
Quark propagation in the quark-gluon plasma

Xiangdong Li
Department of Computer System Technology, New York City College of Technology of the City University of New York,

Brooklyn, New York 11201, USA

Hu Li, C. M. Shakin,* and Qing Sun
Department of Physics and Center for Nuclear Theory, Brooklyn College of the City University of New York,

Brooklyn, New York 11210, USA
(Received 5 March 2004; published 2 June 2004)

It has recently been suggested that the quark-gluon plasma formed in heavy-ion collisions behaves as a
nearly ideal fluid. That behavior may be understood if the quark and antiquark mean free paths are very small
in the system, leading to a “sticky molasses” description of the plasma, as advocated by the Stony Brook
group. This behavior may be traced to the fact that there are relatively low-energyqq̄ resonance states in the
plasma leading to very large scattering lengths for the quarks. These resonances have been found in a lattice
simulation of QCD using the maximum entropy method(MEM). We have used a chiral quark model, which
provides a simple representation of effects due to instanton dynamics, to study the resonances obtained using
the MEM scheme. In the present work we use our model to study the optical potential of a quark in the
quark-gluon plasma and calculate the quark mean free path. Our results represent a specific example of the
dynamics of the plasma as described by the Stony Brook group.
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I. INTRODUCTION

The description of the quark-gluon plasma in terms of
hydrodynamics has been advocated by the Stony Brook
group [1–3]. That description appears to be in accord with
the experimental data. In such a description the motion of the
quarks is characterized by an extremely short mean free path.
The origin of that behavior is thought to be due to the rela-
tively low-energy resonances in theqq̄ system leading to
very large scattering lengths. These resonances have been
found in lattice studies of QCD which make use of the maxi-
mum entropy method(MEM) [4–9]. Similar resonances are
found in the scalar, pseudoscalar, vector, and axial-vectorqq̄
channels[10]. Recently, an extensive exploration of charmo-
nium studies in the confined and deconfined regions using
lattice methods has been reported in Ref.[11]. In that work
results are given for the dependence of the resonance excita-
tion on the total momentum of theqq̄ pair. We have studied
that dependence for light quark systems in Ref.[12] and
have found similar behavior to that reported in Ref.[11]. (We
will make use of the results presented in Ref.[12] in the
present work in which we calculate the imaginary part of the
optical potential and the mean free path for a quark in the
quark-gluon plasma.) We use a chiral model with a rather
large momentum cutoff. That model is meant to provide an
approximate description of the instanton dynamics advocated
by the Stony Brook group[1–3]. Earlier work using our
model may be found in Refs.[13–15].

In our studies of meson spectra atT=0 and atT,Tc we
have made use of the Nambu–Jona-Lasinio(NJL) model.
The Lagrangian of the generalized NJL model we have used
in our studies is

L = q̄sig” − m0dq +
ḠS

2 o
i=0

8

fsq̄liqd2 + sq̄ig5liqd2g

−
ḠV

2 o
i=0

8

fsq̄ligmqd2 + sq̄lig5gmqd2g+
GD

2
hdetfq̄s1 + l5dqg

+ detfq̄s1 − l5dqgj + Lconf. s1.1d

Here, m0 is a current quark mass matrix,m0

=diagsmu
0,md

0,ms
0d. The li are the Gell-Mann (flavor)

matrices andl0=Î2/31, with 1 being the unit matrix. The
fourth term is the ’t Hooft interaction andLconf represents
the model of confinement used in our studies of meson prop-
erties.

In the study of hadronic current correlators[13–15] it is
important to use a model which respects chiral symmetry
when m0=0. Therefore, we make use of the Lagrangian of
Eq. (1.1), while neglecting the ’t Hooft interaction andLconf.
In order to make contact with the results of lattice simula-
tions we use the model with the number of flavorsNf =1.
Therefore, theli matrices in Eq.(1.1) may be replaced by
unity. We then use

