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It has recently been suggested that the quark-gluon plasma formed in heavy-ion collisions behaves as a
nearly ideal fluid. That behavior may be understood if the quark and antiquark mean free paths are very small
in the system, leading to a “sticky molasses” description of the plasma, as advocated by the Stony Brook
group. This behavior may be traced to the fact that there are relatively low-eggngsonance states in the
plasma leading to very large scattering lengths for the quarks. These resonances have been found in a lattice
simulation of QCD using the maximum entropy meth®EM). We have used a chiral quark model, which
provides a simple representation of effects due to instanton dynamics, to study the resonances obtained using
the MEM scheme. In the present work we use our model to study the optical potential of a quark in the
quark-gluon plasma and calculate the quark mean free path. Our results represent a specific example of the
dynamics of the plasma as described by the Stony Brook group.
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I. INTRODUCTION 6 8
= S i - i
The description of the quark-gluon plasma in terms of< =d(i# - m)q + ?Z [(@\'9)?+ (qiysh'9)?]

hydrodynamics has been advocated by the Stony Brook =0
group [1-3]. That description appears to be in accord with 8 _ _ G
the experimental data. In such a description the motion of the = =" [(q\y,@)? + @\ y57,0)2]+ —>{de{q(1 +\s)q]
quarks is characterized by an extremely short mean free path. 2% 2
The origin of that behavior is thought to be due to the rela- _
tively low-energy resonances in theg system leading to +defq(L ~As)al} + Loont. (1.)
very large scattering lengths. These resonances have beenpere, m? is a current quark mass matrixp®
found in lattice studies of QCD which make use of the maXi':diaerﬂ,mg,rrﬁ). The \, are the Gell-Mann (flavor)
mum entropy methodMEM) [4-9). Similar resonances are . ices anch=42/31, with 1 being the unit matrix. The
found in the scalar, pseudoscalar, vector, and axial-vegjor fourth term is the 't Hooft interaction and,,, represents

channels{lp]. Recently, an extensive explqration Of. Charmc_)'the model of confinement used in our studies of meson prop-
nium studies in the confined and deconfined regions using tiag

lattice methods has been reported in Réd]. In that work
results are given for the dependence of the resonance excitf"m
tion on the total momentum of the pair. We have studied
that dependence for light quark systems in Réf] and

have found similar behavior to that reportgd in RMJ' (We In order to make contact with the results of lattice simula-
will make use of the results presented in REifZ] in the 0\ e the model with the number of flavots= 1.

present work in which we calculate the imaginary part of theTherefore, thex| matrices in Eq(1.1) may be replaced by
optical potential and the mean free path for a quark in theimity. We then use

quark-gluon plasma.We use a chiral model with a rather

large momentum cutoff. That model is meant to provide an . Gs _ Gy

approximate description of the instanton dynamics advocated £ =q(ig—nm%)q+—(qq) + (i ysa)*]- —[(@y,a)?
) . 2 2

by the Stony Brook grougl-3]. Earlier work using our

In the study of hadronic current correlatdis3—15 it is
portant to use a model which respects chiral symmetry
whenm°=0. Therefore, we make use of the Lagrangian of
Eqg. (1.1), while neglecting the 't Hooft interaction an€l.,r.

model may be found in Ref$13-15. + (57,971 (1.2

In our studies of meson spectra®t0 and atT<T,; we
have made use of the Nambu-Jona-LasifNdL) model. in order to calculate the hadronic current correlation func-
The Lagrangian of the generalized NJL model we have usetions. Thus, there are essentially three parameters to con-
in our studies is sider, Gg, Gy, and a Gaussian cutoff parameter which

