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The mass shift, width broadening, and spectral density for thev meson in a heat bath of nucleons and pions
is calculated using a general formula which relates the self-energy to the forward scattering amplitude. We use
experimental data to saturate the scattering amplitude at low energies with resonances and include a back-
ground Pomeron term, while at high energies a Regge parametrization is used. The peak of the spectral density
is little shifted from its vacuum position, but the width is considerably increased due to collisional broadening.
At normal nuclear matter density and a temperature of 150 MeV the spectral density of thev meson has a
width of 140 MeV. Zero temperature nuclear matter is also discussed.
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The modification of the free space properties of a vector
meson in hadronic or nuclear matter is an important problem
which has attracted much attention, see the reviews of Ref.
[1]. Many works have relied on effective Lagrangians, how-
ever, in Ref.[2] (hereafter paper I) we adopted as model
independent an approach as possible by using experimental
data to construct the amplitude for vector mesons scattering
from pions and nucleons. The low-energy region was de-
scribed in terms of resonances plus background, while at
high energies a Regge model was employed. Using this am-
plitude the in-medium self-energy of ther and v mesons
was calculated at finite temperature and density using the
leading term of the exact self-energy expansion[3]. This
requires that only single scatterings be important which was
found to be justified in paper I by comparison with results
from ultrarelativistic molecular dynamicssUrQMDd calcula-
tions. This procedure was satisfactory for ther meson and
gave results consistent with those obtained by Rapp[4] by
considering medium modifications of the pions comprising
the meson. Less satisfactory was thev meson case because
little data was available for the decay of nucleon resonances
in thevN channel. Therefore in paper I two extreme models
were adopted: a two-resonance model using the data of Man-
ley and Saleski[5] and anv→r model which assumed that
the resonance decays in thevN andrN channels were essen-
tially the same. In the meantime much better resonance data
in the vN channel has become available with the analysis of
Shklyar, Penner, and Mosel[6]. The purpose of the present
paper is to use this new data to provide a more reliablev
self-energy than the two extreme models adopted in paper I.

First we consider the low-energy regime. We assume that
the v self-energy is dominated by scattering from the pions
and nucleons present in the heat bath, as was justified in
paper I by comparison with UrQMD results. Focussing on
the latter we briefly outline the formalism for constructing
the vN amplitude, more details are to be found in paper I.
We adopt the two-component duality approach due to Harari
[7] (see also Collins[8]) which states that while ordinary
Reggeons are dual tos-channel resonances, the Pomeron is
dual to the background upon which the resonances are super-
imposed. We write the forward scattering amplitude in the
rest frame of the heat bath

fvNsEvd =
Îs

2qc.m.mN
o
R

WvN
R GR→vN

MR − Îs− 1
2iGR

−
qc.m.rP

vN

4pmN
Îs

s1 + exp−ipaPd
sin paP

saP. s1d

Here the first term involves a sum over a series of Breit-
Wigner resonances of massMR and total widthGR (replace-
ment of this nonrelativistic form by the relativistic expres-
sion has a negligible effect on the results). The second term
is the Pomeron background contribution discussed below. In
the usual notationÎs is the total energy which is related to
the energy of the v meson by Ev−mv=fs−smv

+mNd2g / s2mNd, wheremv andmN are the omega and nucleon
masses. In Eq.(1) qc.m. denotes the magnitude of the c.m.
momentum and the statistical averaging factorWvN

R =s2sR

+1d /6, wheresR is the spin of the resonance. Since we are
averaging over all spin directions we shall not distinguish
longitudinal and transverse polarizations. AlsoGR→vN in Eq.
(1) represents the partial width for the resonance decay into
the vN channel. If we denote the c.m. momentum at reso-
nance byqc.m.

R , then forqc.m.ùqc.m.
R we use the value obtained

from the total width and the branching ratio on resonance.
However the threshold behavior of the partial width is
known and we incorporate this forqc.m.øqc.m.