L = q̄sig” − m0dq +
GS

2
fsq̄qd2 + sq̄ig5qd2g−

GV

2
fsq̄gmqd2

+ sq̄g5gmqd2g s1.2d

in order to calculate the hadronic current correlation func-
tions. Thus, there are essentially three parameters to con-
sider, GS, GV, and a Gaussian cutoff parametera, which
restricts the momentum integrals through a factor

expf−kW2/a2g. As suggested by the Stony Brook group, we
consider the NJL model and the associated chiral Lagrangian*Email address: casbc@cunyvm.cuny.edu

PHYSICAL REVIEW C 69, 065201(2004)

0556-2813/2004/69(6)/065201(8)/$22.50 ©2004 The American Physical Society69 065201-1



of Eq. (1.2) as providing a simplified representation of the
instanton dynamics important for the problems considered in
this work. Since the results obtained for the hadronic current
correlation functions are similar in the scalar, pseudoscalar,
vector, and axial-vector channels, we carry out our calcula-
tions for the scalarqq̄ states and multiply our results for the
optical potential by 4. The parameters G anda were fixed in
our earlier studies[12]. We take G=1.0 GeV−2 and a
=4.4 GeV. These values provide good fits[12] to the had-
ronic current correlation functions found in the lattice studies
[10]. In order to calculate the optical potential for a quark we
consider the quark moving in an antiquark distribution char-
acterized by a temperature-dependent occupation factor
nspW1d which depends upon the chemical potentialm. (Here
we introducem to provide a simple parametrization of the
antiquark distribution and do not ascribe a physical interpre-
tation to that parameter.) The energy of a quark is given by
EspWd=fpW2+m2g1/2. We follow the work of Shuryak[1], for
example, and setm=1 GeV. In Shuryak’s work this mass is
not the current quark mass, but is called the “chiral mass.”
(We would prefer to call the 1 GeV mass, the “thermal
mass,” however, the terminology used is not important for
this work.) The quark thermal mass is given in Ref.[16],
with CF=4/3, as

m2 =
1

8
g2CFST2 +

m2

p2D s1.3d

for the case of a finite chemical potential. The thermal gluon
mass is

mg
2 =

1

6
g2T2SCA +

1

2
NfD . s1.4d

(The relation between thermal masses in QED and QCD is
given on p. 146 of Ref.[16].) In studies of baryon matter, the
chemical potentials used are often about 300 MeV or less.
However, once we introduce a thermal mass of about 1 GeV,
we need to determine the chemical potential for the quarks.
In this work we will consider a chemical potential of about
1 GeV, although the calculations are easily made for other
values. Once we putm=1 GeV, the chemical potential is the
only parameter which is varied in our study. The organiza-
tion of our work is as follows. In Sec. II we discuss the
calculation of the imaginary part of the quark optical poten-
tial and the quark mean free path. Section III contains some
further discussion and conclusions.(Appendixes A and B
provide a description of the calculation of the correlators in
our model. That description is readily taken over to obtain a
representation of theqq̄ scattering matrix. The calculation of

the vacuum polarization functionJsP0,PW ) which appears in
Sec. II is described in the Appendixes.)

II. CALCULATION OF THE QUARK
OPTICAL POTENTIAL

It is useful to contrast the calculation of the quark optical
potential with the calculation of the nucleon optical potential
that is to be used in the Dirac equation. The latter calculation
is discussed in detail in Ref.[17]. In that calculation of the

nucleon-nucleus potential one calculates theT matrix for
nucleon-nucleon scattering using the one-boson-exchange
(OBE) model. In that case the mesons of the OBE model
undergo t-channel andu-channel exchanges between the
nucleons. The result is that the imaginary part of the optical
potential has a magnitude of about 10 MeV[17]. That in turn
leads to a mean free path of about 10 fm for a 500 MeV
nucleon. Many years ago, the relatively large value for the
nucleon mean free path lead to the characterization of the
optical model for nucleon-nucleus scattering as the “cloudy
crystal ball” model. When we study quark propagation in the
quark-gluon plasma we may consider a similar calculation of
the optical potential at finite temperature. In the case of the
quark-antiquark interaction theT matrix is dominated by
s-channel resonances of the type found in the MEM studies.
As we will see, the interaction in this case is quite strong,
leading to a small mean free path. The resulting model is
called the “sticky molasses” model[1–3] as opposed to the
cloudy crystal ball model used to describe nucleon-nucleus
scattering. We now consider the potential seen by a quark of
momentumpW2 and average over the quark spins2. (We will
consider quarks of a single flavor, since that was done in the
MEM studies that we have used to fix the parameters of our
model.) In Ref. [17] the relativistic optical potential was de-
noted asSspW ,sd and, for this work, we consider