restricts the momentum integrals through a factor

ex-k?/a?]. As suggested by the Stony Brook group, we
*Email address: casbc@cunyvm.cuny.edu consider the NJL model and the associated chiral Lagrangian
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of Eq. (1.2) as providing a simplified representation of the nucleon-nucleus potential one calculates @heamatrix for
instanton dynamics important for the problems considered imucleon-nucleon scattering using the one-boson-exchange
this work. Since the results obtained for the hadronic currenfOBE) model. In that case the mesons of the OBE model
correlation functions are similar in the scalar, pseudoscalayndergo t-channel andu-channel exchanges between the
vector, and axial-vector channels, we carry out our calculanucleons. The result is that the imaginary part of the optical
tions for the scalagq states and multiply our results for the potential has a magnitude of about 10 MgM]. That in turn
optical potential by 4. The parameters G andere fixed in  leads to a mean free path of about 10 fm for a 500 MeV
our earlier studies[12]. We take G=1.0 GeV? and « nucleon. Many years ago, the relatively large value for the
=4.4 GeV. These values provide good fii?] to the had- nucleon mean free path lead to the characterization of the
ronic current correlation functions found in the lattice studiesoptical model for nucleon-nucleus scattering as the “cloudy
[10]. In order to calculate the optical potential for a quark wecrystal ball” model. When we study quark propagation in the
consider the quark moving in an antiquark distribution char-quark-gluon plasma we may consider a similar calculation of
acterized by a temperature-dependent occupation factdhe optical potential at finite temperature. In the case of the
n(p;) which depends upon the chemical potenjial(Here  quark-antiquark interaction th& matrix is dominated by
we introduceu to provide a simple parametrization of the s-channel resonances of the type found in the MEM studies.
antiquark distribution and do not ascribe a physical interpreAs we will see, the interaction in this case is quite strong,
tation to that parametg@rThe energy of a quark is given by leading to a small mean free path. The resulting model is
E(p)=[p?+n?]Y2 We follow the work of Shuryal1], for  called the “sticky molasses” modgl-3] as opposed to the
example, and seh=1 GeV. In Shuryak’s work this mass is cloudy crystal ball model used to describe nucleon-nucleus
not the current quark mass, but is called the “chiral mass.scattering. We now consider the potential seen by a quark of
(We would prefer to call the 1 GeV mass, the “thermal momentump, and average over the quark sin (We will
mass,” however, the terminology used is not important forconsider quarks of a single flavor, since that was done in the
this work) The quark thermal mass is given in R¢t6], = MEM studies that we have used to fix the parameters of our
with Cr=4/3, as model) In Ref.[17] the relativistic optical potential was de-
noted as¥(p,s) and, for this work, we consider

1 2
M= égch(ﬁ ¥ %) (1.3 o1e o
IU(B) = S 2 U TP U2 (2.1
for the case of a finite chemical potential. The thermal gluon 2
mass is It is useful to introducg14]
1 1
2 _ 212 m m
my=—g°T (CA+_Nf)- (1.9 U(P2) =N/ =2 (P \| ==—- (2.2
6 2 2 E(po) ? E(p2)

(The relation between thermal masses in QED and QCD is Here the factor oN=4 takes into account the sum of the
given on p. 146 of Ref16].) In studies of baryon matter, the jnteractions in the scalar, pseudoscalar, vector, and axial-
chemical potentials used are often about 300 MeV or less,ector channels which are taken to be equal for the purposes
However, once we introduce a thermal mass of about 1 GeVof this work. The approximate equality of the interactions in
we need to determine the chemical potential for the quarkspese channels may be seen in R&€]. [Note that values of

In this work we will consider a chemical potential of about () are given in Ref[17] for the case of nucleon-nucleus
1 GeV, although the calculations are easily made for Otheécattering].

values. Once we puh=1 GeV, the chemical potential is the
only parameter which is varied in our study. The organiza
tion of our work is as follows. In Sec. Il we discuss the
calculation of the imaginary part of the quark optical poten- P# = (py + py)*. (2.3
tial and the quark mean free path. Section IIl contains som«ra\I

further discussion and conclusion@ppendixes A and B ow

If p; is the momentum of the antiquark in the medium, we
may introduce the four-vector

provide a description of the calculation of the correlators in P2 p2 _ p2 24
our model. That description is readily taken over to obtain a o (2.4
representation of theq scattering matrix. The calculation of R o 2 s
the vacuum polarization functiod(P°, P) which appears in =[E(py) + E(P)I"~ (p1+ P2+ 2Pz COS ). (2.5)
Sec. Il is described in the Appendixps. Here, we takeg3, along thez axis. We define
Il. CALCULATION OF THE QUARK t(By, Bo) = %{%] , (2.6)
OPTICAL POTENTIAL 7P 1 -GJ(p1.p2)

It is useful to contrast the calculation of the quark opticalwhere J(p;,p,) is the gq vacuum polarization function de-
potential with the calculation of the nucleon optical potentialfined in Appendix B.[We remark that we may also use the
that is to be used in the Dirac equation. The latter calculatiomotationt(P?,p,) for the quantity defined in Eq2.6).] It is
is discussed in detail in Ref17]. In that calculation of the important to note that the resonant behavior t@i,,p.,),
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FIG. 1. Values oft(P?,p,) are shown for various values of the
quark momentump,|. Starting with the uppermost curve, ths)|
values in GeV units are 0.01, 0.03, 0.05, 0.07, 0.09, 0.11, 0.13, 0.1
0.17, 0.19, 0.21, 0.23, 0.25, 0.27, 0.29, and O[Bbr largeP?, we
have t(P?,p,) = (1/mP?G.] Here P?=(p,+p,)?, wherep;, is the
antiqguark momentum.

