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The observational consequences of certain broken symmetries in a thermalized quark gluon plasma are
elucidated. The signature under study is the spectrum of dileptons radiating from the plasma, through gluon
fusion. Being a pure medium effect, this channel is nonvanishing only in plasmas with explicitly broken charge
conjugation invariance. The emission rates are also sensitive to rotational invariance through the constraints
imposed by Yang’s theorem. This theorem is interpreted in the medium via the destructive interference between
various multiple scattering diagrams obtained in the spectator picture. Rates from the fusion process are
presented in comparison with those from the Born term.
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I. INTRODUCTION

Experiments are now underway at the Relativistic Heavy
Ion Collider (RHIC) at Brookhaven National Laboratory to
study nuclear collisions at very high energies. The aim is to
create energy densities high enough for the production of a
state of essentially deconfined quarks and gluons: The quark
gluon plasma(QGP). The QGP is rather short lived and soon
hadronizes into a plethora of mesons and baryons. Hence, the
existence of such a state in the history of a given collision
must likely be surmised through a variety of indirect probes.
One of the most promising signatures has been that of the
electromagnetic probes: the spectrum of lepton pairs and real
photons emanating from a given collision. These particles,
once produced, interact only electromagnetically with the
plasma. As a result they escape the plasma with almost no
further rescattering and convey information from all time
sectors of the collision.

In this article, the focus will be on the spectrum of dilep-
tons radiating from a heavy-ion collision. The primary moti-
vation for measuring such a spectrum is the hope that the
formation of a QGP in the history of a collision will produce
a qualitative or quantitative difference in the observed rates.
The measured quantity is the number of dileptons, usually
binned according to their invariant mass. It is assumed that
this may be estimated by the following factorized form:
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where,d4Re+e−/d4q is the number of lepton pairs produced
per unit space time, per unit four-momentum, from the unit
cell at sxW ,td in a plasma in local equilibrium(local equilib-
rium is assumed here). Ostensibly, this depends on the four-
momentum of the virtual photon(q0,qW), the temperature(T),
and the relevant chemical potential(m). The temperature and
relevant chemical potential are, in general, local properties
for an expanding plasma and vary from point to point in the

plasma as indicated. Finally, the rates from each space time
cell have to be integrated over the entire space time evolu-
tion of the plasma; where, the spatial limits of the expanding
plasma are represented by the variablesx−std , x+std,
y−std , y+std, z−std, andz+std.

Many calculations of the dilepton radiation in the decon-
fined sector have concentrated on the Born termqq̄→e+e− to
estimate the differential rated4Re+e−/d4q [1,2]. In those, the
focus has usually been more on the effect of the space time
evolution of the plasma on the final spectrum. Higher order
rates have also become recently available[3]. All these rates
essentially consist of vacuum processes that have been gen-
eralized to include medium effects of incoming medium par-
ticles, along with Pauli blocking(Bose enhancement) for
outgoing fermions(bosons). They also include thermally
generated widths and masses for the propagating particles.
However, these rates have nonzero vacuum counterparts.
Contrary to these are thepure mediumreactions, i.e., pro-
cesses whose vacuum counterparts are identically zero. Such
processes arise as a result of the medium breaking various
symmetries which are manifest in the vacuum[4]. The mo-
tivation behind exploring such processes is the possibility of
observing a spectrum(emanating from these) which is no-
ticeably distinct experimentally from the case where a QGP
was not produced in a collision, or the symmetry remained
unbroken by the plasma. Such a channel will be explored in
this article.

It is now well established that the central region at RHIC
is not just heated vacuum, but actually displays a finite
baryon density[5] or an asymmetry between baryon and an-
tibaryon populations. This asymmetry may be achieved by
the introduction of a quark(or baryon) chemical potentialmq.
For example, it may be argued that any baryon number
asymmetry prevalent in the QGP must have been introduced
by valence quarks, which, having encountered a hard scatter-
ing, failed to exit the central region. Hence, a chemical po-
tential m is provided for the up and the down quark. The
strange quarks are brought in by the sea or produced ther-
mally in the medium in equal proportion with antistrange
quarks. Hence, they are assignedm=0. In most heavy-ion
collisions, the nuclei of choice are rather large and display
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isospin asymmetry, i.e., there is an asymmetry in the popu-
lations of neutrons and protons being brought into the central
region. If the stranded valence quarks in the plasma arrive
with equal probability from either nucleon, one would re-
quire a higherm for down quarks. As a first approximation,
this effect is ignored, and in the remaining,mu=md is ac-
cepted.

