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Kopeliovich’s suggestion[Phys. Rev. C68, 044906(2003)] to perform nuclear geometry(Glauber) calcu-
lations using different cross sections according to the experimental configuration is quite different from the
standard practice of the last 20 years, and leads to a different nuclear geometry definition for each experiment.
The standard procedure for experimentalists is to perform the nuclear geometry calculation using the total
inelasticN-N cross section, which results in a common nuclear geometry definition for all experiments. The
incomplete acceptance of individual experiments is taken into account by correcting the detector response for
the probability of measuring zero for an inelastic collision, which can often be determined experimentally. This
clearly separates experimental issues such as different acceptances from theoretical issues which should apply
in general to all experiments. Extreme-independent models are used to illustrate the conditions for which the
two methods give consistent or inconsistent results.
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I. INTRODUCTION

In a recent article, Kopeliovich[1] has discussed the case
of nuclear geometry calculations for detectors that are not
fully sensitive to the total inelastic nucleon-nucleonsN-Nd
cross section, i.e., those with limited acceptance. He suggests
that the nuclear geometry(Glauber) calculation should be
done using different inelasticN-N cross sections according to
whether or not the detector is sensitive to inelasticN-N dif-
fractive processes. Explicitly, Kopeliovich suggests using the
N-N nondiffractive cross section, which he estimates to be
30 mb, in the nuclear geometry calculation for the PHOBOS
and PHENIX detectors, instead of the 42-mb total inelastic
N-N cross section used in both experiments[2]. The general
practice by experimentalists is to use the total inelasticN-N
cross section in the nuclear geometry calculation and then
correct for the limited phase-space coverage(the acceptance)
at the detector level.[4–6] This practice is based primarily
on the fact that the nuclear geometry calculation is then the
same for all experiments and so can be easily compared.
Second, in the case of fixed-target experiments, the number
of projectile participants, a key nuclear geometry parameter,
can be directly measured using a zero degree calorimeter
[6–8]. Third, all experiments have acceptance effects which
must be corrected in any case.

The issue of nondiffractive versus total inelasticN-N
cross section is relevant to the definition of projectile partici-
pants which can be directly measured using zero degree calo-
rimeters(ZDC). The solid angle of the ZDC is set to a very
small forward cone around the beam directionh*Ybeam, so
as to detect only projectile spectators. The ideal aperture
would allow the ZDC to measure the full kinetic energy of a
projectile nucleon in the case of no interaction, and to mea-
sure zero energy for any nucleon in the projectile that suf-
fered an inelastic collision, including diffraction dissociation.
Any inelastic interaction, including diffraction excitation,
which causes a projectile nucleon to acquire transverse mo-
mentum and lose energy, moves it out of the ideal ZDC
aperture. Thus, the energy recorded in the ZDC is propor-

tional to the number of noninteracting nucleons(“specta-
tors”) in the projectile, so that the number of nucleons which
have interacted(“projectile participants”) is straightfor-
wardly deduced.

It is important to note that at RHIC, the ZDCs do not
satisfy the ideal criterion and so do not directly measure the
number of projectile spectators, hence participants. Never-
theless, it is preferable to keep the nuclear geometry calcu-
lations general, in case, for instance, improved ZDCs are
installed at RHIC some time in the future. Furthermore, the
use of a common nuclear geometry definition by all four
RHIC experiments[2] has made comparisons among them
straightforward and transparent.

An additional argument against adjusting the cross section
used in the nuclear geometry calculation to account for the
experimental configuration is that this procedure does not
work in general and may, in certain models, give a different
answer from the standard method of including the accep-
tance in the detector response function. This will be illus-
trated using examples from extreme-independent models
which offer the advantage of explicitly separating the effect
of the nuclear geometry from the detector response.