S++spW2d =
1

2o
s2

ūspW2,s2dSspW2,s2duspW2,s2d. s2.1d

It is useful to introduce[14]

UspW2d = NÎ m

EspW2d
S++spW2dÎ m

EspW2d
. s2.2d

Here the factor ofN=4 takes into account the sum of the
interactions in the scalar, pseudoscalar, vector, and axial-
vector channels which are taken to be equal for the purposes
of this work. The approximate equality of the interactions in
these channels may be seen in Ref.[10]. [Note that values of
UspWd are given in Ref.[17] for the case of nucleon-nucleus
scattering.]

If p1 is the momentum of the antiquark in the medium, we
may introduce the four-vector

Pm = sp1 + p2dm. s2.3d

Now

P2 = P0
2 − PW 2 s2.4d

=fEspW1d + EspW2dg2 − spW1
2 + pW2

2 + 2p1p2 cosud. s2.5d

Here, we takepW2 along thez axis. We define

tspW1,pW2d =
1

pP2F G

1 − GJspW1,pW2dG , s2.6d

whereJspW1,pW2d is the qq̄ vacuum polarization function de-
fined in Appendix B.[We remark that we may also use the
notationtsP2,p2d for the quantity defined in Eq.(2.6).] It is
important to note that the resonant behavior oftspW1,pW2d,
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which is seen in Fig. 1, is due to the behavior of the denomi-
nator in Eq. (2.6). In our study,JspW1,pW2d is complex and
resonances appear when 1−G ReJspW1,pW2d=0.

It is also useful to introduce the occupation factornspW1d,

nspW1d =
1

exp bfEspW1d − mg + 1
, s2.7d

with b=1/T andEspW1d=fpW1
2+m2g1/2. We recall

o
s2

usp2,s2dūsp2,s2d = Sp”2 + m

2m
D , s2.8d

o
s1

vsp1,s1dv̄sp1,s1d = Sp”1 − m

2m
D , s2.9d

and note that

TrSp”2 + m

2m
DSp”1 − m

2m
D = F sE1E2 − pW1 · pW2d − m2

m2 G .

s2.10d

Thus,

Im S++sp2d = −
1

2
E dpW1

s2pd3

m

EspW1d
ImF G

1 − GJspW1,pW2dG
3FE1E2 − pW1 · pW2 − m2

m2 GnspW1d, s2.11d

and

UspW2d = −
N

2

m

EspW2d
E dpW1

s2pd3

m

EspW1d
pP2tspW1,pW2d

3FE1E2 − pW1 · pW2 − m2

m2 GnspW1d. s2.12d

HereE1=EspW1d,E2=EspW2d and we have made use of Eqs.
(2.2) and (2.6). Values of tsP2,p2d are shown in Fig. 1 for
values ofupW2u ranging from 0.01 GeV to 0.31 GeV. In Fig. 2
we show the values ofnspW1d for the three values ofm con-
sidered here and in Fig. 3 we present values of ImUspW2d for
those values ofm. In Fig. 4 we show the values for the mean
free path

FIG. 1. Values oftsP2,p2d are shown for various values of the
quark momentumupW2u. Starting with the uppermost curve, theupW2u
values in GeV units are 0.01, 0.03, 0.05, 0.07, 0.09, 0.11, 0.13, 0.15,
0.17, 0.19, 0.21, 0.23, 0.25, 0.27, 0.29, and 0.31.[For largeP2, we
have tsP2,p2d.s1/pP2dG.] Here P2=sp1+p2d2, where p1 is the
antiquark momentum.

FIG. 2. Values ofnsp1d are shown form=1.1 GeV (dotted
curve), m=1.3 GeV(dashed curve), andm=1.5 GeV(solid curve).
HereT=1.5Tc with Tc=270 MeV.