R by replacing
GR→vN by GR→vN sqc.m./qc.m.

R d2l+1, wherel is the relative an-
gular momentum between thev and the nucleon. Since the
total width is the sum of the partial widths in principle this
dependence should be incorporated inGR, but this is imprac-
tical as there are many decay channels open so we simply
takeGR to be a constant.

The above-threshold resonances included in our calcula-
tion are listed in Table I. The first five entries are taken from
the fit labeled C-p-p+s5/2d by Shklyar, Penner, and Mosel
[6] which extends to 2 GeV. We also include theNs2190d
strength taken from Manley and Saleski[5]; Vrana, Dytman,
and Lee[9] report a roughly similar width and branching
ratio for this resonance. It is also necessary to include sub-
threshold resonances since they make a significant contribu-
tion. We include theNs1520dD13 and theNs1535dS11, as well
as the smaller contributions from theNs1440dP11, the
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Ns1650dS11, and theNs1680dF15 resonances. In order to es-
timate the widths we assume that the vector dominance
model is valid, even though it is better suited to high ener-
gies. This allows us to relate the photon andv widths. Spe-
cifically, since these resonances are close to thevN thresh-
old, we can write for each of themGvN=qc.m.gvN and GgN
=kc.m.ggN, wherekc.m. is thegN c.m. momentum. Then vec-
tor dominance gives

ggN = 4pa
1

gr
2S1 +

gr
2

gv
2 DgvN, s2d

wherea is the fine structure constant. For the coupling to the
photon we takegr

2/4p=2.54 andgr
2/gv

2 =1/8. Thevalue of
ggN can be deduced from the decay width and the photon
branching ratio of the resonances[10].

The high-energy forward scattering amplitude is known
[11] to be well approximated by the Regge form

fvNsEvd = −
qc.m.

4pmN
Îs

o
i

1 + exp−ipai

sin pai
r i

vNsai . s3d

We shall consider a Pomeron termP and a Regge termP8.
Since the different isospin structure of thev and ther is
expected to be insignificant at high energy, we adopt the
same parametrization for thevN and rN scattering ampli-
tudes as in paper I. Specifically the intercepts areaP

=1.093 andaP8=0.642 with residuesrP
vN=11.88 andrP8

vN

=28.59. The units are such that with energies in GeV the
total cross section is given in mb; specifically the optical
theorem givess=4pImfvN/p, where the momentum in the
rest frame of the heat bathp=qcm

Îs/mN. The parameters for
the Pomeron given here are also used for the background
term in Eq.(1). Note that if the Pomeron interceptaP were
exactly 1, the Pomeron amplitude would be pure imaginary.

Because of the kinematics the resonance region ends at
Ev−mv,1 GeV and the amplitude is smoothly matched
onto the Regge part at approximately this point. The real and
imaginary parts offvN constructed in this manner are indi-
cated by the solid curves in Fig. 1. Since the low-energy part
contains a number of overlapping resonances the structure is
washed out. We also indicate by dashed curves in Fig. 1 the
corresponding results forfvp taken from paper I for which
the singleb1s1235d resonance employed is clearly visible
(note that due to kinematics the resonance region ends at
Ev−mv,4 GeV for the vp system). Our result for the

imaginary part offvN in Fig. 1(a) can be compared with that
obtained by Sibirtsev, Elster, and Speth[12] using data forv
photoproduction from nuclei and employing the eikonal ap-
proximation and vector meson dominance. There is good
qualitative agreement, while quantitatively our values are
20–30 % lower than theirs. As these authors point out the
real part at threshold is quite uncertain, even as regards sign.
At the highest energy we consider the ratio of the real to the
imaginary part agrees quite nicely with thepN data[12,13].
However this is to be expected since in paper I the high-
energy Regge behavior was fixed by using the charge-
averagedpN data.