FIG. 2. Values ofn(p;) are shown foru=1.1 GeV (dotted
urve), u=1.3 GeV(dashed curvge andu=1.5 GeV(solid curve.
ereT=1.5T; with T,=270 MeV.

" N m dp -
T | U= | TPy
which is seen in Fig. 1, is due to the behavior of the denomi- 2E(py) J (2m) E(py)
nator in Eq.(2.6). In our study,J(p;,p,) is complex and s s
A EiE2—P1-p2—m R
resonances appear when GReJ(p;,p,)=0. 7 n(py). (2.12

It is also useful to introduce the occupation factdp,),
Here E;=E(p,),E,=E(p,) and we have made use of Egs.
1 (2.2) and (2.6). Values oft(P?,p,) are shown in Fig. 1 for

n(py) = exp BIE(Py) - ]+ 1’ 27 Jalues of|p,| ranging from 0.01 GeV to 0.31 GeV. In Fig. 2
we show the values aif(p,) for the three values oft con-
with 8=1/T and E(p,)=[p2+n?]Y2 We recall sidered here and in Fig. 3 we present values of(p,) for
those values ofi. In Fig. 4 we show the values for the mean
free path
_ p,+m
> U(pz,sz)u(pz,sz)=( Fradl (2.9
5 m
0.16
_ pr—m 0.14
E U(plisl)v(plvsl) = 2— ’ (29) 4
51 m 042
% 4
and note that O 0.10
<p2+m)(pl_m>_|:(E1E2_p1'p2)_m2:| 5 0'08.
Tr = . £
2m 2m 114 =  0.06
(2.10 0.04-
ThUS, 0_02.‘ "'--..-.-'
3 0.00 T T r r T T T T
Im 3**(p,) = - 1 dp13 ”J Im{ — } 0.0 0.5 1.0 1.5 2.0
2J (2m)*E(py 1-GJ(p1,po) p, (GeV)
X { S Tl ¥ mz}n(ﬁl), (2.11) FIG. 3. The imaginary part of the quark optical potential is
e shown foru=1.1 GeV(dotted curvg w=1.3 GeV(dashed curve
and u=1.5 GeV(solid curve. (We recall that the nucleon-nucleus
and imaginary optical potential is about 0.01 GeV in magnityidi@].)
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density of nuclear matter, which is approximately

& . 0.16 GeV/fns.
] In this work we have attempted to provide a quantitative
5 analysis of the suggestidd] that the largegq resonant scat-

tering cross sections are responsible for the small quark
mean free paths, with the associated relevance of the hydro-
dynamic description of the system that is created in high-
energy nucleus-nucleus collisions. We have considered the
interaction in the scalar, pseudoscalar, vector, and axial-
vector channels of thgq system. It is possible that there are
important resonances gfj character, as well as tig reso-
nances considered here. Sugpdp states are depicted in Fig.
8a of Ref.[1]. In addition we might also consider the role of
gg states. It would be of interest to see if such states are
——, found in lattice studies using the MEM scheme.
0.0 05 1.0 15 2,0 It appears that the resonances obtained in the MEM
p, (GeV) scheme persist to rather high energies where instanton effects
are relatively unimportant. In that case one would have to
FIG. 4. Values of\(p,) are shown foru=1.1 GeV (dotted  provide an alternate interpretation of the dynamics underly-
curve), u=1.3 GeV(dashed curve andu=1.5 GeV(solid curve. ing the model used in this workSee Eq(1.2).] Finally, we
note that a review of the hydrodynamic description of heavy-
ion collisions may be found in Refl19].