FIG. 3. The imaginary part of the quark optical potential is
shown form=1.1 GeV(dotted curve), m=1.3 GeV(dashed curve),
andm=1.5 GeV(solid curve). (We recall that the nucleon-nucleus
imaginary optical potential is about 0.01 GeV in magnitude[17].)
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l =
upW2u
m

1

Im UspW2d
. s2.13d

We remark that the mean free paths seen in Fig. 4 are not
quite small enough to imply a hydrodynamic description;
however, any additional interactions giving rise to reso-
nances will further reduce the mean free paths calculated
here.

III. DISCUSSION

Information is available concerning thebaryon chemical
potential. That chemical potential is parametrized in Ref.
[18] as

mB =
1270 MeV

S1 +
ÎSNN

4.3
D , s3.1d

and varies strongly withÎSNN, which is in GeV units in Eq.
(3.1). For ÎSNN=200 GeV, we havemB=26.7 MeV.

Of particular significance for our results is the choice of
the chemical potential for the quarks.(We recall that the
chemical potential is used here only to parametrize the anti-
quark distribution.) We have takenm,1 GeV. In the case of
the quarks, the choice ofm.1 GeV leads to small mean free
paths consistent with the suggestion of Shuryak that the reso-
nances seen in the MEM analysis of the lattice results are
responsible for the small mean free paths of the sticky mo-
lasses model.

We remark that in nuclear matter the baryon density is
0.17 fm−3 or 0.51 quarks/ fm3 if we consider the nucleon to
be composed of three quarks. For the values ofnspW1d shown
in Fig. 2 for the casem=1.3 GeV, we may calculate the
density of antiquarks to be 5.91 fm−3, so that the density of
quarks and antiquarks is about 12 fm−3 in our model. We
remark that the energy density at RHIC forÎSNN=200 GeV
is 4.1 GeV/fm3 [18], which is about 26 times the energy

density of nuclear matter, which is approximately
0.16 GeV/fm3.

In this work we have attempted to provide a quantitative
analysis of the suggestion[1] that the largeqq̄ resonant scat-
tering cross sections are responsible for the small quark
mean free paths, with the associated relevance of the hydro-
dynamic description of the system that is created in high-
energy nucleus-nucleus collisions. We have considered the
interaction in the scalar, pseudoscalar, vector, and axial-
vector channels of theqq̄ system. It is possible that there are
important resonances ofqq character, as well as theqq̄ reso-
nances considered here. Suchqq states are depicted in Fig.
8a of Ref.[1]. In addition we might also consider the role of
qg states. It would be of interest to see if such states are
found in lattice studies using the MEM scheme.

It appears that the resonances obtained in the MEM
scheme persist to rather high energies where instanton effects
are relatively unimportant. In that case one would have to
provide an alternate interpretation of the dynamics underly-
ing the model used in this work.[See Eq.(1.2).] Finally, we
note that a review of the hydrodynamic description of heavy-
ion collisions may be found in Ref.[19].

APPENDIX A

For ease of reference, we present a discussion of our cal-
culation of hadronic current correlators taken from Ref.[15].
The procedure we adopt is based upon the real-time finite-
temperature formalism, in which the imaginary part of the
polarization function may be calculated. Then, the real part
of the function is obtained using a dispersion relation. The
result we need for this work has been already given in the
work of Kobes and Semenoff[20]. (In Ref. [20] the quark
momentum iskm and the antiquark momentum iskm−Pm. We
will adopt that notation in this section for ease of reference to
the results presented in Ref.[20].) With reference to Eq.(5.4)
of Ref. [20], we write the imaginary part of the scalar polar-
ization function as

Im JSsP2,Td =
1

2
NcbSesP0dE d3k

s2pd3e−kW2/a2S 2p

2E1skd2E2skdD
3 hf1 − n1skd − n2skdgdfP0 − E1skd − E2skdg

− fn1skd − n2skdgdfP0 + E1skd − E2skdg − fn2skd

− n1skdgdfP0 − E1skd + E2skdg− f1 − n1skd

− n2skdgdfP0 + E1skd + E2skdgj. sA1d

Here, E1skd=fkW2+m1
2sTdg1/2. Relative to Eq.(5.4) of Ref.