II. EXTREME-INDEPENDENT MODELS

A. Standard procedure to correct for incomplete acceptance

The beauty and utility of having a generally applicable
nuclear geometry calculation, rather than one tailored for a
particular experiment, is that in the extreme-independent-
collision models ofB+A nuclear scattering, such as the
wounded nucleon model(WNM) [4,9] and wounded projec-
tile nucleon model(WPNM) [3,5], the effect of the nuclear
geometry of the interaction can be calculated independently
of the dynamics of particle production, which can be taken
directly from experimental measurements. In these models,
the nuclear geometry is represented as the relative probabil-
ity wn per interaction for a given numbern of total partici-
pants(WNM), projectile participants(WPNM), or other ba-
sic elements of particle production such as wounded
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projectile quarks(additive quark model—AQM) [10] or bi-
nary nucleon-nucleon collisions(NCM), integrated over the
impact parameter of theB+A reaction. Typically, Woods-
Saxon densities are used for both the projectile and target
nuclei, and the nucleon-nucleon inelastic cross sectionsinel

NN

appropriate to the c.m. energy of the collision is taken. At
AGS energies, 30 mb was used[5], corresponding to a
nucleon-nucleon mean free path of,2.2 fm at nuclear den-
sity, while at RHIC, an inelasticN-N cross section of 42 mb
is appropriate forÎsNN=200 GeV[11]. Once the nuclear ge-
ometry is specified in this manner, experimental measure-
ments can be used to derive the distribution(in the actual
detector) of ET or multiplicity (or other additive quantity) for
the elementary collision process, i.e., a wounded nucleon
(WNM) or a wounded projectile nucleon(WPNM), a
wounded projectile quark(AQM), or an N-N collision
(NCM), which is then used as the basis of the analysis of a
nuclear scattering as the result of multiple independent el-
ementary collision processes.

To illustrate the effect of the detector acceptance, we use
the number of collision model(NCM) as an example to cal-
culate anET distribution. The NCM calculation for aB+A
reaction is given by the sum

S ds

dET
D

NCM
= sBA o

n=1

Nmax

wnPnsETd, s1d

wheresBA is the inelasticB+A cross section,wn is the rela-
tive probability forn binary collisions in theB+A reaction,
from 1 to Nmax, andPnsETd is the calculatedET distribution
on the detector forn independentN-N collisions. If f1sETd is
the measuredET spectrum on the detector for one detected
N-N collision, andp0 is the probability for anN-N collision
to produce no signal in the detector, then, the correctly nor-
malizedET distribution for oneN-N collision is

P1sETd = s1 − p0df1sETd + p0dsETd, s2d

wheredsETd is the Dirac delta function andef1sETddET=1.
PnsETd (including thep0 effect) is obtained by convoluting
P1sETd with itself n−1 times

PnsETd = o
i=0

n
n!

sn − id ! i!
p0

n−is1 − p0di f isETd, s3d

where f0sETd;dsETd and f isETd is the ith convolution of
f1sETd

f isxd =E
0

x

dyf1sydf i−1sx − yd. s4d

Substituting Eq.(3) into Eq. (1)

S ds

dET
D

NCM
= sBA o

n=1

Nmax

wno
i=0

n
n!

sn − id ! i!
p0

n−is1 − p0di f isETd,

s5d

and reversing the indices gives a form that is considerably
easier to compute and which is relevant to the present dis-
cussion

S ds

dET
D

NCM
= sBA o

i=0

Nmax

wi8sp0df isETd

=sBAFw08sp0ddsETd + o
i=1

Nmax

wi8sp0df isETdG ,

s6d

where

wi8sp0d = s1 − p0di o
n=i

Nmax n!

sn − id ! i!
p0

n−iwn, s7d

and

w08sp0d = o
n=0

Nmax

p0
n wn = o

n=1

Nmax

p0
n wn s8d

is the probability for an inelasticB+A reaction to produce no
signal on the detector, wherew0=0 by definition[1]. Thus,
the detected cross section for aB+A reaction is sBA

det

=sBAs1−w08sp0dd.
It is important to emphasize that the acceptance of the

experimental measurement can be accounted for correctly by
using the measuredN-N cross section in the detector,sdet