A (fm)

m Im U(p,) APPENDIX A

We remark that the mean free paths seen in Fig. 4 are not

ite small enouah to imol hvdrodvnamic descriotion: For ease of reference, we present a discussion of our cal-
guite small enough to Imply a nydrodynamic GesCcriplion, ., sqn of hadronic current correlators taken from Re§].

nances wil friher reduce the mean 766 paths caloulatel"s PICEAUTe e adopt is based upon the real-time fiie-
mperature formalism, in which the imaginary part of the

here. polarization function may be calculated. Then, the real part
of the function is obtained using a dispersion relation. The

Ill. DISCUSSION result we need for this work has been already given in the

Information is available concerning thmryon chemical work of Kobes and SemenofP0]. (In Ref. [20] the quark

otential. That chemical potential is parametrized in Refmornentum i and the antiquark momentumks —P*. We
P ' P P 'will adopt that notation in this section for ease of reference to

[18] as the results presented in R§2Q].) With reference to Eq5.4)

1270 MeV of Ref.[20], we write the imaginary part of the scalar polar-

MB= T (3.)  jzation function as
VSN
(l * 4_3) 1 d*k 22 2
' Im J§(P%,T) = —Ncﬁse(PO)f ——e ke (—)
and varies strongly with'Syy, Which is in GeV units in Eq. 2 (2m) 2B, (K)2E,(k)
(3.1). For ySyn=200 GeV, we havez=26.7 MeV. X {[1 =ny(kK) = ny(k) ][ P° — E4(K) — Ex(K)]
Of particular significance for our results is the choice of

the chpemical potgntial for the quarkéNe recall that the = [Ma(k) = (k) 1P+ Eq(k) ~ Ex(K)] = [n5(K)
chemical potential is used here only to parametrize the anti- -y (K8 P° = E;(k) + Ep(K)]-[1 = ny(k)
quark distribution). We have takemn.~ 1 GeV. In the case of — (K ]APO+ Eq(K) + Ex()]}. (A1)

the quarks, the choice gf=1 GeV leads to small mean free

paths consistent with the suggestion of Shuryak that the resQere, El(k)=[I22+m§(T)]l’2. Relative to Eq.(5.4) of Ref.

nances seen in the MEM analysis of the lattice results arq], we have changed the sign, removed a factagofind

responsible for the small mean free paths of the sticky MOp4 e included a statistical factor b. In addition, we have

lasses model. , : >, o
We remark that in nuclear matter the baryon density is'nCIUded a Gaussian regulator, éx’/a”]. The valuea

0.17 fmr3 or 0.51 quarks/frhif we consider the nucleon to —0-605 GeV was used in our applications of the NJL model
be composed of three quarks. For the valuea(gt) shown 1" the calculation of meson propertiesat 0. We also note

in Fig. 2 for the caseu=1.3 GeV, we may calculate the that
density of antiquarks to be 5.91 i so that the density of 1
quarks and antiquarks is about 12-fivin our model. We ny(k) = FEW 41 (A2)

remark that the energy density at RHIC f@zzoo GeV
is 4.1 GeV/fn? [18], which is about 26 times the energy and
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1

ny(K) = P11

(A3) Im Jy(P?,T) = §|m Je(P2T). (A13)

For the calculation sz thezimaginary part of the polarization at this point it is useful to define functions that do not con-
function, we may sek?=mi(T) and(k—P)2=m5(T), since in  tain that Gaussian regulator,
that calculation the quark and antiquark are an on-mass shell.

In Eqg. (Al) the factorBg arises from a trace involving Dirac _ NP2 4m2(T) \ M2
matrices, such that Im Jp(P2,T) = g 0(1 = ) [1-2n,(k)], (A14)
™ 0
Bs==Ti(k+my) (k=P +my)] (A4)
and
=2P? - 2(my + my)?, (AB)
. = oo - 2NPE [ 4mA(T)\ 2

wherem; and m, depend upon temperature. In the frame Im Jy(P%T) ~3 87 1- pg [1-2ny(k)].

where P=0, and in the casen,=m,, we have Bs=2P3(1
-4/ Pg). For the scalar case, witim;=m,, we find

N P2 4 2 T 32
Im J(P2,T) = —< 0(1 _am § )) e¥a71 - 2y (K)],
8 P
(A6)
where
- PS
k2= i mA(T). (A7)
For pseudoscalar mesons, we repl@gey
Bp=—THiys(k+my)iys(K—P+my)] (A8)
=2P? - 2(m; - my)?, (A9)

which for mj=m, is ,BP:ZPS in the frame wherg=0. We
find, for the =# mesons,

NPS(. 4mA(T
Im Jp(P2,T) = — 0(1— (D

)1/2 |22/ N
el - 20 (K) ],
et )

(A10)