[20], we have changed the sign, removed a factor ofg2, and
have included a statistical factor ofNc. In addition, we have

included a Gaussian regulator, expf−kW2/a2g. The valuea
=0.605 GeV was used in our applications of the NJL model
in the calculation of meson properties atT=0. We also note
that

n1skd =
1

ebE1skd + 1
sA2d

and

FIG. 4. Values oflsp2d are shown form=1.1 GeV (dotted
curve), m=1.3 GeV(dashed curve), andm=1.5 GeV(solid curve).
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n2skd =
1

ebE2skd + 1
. sA3d

For the calculation of the imaginary part of the polarization
function, we may setk2=m1

2sTd andsk−Pd2=m2
2sTd, since in

that calculation the quark and antiquark are an on-mass shell.
In Eq. (A1) the factorbS arises from a trace involving Dirac
matrices, such that

bS= − Trfsk” + m1dsk” − P” + m2dg sA4d

=2P2 − 2sm1 + m2d2, sA5d

where m1 and m2 depend upon temperature. In the frame

where PW =0, and in the casem1=m2, we havebS=2P0
2s1

−4m2/P0
2d. For the scalar case, withm1=m2, we find

Im JSsP2,Td =
NcP0

2

8p
S1 −

4m2sTd
P0

2 D3/2

e−kW2/a2
f1 − 2n1skdg,

sA6d

where

kW2 =
P0

2

4
− m2sTd. sA7d

For pseudoscalar mesons, we replacebS by

bP = − Trfig5sk” + m1dig5sk” − P” + m2dg sA8d

=2P2 − 2sm1 − m2d2, sA9d

which for m1=m2 is bP=2P0
2 in the frame wherepW =0. We

find, for thep mesons,

Im JPsP2,Td =
NcP0

2

8p
S1 −

4m2sTd
P0

2 D1/2

e−kW2/a2
f1 − 2n1skdg,

sA10d

where kW2=P0
2/4−mu

2sTd, as above. Thus, we see that the
phase space factor has an exponent of 1/2 corresponding to
a s-wave amplitude. For the scalars, the exponent of the
phase-space factor is 3/2, as seen in Eq.(A6).

For a study of vector mesons we consider

bmn
V = Trfgmsk” + m1dgnsk” − P” + m2dg, sA11d

and calculate

gmnbmn
V = 4fP2 − m1

2 − m2
2 + 4m1m2g, sA12d

which, in the equal-mass case, is equal to 4P0
2+8m2sTd,

whenpW =0. This result is needed when we calculate the cor-
relator of vector currents. Note that, for the elevated tem-
peratures considered in this work,musTd=mdsTd is quite
small, so that 4P0

2+8mu
2sTd can be approximated by 4P0

2,
when we consider the vector current correlation functions. In
that case, we have

Im JVsP2,Td .
2

3
Im JPsP2,Td. sA13d

At this point it is useful to define functions that do not con-
tain that Gaussian regulator,

Im J̃PsP2,Td =
NcP0

2

8p
S1 −

4m2sTd
P0

2 D1/2

f1 − 2n1skdg, sA14d

and

Im J̃VsP2,Td =
2

3

NcP0
2

8p
S1 −

4m2sTd
P0

2 D1/2

f1 − 2n1skdg.

sA15d

For the functions defined in Eqs.(A14) and (A15) we need
to use a twice-subtracted dispersion relation to obtain

Re J̃PsP2,Td or Re J̃VsP2,Td. For example,

Re J̃PsP2,Td = Re J̃Ps0,Td +
P2

P0
2fRe J̃PsP0

2,Td − Re J̃Ps0,Tdg

+
P2sP2 − P0

2d
p

E
4m2sTd

L̃2

ds
Im J̃Pss,Td

ssP2 − sdsP0
2 − sd

,

sA16d

where L̃2 can be quite large, since the integral over the
imaginary part of the polarization function is now conver-

gent. We may introduceJ̃PsP2,Td and J̃VsP2,Td as complex
functions, since we now have both the real and imaginary
parts of these functions. We note that the construction of
either ReJPsP2,Td, or ReJVsP2,Td, by means of a disper-
sion relation does not require a subtraction. We use these
functions to define the complex functionsJPsP2,Td and
JVsP2,Td.