NN, to
calculate the probability,p0, that anN-N inelastic collision
will produce zero signal on the detector

p0 = 1 −
sdet

NN

sinel
NN , s9d

and then takingp0 into account in the overall detector re-
sponse[3]. The properly normalized equation for 1N-N col-
lision on the detector is then given by Eq.(2) and the signal
for n independentN-N collisions on the detector is given by
the binomial distribution, Eq.(3). Thus, the true mean forn
independentN-N collisions on the detector is

kETln
true=E ET PnsETddET = nkETls1 − p0d, s10d

which is n times the true mean for 1N-N collision

kETltrue=E ET P1sETddET = kETls1 − p0d, s11d

wherekETl is the mean of the measuredET distribution for 1
detectedN-N collision, the reference distribution. It is impor-
tant to contrast Eq.(10) with the mean of thenth convolution
of the observed reference distribution, Eq.(4)

E ET fnsETddET = nkETl, s12d

which is n times the observedkETl, as it should be, and
which differs from the mean of the distributionPnsETd for n
independently interacting projectile nucleons[Eq. (10)] by a
factor of 1−p0 for all n.

To summarize, the NCM calculation for aB+A reaction is
given by Eq.(1), which uses the relative probabilities,wn, for
n independentN-N collisions calculated with the inelastic
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N-N cross section,sinel
NN, and takes into account the fraction

of inelasticN-N collisions, p0, which produce no signal on
the detector, by correcting the response function,PnsETd, Eq.
(3). The result is identical to Eq.(6), which is the sum over
convolutions of the uncorrected spectrum fori independent
detectedN-N collisions. The correction for the effect ofp0
appears inwi8sp0d [Eq. (7)], which are thus the relative prob-
abilities for i independent detectedN-N collisions [12]. It is
important to call attention to a key point of this section: if
instead of correcting for the acceptance at the detector level,
the correction is made by adjusting the input cross section of
the nuclear geometry calculation[1], then thewi8sp0d in Eq.
(7) should correspond to a Glauber calculation withsdet

NN

=s1−p0dsinel
NN.

B. Does using the observedsdet
NN in the nuclear geometry

calculation give the same result?

In the typical static or Glauber Monte Carlo calculation
[4,5] used to calculate the distributionwn of binaryN-N col-
lisions, a collision is defined when two nucleons pass within
a distancer øÎsinel

NN /p from each other. For any impact pa-
rameterb the number of collisions for a given nuclear con-
figuration is calculated and the distribution in the number of
collisions is obtained by integrating over all impact param-
eters. If the distributionwn is first calculated for a cross
sectionsinel

NN, then if a smaller cross section, e.g.,sdet
NN=s1

−p0dsinel
NN, is relevant, the probability form collisions with

cross sectionsdet
NN, givenn collisions with cross sectionsinel

NN,
is given by the binomial expansion

uPsmdun =
n!

sn − md ! m!
p0

n−ms1 − p0dm, s13d

to theextent that the collisions are statistically independent.
The new probability distributionwm8 sp0d for m collisions is
obtained by summing over allnùm, where 0ømøNmax

wm8 sp0d = o
n=m

Nmax

wnuPsmdun

= o
n=m

Nmax

wn
n!

sn − md ! m!
p0

n−ms1 − p0dm, s14d

or,

wm8 sp0d = s1 − p0dm o
n=m

Nmax n!

sn − md ! m!
p0

n−mwn. s15d

Since the relative probabilitywn of n collisions with cross
sectionsinel

NN is normalized

o
n=1

Nmax

wn = 1, s16d

it is easy to see thatwm8 are also normalized, which follows
by reversing the indicesm andn in Eq. (17):

o
m=0

Nmax

wm8 sp0d = o
m=0

Nmax

s1 − p0dm o
n=m

Nmax n!