(A15)

For the functions defined in EqeA14) and (A15) we need
to use a twice-subtracted dispersion relation to obtain

Re Jo(P2,T) or Redy(P2,T). For example,

~ ~ [ ~
Re Jo(P?,T) =ReJp(0,T) + ;[Re Jo(P3,T) - ReJp(0,T)]
0

JPAPP-PY (2 Im Jp(s,T)
™ atm S(P?=9)(P5-9)’
(A16)

where A? can be quite large, since the integral over the
imaginary part of the polarization function is now conver-
gent. We may introducép(P2,T) andJ,(P?,T) as complex
functions, since we now have both the real and imaginary
parts of these functions. We note that the construction of
either ReJp(P?,T), or ReJy(P?,T), by means of a disper-
sion relation does not require a subtraction. We use these
functions to define the complex functionk(P?,T) and
JU(P?,T).

In order to make use of EqA16), we need to specify

where k?=PZ/4-m(T), as above. Thus, we see that theJp(0) and Jp(P2). We found it useful to takeP2
phase space factor has an exponent of 1/2 corresponding #0-1.0 Ge\? and to seﬁp(o)sz(o) andﬁP(Pg)zJp(Pg). The

a sswave amplitude. For the scalars, the exponent of th

phase-space factor is 3/2, as seen in @B®,).
For a study of vector mesons we consider

B, =Ty, (k+m)y,(k-P+my)],  (All)
and calculate
9** B, = 4 P? = mf - m5 + 4mymy], (A12)

which, in the equal-mass case, is equal te348mA(T),

‘?quantitiesjv(O) andjv(Pg) are determined in an analogous
function. This procedure in which we fix the behavior of a

function such as Ré,(P?) or ReJy(P?) is quite analogous

to the procedure used in R¢R0]. In that work we made use

of dispersion relations to construct a continuous vector-
isovector current correlation function which had the correct
perturbative behavior for large?— —o and also described
the low-energy resonance present in the correlator due to the
excitation of thep meson. In Ref[21] the NJL model was
shown to provide a quite satisfactory description of the low-

whenp=0. This result is needed when we calculate the corenergy resonant behavior of the vector-isovector correlation
relator of vector currents. Note that, for the elevated temfynction.

peratures considered in this worky,(T)=my(T) is quite
small, so that B3+8mZ(T) can be approximated byP4,

We now consider the calculation of temperature-
dependent hadronic current correlation functions. The gen-

when we consider the vector current correlation functions. Ireral form of the correlator is a transform of a time-ordered

that case, we have

product of currents,
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2 2 2 1/2
CPAT = [ a0y, (A1 im 2= 2| BT ZED |, _artiD)
0

where the double bracket is a reminder that we are consid- ><e—'<2/a2[1 - 2n(k)] (A23)
ering the finite temperature case.

For the study of pseudoscalar states, we may consider
currents of the for.rrjpyi(x) =q(x)iys\'q(x), where, in the case :§|m Je(P2T). (A24)
of the = mesons,i=1, 2, and 3. For the study of scalar- 3
isoscalar mesons, we introdu¢§i(x):Tq(x))\iq(x), wherei .
=0 for the flavor-singlet current arig:8 for the flavor-octet [See Eq(A7) for the specification ok=|k|.] We then have
current.

In the case of the pseudoscalar-isovector mesons, the cor-
relator may be expressed in terms of the basic vacuum po-
larization function of the NJL modello(P?,T). Thus,

Cy(P2T) = 3,(P3T)

1
L GymaErn A%

where we have introduced
CP( P21T) = JP(PZ!T)

1-Gp(MI(PT)’ (A18)

2 2 2
Im 3,(P2,T) = %[ Po +82m“(T) } (1 _4miT)
where Gp(T) is the coupling constant appropriate for our T Po
study of = mesons. We have foun@p(T)=13.49 GeV? by (A26)
fitting the pion mass in a calculation made Bt0, with
m,=my=0.364 GeV. The result given in EgA18) is only 2
expected to be useful for smd¥, since the Gaussian regu- ==Im Jp(P?,T). (A27)
lator strongly modifies the large? behavior. Therefore, we 3
suggest that the following form is useful, if we are to con-
sider the larger values ¥

12
) [1-2n(K)]

In the literature,w is used instead oP, [4-6]. We may
define the spectral functions

Cp(P2T) | Jp(PET) 1 1
P2 '[ = L—GP(T)JP(P%U' (A19) oV, 1) = =Im Cylw,T), (A28)