In order to make use of Eq.(A16), we need to specify

J̃Ps0d and J̃PsP0
2d. We found it useful to take P0

2

=−1.0 GeV2 and to setJ̃Ps0d=JPs0d andJ̃PsP0
2d=JPsP0

2d. The

quantitiesJ̃Vs0d and J̃VsP0
2d are determined in an analogous

function. This procedure in which we fix the behavior of a

function such as ReJ̃VsP2d or Re J̃VsP2d is quite analogous
to the procedure used in Ref.[20]. In that work we made use
of dispersion relations to construct a continuous vector-
isovector current correlation function which had the correct
perturbative behavior for largeP2→−` and also described
the low-energy resonance present in the correlator due to the
excitation of ther meson. In Ref.[21] the NJL model was
shown to provide a quite satisfactory description of the low-
energy resonant behavior of the vector-isovector correlation
function.

We now consider the calculation of temperature-
dependent hadronic current correlation functions. The gen-
eral form of the correlator is a transform of a time-ordered
product of currents,

QUARK PROPAGATION IN THE QUARK-GLUON PLASMA PHYSICAL REVIEW C69, 065201(2004)

065201-5



iCsP2,Td =E d4xeiP·xkkTf jsxd js0dgll, sA17d

where the double bracket is a reminder that we are consid-
ering the finite temperature case.

For the study of pseudoscalar states, we may consider
currents of the formjP,isxd= q̃sxdig5liqsxd, where, in the case
of the p mesons,i =1, 2, and 3. For the study of scalar-
isoscalar mesons, we introducejS,isxd= q̃sxdliqsxd, where i
=0 for the flavor-singlet current andi =8 for the flavor-octet
current.

In the case of the pseudoscalar-isovector mesons, the cor-
relator may be expressed in terms of the basic vacuum po-
larization function of the NJL model,JPsP2,Td. Thus,

CPsP2,Td = JPsP2,Td
1

1 − GPsTdJPsP2,Td
, sA18d

where GPsTd is the coupling constant appropriate for our
study ofp mesons. We have foundGPsTd=13.49 GeV−2 by
fitting the pion mass in a calculation made atT=0, with
mu=md=0.364 GeV. The result given in Eq.(A18) is only
expected to be useful for smallP2, since the Gaussian regu-
lator strongly modifies the largeP2 behavior. Therefore, we
suggest that the following form is useful, if we are to con-
sider the larger values ofP2:

CPsP2,Td
P2 = F J̃PsP2,Td

P2 G 1

1 − GPsTdJPsP2,Td
. sA19d

(As usual, we setPW =0.) This form has two important fea-
tures. At largeP0

2, Im CPsP0,Td /P0
2 is a constant, since

Im J̃PsP0
2,Td is proportional toP0

2. Further, the denominator
of Eq. (A19) goes to 1 for largeP0

2. On the other hand, at
small P0

2, the denominator is capable of describing resonant
enhancement of the correlation function. As we have seen,
the results obtained when Eq.(A19) is used appear quite
satisfactory.(We may again refer to Ref.[21], in which a
similar approximation is described.)

For a study of the vector-isovector correlators, we intro-
duce conserved vector currentsjm,isxd= q̃sxdgmliqsxd with i
=1, 2, and 3. In this case we define

JV
mnsP2,Td = Sgmn −

PmPn

P2 DJVsP2,Td sA20d

and

CV
mnsP2,Td = Sgmn −

PmPn

P2 DCVsP2,Td, sA21d

taking into account the fact that the currentjm,isxd is con-
served. We may then use the fact that

