec-
tively. We hence find:

gKLN

Î4p
= − 3.934; − 5.351ø

gKLN

Î4p
ø − 2.518

gKSN

Î4p
= 1.146; 0.516ø

gKSN

Î4p
ø 1.777.

Finally, concerning the two other couplings,pLS and
pSS, the most recent works that we are aware of are Refs.
[46,49] but they do not give identical values.
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