(As usual, we setS:O.) This form has two important fea- 5,4
tures. At largePZ, Im Cp(Py,T)/P3 is a constant, since

Im Jp(P3,T) is proportional toP3. Further, the denominator
of Eq. (A19) goes to 1 for largeP3. On the other hand, at
small P3, the denominator is capable of describing resonant ) _ ) )
enhancement of the correlation function. As we have seen, Since different conventions are used in the literature
the results obtained when E¢AL9) is used appear quite [4—6l, we may use the notatians(w, T) andoy(w, T) for the
satisfactory.(We may again refer to Ref21], in which a spectral functions given there. We have the following rela-

op(w,T) = Lim Colw,T). (A29)

similar approximation is described. tions:
For a study of the vector-isovector correlators, we intro- .
duce conserved vector currerjtsi(x)=G(x)y,Aid(x) with i op(w,T) = op(w,T), (A30)
=1, 2, and 3. In this case we define
and
3 P21 = g = P P2 (A20) -
viEL =19 p2 )TV oo, T) 3
— = oveT), (A31)
2 4
and
pupy where the factor 3/4 arises because, in Rgfs§], there is a
CU(PT) = (g“”— = )CV(PZ,T), (A21) division by 4, while we have divided by 3, as in Ed\22).
taking into account the fact that the currgnt(x) is con- APPENDIX B

served. We may then use the fact that Here we extend the work of Appendix A to consider the

5 1 - case of the finite three-momentufa We consider the calcu-
IPET) = §gﬂVJV (P5T) (A22) " |ation of Im Jp(P°,P,T). The momentaP® and P are the
values external to the loop diagram. Internal to the diagram,
and we have a quark of momentukt+P#/2 leaving the left-
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hand vertex and an antiquark of momentlts-P#/2 enter-
ing the left-hand vertex. It is useful to define

PHYSICAL REVIEW (59, 065201(2004)

d f(cos )] = ﬁzf S8(cos 0 -Xx), (B8)
dcosé|,

Ey(K) =K+ P/2| (B1)
where
P2 1/2 21,2 2 _p4
=(k2 + — + kP cos 0) (B2) x2= co§9:4po(k . 5 /24) i (B9)
4 4k2P
and We find
- - o" f 1 El(k) - Ez(k)
E,(k)=|k—P/2 B — | == |, B10
2(K) =| 12| (B3) Jdcosf| 2 ‘ E1(k) Ex(k) (B10
p2 1/2 and obtain
:(k2+——kP cos&) . (B4) 2
4 05Tl 0y o2 [ KAK 22
Im Jp(P°,P,T) = ENCBPG(P )(27) W

Herek=|k| and P=|P|.
We have

2
2E;(K)2E,(K)
X{[1 =ny(K) = np(k) ][ P° = E4(K) — Ex(K)]
= [ny(K) = ()] P® + Ey(k) = Ex(K)]
= [na(k) = Ny (K] P® = E4(K) + Ep(K)]
= [1=ny(K) = (K]S P® + Eq (k) + Ex(K)]}.

|

Im Jp(P°,P,T) =In (Po)f &’k e-ﬁzfaz(
P LI - 2 CBPe (277)3

1
Xf m[l =ny(k) = ny(k)]

df(cos 6)
dcosd

S(cos 0 —x)d(cos 6).

(B11)

We note there is a singularity whéf(k) =E,(k). That occurs
when cosf=0 or #=/2. For our calculations we eliminate
the point with #=/2 when evaluating the angular integral
over d(cos #) 8(cos #—x) in the last expression. We obtain

(B5) 472 (K
0B T = 0 M 201 ka2
Here Im Jp(P°, P, T) = N.Bpe(P )(zw)gf K2dke
1 1 —ny(K) = ny(k)
— —_— B12
MK = GEw (B6) PEM-Ew] |, B
and wherex is obtained from Eq(B9),
0 2 P2 1/2
x= |+ =Bl (B13)
1 kP 4 4
ny(k) = m (B7)

For the calculations reported in this work we hake
In Eq. (B5), the second and third terms cancel and the fourth=E(p,) +E(p,) andP=p,+p,, wherep, is the quark momen-

term does not contribute. It is useful to rewri#fP°~E;(k)  tum andp, is the antiquark momentum. Thus, we may also
—-E,(K)] using use the notatiod(p;,p,) as we have done in the main text.
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