For anv meson scattering from a hadrona in the medium
the retarded self-energy on shell can be written[2,3,14] as a
single integral. For the case thata is a boson the result is

Pvaspd = −
mv maT

pp
E
ma

`

dv fvaSmvv

ma
D

3 lnF1 − exps− v+ /Td
1 − exps− v− /TdG . s4d

Herev2=ma
2+k2 andv±=sEv± pkd /mv with E2=mv

2 +p2. If
a is a fermionv± has an additional chemical potential con-
tribution −m and the argument of the logarithm becomesf1
+exps−v−/Tdg / f1+exps−v+/Tdg. The total self-energy is
given by summing over all target species and including the
vacuum contribution

TABLE I. Baryon resonances included in thevN amplitude.

Mass Width vN branching ratio

Resonance sGeVd sGeVd s%d

Ns1710dP11 1.753 0.534 19.9

Ns1720dP13 1.725 0.267 0.8

Ns1900dP13 1.962 0.700 9.6

Ns1950dD13 1.927 0.855 47.0

Ns2000dF15 1.981 0.361 2.2

Ns2190dG17 2.127 0.547 49.0

FIG. 1. (a) The imaginary and(b) the real part of the amplitude
for vN scattering(solid line) andvp scattering(dashed line).
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Pv
totsE,pd = Pv

vacsMd + Pvpspd + PvNspd. s5d

Here the vacuum part ofP can only depend on the invariant
massM =ÎE2−p2, whereas the matter parts can in principle
depend onE and p separately. However, in the approxima-
tion we are using the scattering amplitudes are of necessity
evaluated on the mass shell of thev meson. This means that
the matter parts only depend onp becauseM is fixed atmv.
The dispersion relation is determined from the poles of the
propagator with the self-energy evaluated on shell, i.e.,M
=mv, giving

E2 = mv
2 + p2 + Pv

totspd. s6d

Since the self-energy has real and imaginary parts so does
Espd=ERspd− iGspd /2. The width is given by

Gspd = − ImPv
totspd/ERspd, s7d

with

2ER
2spd = p2 + mv

2 + RePv
totspd

+ Îfp2 + mv
2 + RePv

totspdg2 + fImPv
totspdg2. s8d

In vacuum the widthGv
vac=−ImPv

vac/mv is 8.4 MeV. We de-
fine the mass shift to be

Dmvspd = Îmv
2 + RePv

totspd − mv. s9d

Thev meson mass shifts and widths are shown as a func-
tion of momentum in Fig. 2 for two temperatures and
nucleon densitiesnN=0,1, and 2 inunits of equilibrium
nuclear matter densityn0 s0.16 nucleons/ fm3d. At zero
nucleon density onlyfvp is required so the results are the
same as in paper I. In particular the mass shiftDmv in Fig.
2(a) is small and negative. It becomes positive when nucle-
ons are introduced; at large momentump the mass shifts are
quite similar to thev→r model of paper I, however, forp
=0 the shifts are larger than given by either model of paper I.
Notice that higher temperatures lead to a smaller mass shift.
However, the values ofDmv are at most a few tens of MeV,
which is small in comparison to the vacuum mass. Rapp[4],
who considers medium modifications of the pions compris-
ing the omega, reports a negligible mass shift. For reference
in zero-temperature nuclear matter, where pions do not con-
tribute, the mass shift is approximately +30 MeVsp=0d.
There are a wide range of estimates in the literature. Post and
Mosel [15] obtain 20 MeV with a resonance model, Lutz,
Wolf, and Friman[16] find 70 MeV in a coupled channel
approach and Mühlich, Falter, and Mosel[17] with their
adopted RefvN quote −35 MeV. A mass shift of much larger
magnitude has been found in the chiral approach of Klingl,
Waas, and Weise[18]. Large mass shifts have also been
found using QCD sum rules[1,19], but these are tailored to
the small distance behavior whereas, as Eletsky and Ioffe
[20] have pointed out, the self-energy is determined by
meson-nucleon scattering at relatively large distances of or-
der 1 fm; see also Ref.[21].