JVsP2,Td =
1

3
gmnJV

mnsP2,Td sA22d

and

Im JVsP2,Td =
2

3
FP0

2 + 2mu
2sTd

8p
GS1 −

4mu
2sTd

P0
2 D1/2

3e−kW2/a2
f1 − 2n1skdg sA23d

.
2

3
Im JPsP2,Td. sA24d

[See Eq.(A7) for the specification ofk= ukWu.] We then have

CVsP2,Td = J̃VsP2,Td
1

1 − GVsTdJVsP2,Td
, sA25d

where we have introduced

Im J̃VsP2,Td =
2

3
FP0

2 + 2mu
2sTd

8p
GS1 −

4mu
2sTd

P0
2 D1/2

f1 − 2n1skdg

sA26d

.
2

3
Im J̃PsP2,Td. sA27d

In the literature,v is used instead ofP0 [4–6]. We may
define the spectral functions

sVsv,Td =
1

p
Im CVsv,Td, sA28d

and

sPsv,Td =
1

p
Im CPsv,Td. sA29d

Since different conventions are used in the literature
[4–6], we may use the notations̄Psv ,Td ands̄Vsv ,Td for the
spectral functions given there. We have the following rela-
tions:

s̄Psv,Td = sPsv,Td, sA30d

and

s̄Vsv,Td
2

=
3

4
sVsv,Td, sA31d

where the factor 3/4 arises because, in Refs.[4–6], there is a
division by 4, while we have divided by 3, as in Eq.(A22).

APPENDIX B

Here we extend the work of Appendix A to consider the

case of the finite three-momentumPW . We consider the calcu-

lation of Im JPsP0,PW ,Td. The momentaP0 and PW are the
values external to the loop diagram. Internal to the diagram,
we have a quark of momentumkm+Pm /2 leaving the left-
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hand vertex and an antiquark of momentumkm−Pm /2 enter-
ing the left-hand vertex. It is useful to define

E1skd = ukW + PW /2u sB1d

=Sk2 +
P2

4
+ kP cosuD1/2

sB2d

and

E2skd = ukW − PW /2u sB3d

=Sk2 +
P2

4
− kP cosuD1/2

. sB4d

Herek= ukWu andP= uPW u.
We have

Im JPsP0,PW ,Td =
1

2
NcbPesP0dE d3k

s2pd3e−kW2/a2S 2p

2E1skd2E2skdD
3hf1 − n1skd − n2skdgdfP0 − E1skd − E2skdg

− fn1skd − n2skdgdfP0 + E1skd − E2skdg

− fn2skd − n1skdgdfP0 − E1skd + E2skdg

− f1 − n1skd − n2skdgdfP0 + E1skd + E2skdgj.

sB5d

Here

n1skd =
1

ebE1skd + 1
sB6d

and

n2skd =
1

ebE2skd + 1
. sB7d

In Eq. (B5), the second and third terms cancel and the fourth
term does not contribute. It is useful to rewritedfP0−E1skd
−E2skdg using

dffscosudg =
2

U ] f

] cosu
U

x

dscosu − xd, sB8d

where

x2 = cos2u=
4P0

2sk2 + P2/4d − P0
4

4k2P2 . sB9d

We find

U ] f

] cosu
U =

1

2
kPUE1skd − E2skd

E1skdE2skd
U , sB10d

and obtain

Im JPsP0,PW ,Td =
1

2
NcbPesP0ds2pd2E k2dk

s2pd3e−k2/a2

3E 1

2E1skdE2skd
f1 − n1skd − n2skdg

3U ] fscosud
] cosu

Udscosu − xddscosud.

sB11d

We note there is a singularity whenE1skd=E2skd. That occurs
when cosu=0 or u=p /2. For our calculations we eliminate
the point withu=p /2 when evaluating the angular integral
over dscosuddscosu−xd in the last expression. We obtain

Im JPsP0,PW ,Td = NcbPesP0d
4p2

s2pd3Ekmax

k2dke−k2/a2

3U 1 − n1skd − n2skd
kPuE1skd − E2skdu

U
x

, sB12d

wherex is obtained from Eq.(B9),

x =
P0

kP
Fk2 +

P2

4
−

P0
2

4
G1/2

. sB13d

For the calculations reported in this work we haveP0

=EspW1d+EspW2d andPW =pW1+pW2, wherepW2 is the quark momen-
tum andpW1 is the antiquark momentum. Thus, we may also
use the notationJspW1,pW2d as we have done in the main text.
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