sn − md ! m!
p0

n−mwn = 1,

s17d

o
m=0

Nmax

wm8 sp0d = o
n=1

Nmax

wno
m=0

n
n!

sn − md ! m!
p0

n−ms1 − p0dm

= o
n=1

Nmax

wnsp0 + s1 − p0ddn = 1. s18d

Clearly thewm8 sp0d in Eq. (15) and Eq.(7) are identical. This
proves that where the probability for a collision is propor-
tional to the cross section in question, and when the prob-
abilities for individual inelastic collisions are independent,
that the same result for the extreme independent calculation
of theET distribution in the NCM model for aB+A reaction
is obtained whether the detector response per collision is
corrected for the probabilityp0 of recording zero signal for
an inelastic collision, or when the actual measured cross sec-
tion in the detector is used in the calculation of the nuclear
geometry. This condition may also apply for the AQM, and a
specific example of the AQM with the detected cross section
used in the nuclear geometry calculation has been given in
the literature[13] for a−a collisions at the CERN-ISR[14].

However, the conditions of statistical independence and
linearity of the number of elementary “collisions” with cross
section do not apply for the cases of the wounded nucleon
model or the wounded projectile nucleon model. This is
shown for the WNM in Fig. 1, wherewn calculated with
either 42 or 30 mb does not change except for the most cen-
tral collisions, where there is a slight difference—this is
rather different from the combinatory suppression factor that

FIG. 1. (Color online) wn/2=ProbsNpart/2d for Au+Au with
sinel

NN=30 mb (E802 [3]) or 42 mb(PHENIX [11]) The dotted line
representswn/28 calculated with with sinel

NN=42 mb and 1−p0

=30/42=0.714.
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appears in the correct computation ofwn8sp0d with 1−p0

=30/42=0.714[Eqs.(6) and (7)].
Similar logic applies to the WPNM calculation, where the

number of projectile nucleons struck by a target nucleusA,
with a slightly different p-A cross section, would hardly
change for central collisions, and then only for nucleons near
the periphery.

One may question even for the number of collision model
whether the condition for independence of collisions applies.
In the Glauber model, an individual nucleon in a projectile
nucleus is defined to strike nucleons in the target nucleus
when the nucleons in the target are found within a distance
r øÎsinel

NN /p from the line of the projectile trajectory. In a
Glauber Monte Carlo calculation, the randomness of assem-
bling nucleons into a target nucleus with a density 0.16 fm−3

(following a Woods-Saxon distribution[4,5]) assures the ran-
domness of the number of target nucleons in a cylinder of
radius 1.16 fms0.98 fmd corresponding to sinel

NN=42 mb
s30 mbd. Thus, the probability to find a nucleon in its spot of
phase space in the cylinder(i.e., the probability for a binary
collision) for a p+A interaction at a given impact parameter
is random so the collisions are independent. However, for a
B+A reaction, as the impact parameter varies, the total num-
ber of nucleons involved varies in a correlated manner: the
more central the interaction, the larger the number of nucle-
ons that can make binary collisions. Thus, the number of
binary collisions is not fully random because each of the
nucleons participating tends to make more or fewer binary
collisions depending on the impact parameter. Thus, the dis-

tribution in wn is not binomial forB+A interactions.1 Nev-
ertheless, statistical independence is not unreasonable for the
change in probability corresponding to the change in radius
of 0.18 fm, which is much smaller than the random variation
of the number of target nucleons along a given projectile
trajectory, so the binomial distribution for the change in the
number of collisions with the change in cross section, Eq.
(13), is probably correct.

III. CONCLUSION

We have demonstrated that the use of the experimentally
detected cross section in the nuclear geometry(Glauber) cal-
culation is valid in certain classes of models but does not
work in general. The procedure which always works[3] is to
perform the nuclear geometry calculation with the inelastic
N-N cross section and correct the detector response for the
probability of measuring zero for an inelastic collision or
other fundamental element of particle production.
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