Our results for the widthGv are given in Fig. 2(b). Note
that the widths given here are defined to be in the rest frame
of the thermal system. As we have remarked, atnN=0 the

results are the same as in paper I. It was pointed out there
that the calculated width of about 50 MeV atT=150 MeV is
in agreement with the value of Schneider and Weise[22] and
a little larger than given by Haglin[23]. Alam et al. [24]
using the Walecka model achieve only half of our value, but
they find that the magnitude increases very steeply with tem-
perature. Turning to finite values ofnN, our results are rather
insensitive to the momentump and are intermediate between
the two-resonance andv→r models discussed in paper I.
For a temperature of 150 MeV andnN=1, Gv=130 MeV, an
enhancement of the vacuum width by a factor of 15. This is
in line with Rapp’s estimate[4] of a factor of 20 at a slightly
higher temperature of 180 MeV. These values are somewhat
smaller than the results Riek and Knoll[25] obtained with
self-consistent coupled Dyson equations. For zero-
temperature nuclear matter we find the width due to colli-
sional broadening to be 75 MeV. A similar result was ob-
tained by Riek and Knoll[25]. On the other hand, smaller
values,40 MeV were found by Post and Mosel[15], by
Lutz, Wolf, and Friman[16] from a relativistic coupled chan-
nels approach, and by Mühlich, Falter, and Mosel[17] in a
transport model.

The rate of dilepton production is directly proportional to
the imaginary part of the photon self-energy[26,27] which is
itself proportional to the imaginary part of thev meson
propagator because of vector meson dominance[28,29]:

FIG. 2. (a) The mass shift and(b) the width of thev meson as
a function of momentump. Results are shown for nucleon densities
of 0,1, and 2 in units of equilibrium nuclear matter density and
temperatures of 100 and 150 MeV.
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E+E−
dR

d3p+d3p−
~

− ImPv
tot

fM2 − mv
2 − RePv

totg2 + fImPv
totg2 ,

s10d

where, as before,M is the invariant mass. Since the vacuum
decay of thev into three pions is complicated, while the
width is tiny, we simply treat ImPv

vac as a constant except for
the application of a nonrelativistic phase space factorfsM2

−9mp
2d / smv

2 −9mp
2dg2 from threshold toM =mv. A possible

real vacuum contribution is ignored.

The imaginary part of the propagator, proportional to the
spectral density, is plotted as a function ofM in Fig. 3 for a
temperature of 150 MeV. Pions alone have a small effect on
the spectral density so we display results atnN= 1

2 ,1, and
2n0. These parameters are characteristic of the final stages of
a high-energy heavy ion collision. As seen from Fig. 3 there
is little change in the position of the peak, but the spectral
density is greatly broadened. FornN=1 the width of thev
peak(full width, half maximum) is 140 MeV. This is quite
similar to thev→r model in paper I and to the results of
Rapp[4].

In summary, the in-medium properties of thev meson
found in paper I have been updated by employing thevN
resonance analysis of Ref.[6]. Taking as a reference point a
temperature of 150 MeV, equilibrium nuclear matter density
and zero momentum, thev mass shift of 6 MeV was negli-
gible. However, the width of 130 MeV represented a consid-
erable increase from the vacuum values8.4 MeVd. Thus the
spectral density, which determines dilepton production from
this channel, was greatly broadened. These values are rea-
sonably consistent with the bulk of the estimates in the lit-
erature. In particular the agreement with Rapp[4] is satisfy-
ing since he employed a many-body approach, while we
attacked the same physics by using data to construct the scat-
tering amplitudes. Nevertheless it should be borne in mind
that there are effects that are not naturally included here. For
example, it has been suggested, using effective Lagrangians,
that a large, negative mass shift can arise from vacuum po-
larization [30,31] or quark structure[32] effects.
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