In such a scenario a finite baryon density may lead to a
finite charge density. This is discussed briefly in Sec. II. It
has been proposed that the presence of a finite charge density
will lead to a new channel for the production of lepton pairs
[6]. Diagrammatically, this is achieved through a two-gluon-
photon vertex with a quark triangle(see Fig. 2). The vacuum
counterpart of this process is constrained by Furry’s theorem
[7] and is identically zero. The extension of this symmetry
and its breaking by the medium was discussed in[8]; for
completeness a discussion is included in Sec. II. Calculations
will be carried out in the imaginary time formalism[9], how-
ever, our method of treating finite density will differ slightly
from the standard method. This is outlined in Sec. III. Our
formalism leads naturally to the spectator interpretation[10]
of the quark loop, also discussed in Sec. III. In vacuum,
gluon fusion is also constrained by Yang’s theorem[11]. This
constraint, based on rotational invariance, also sets the
vacuum counterpart to zero. The extension and eventual
breaking of this symmetry in the medium are discussed in
Sec. IV. Yang’s theorem is broken by two different medium
effects; each is isolated and the dilepton rate from it is evalu-
ated in Secs. V and VI. Concluding discussions are presented
in Sec. VII. A brief appendix of intermediate derivations fol-
low.

II. BARYON DENSITY, CHARGE DENSITY,
AND FURRY’S THEOREM

At zero temperature, and at finite temperature with zero
charge density, diagrams in QED that contain a fermion loop
with an odd number of photon vertices(e.g., Fig. 1) are
canceled by an equal and opposite contribution coming from
the same diagram with fermion lines running in the opposite
direction. This is the basic content of Furry’s theorem[7]
(see also[12,13]). This statement can also be generalized to
QCD for processes with two gluons and an odd number of
photon vertices. The theorem is based solely on charge con-
jugation invariance of the theory.

In the language of operators, it may be noted that these
diagrams are encountered in the perturbative evaluation of
Green’s functions with an odd number of gauge field opera-
tors, i.e.,

k0uAm1Am2 . . .Am2n+1u0l.

In QED, CAmC−1=−Am, whereC is the charge conjugation
operator. In the case of the vacuum,Cu0l= u0l. As a result,

k0uAm1
Am2

. . .Am2n+1
u0l

= k0uC−1CAm1
C−1CAm2

. . .Am2n+1
C−1Cu0l

= k0uAm1
Am2

. . .Am2n+1
u0ls− 1d2n+1

= − k0uAm1
Am2

. . .Am2n+1
u0l = 0. s2d

In an equilibrated medium at a temperatureT, we not only
have the expectation of the operator on the ground state but
on all possible matter states weighted by a Boltzmann factor,
i.e.,

o
n

knuAm1
Am2

. . .Am2n+1
unle−bsEn−mQnd,

where b=1/T and m is a chemical potential. Here,Cunl
=eifu−nl, whereu−nl is a state in the ensemble with the same
number of antiparticles as there are particles inunl and vice
versa. Ifm=0, one obtains

knuAm1
Am2

. . .Am2n+1
unle−bEn

= − k− nuAm1
Am2

. . .Am2n+1
u− nle−bEn. s3d

The sum over all states will contain the mirror term
k−nuAm1

Am2
. . .Am2n+1

u−nle−bEn, with the same thermal weight

⇒o
n

knuAm1
Am2

. . .Am2n+1
unle−bEn = 0, s4d

the expectation over states which are excitations of the
vacuum, u0l will again be zero as in Eq.(2), and Furry’s
theorem still holds. However, ifmÞ0,

knuAm1
Am2

. . .Am2n+1
unle−bsEn−mQnd

= − k− nuAm1
Am2

. . .Am2n+1
u− nle−bsEn−mQnd, s5d

the mirror term this time is

k− nuAm1
Am2

. . .Am2n+1
u− nle−bsEn+mQnd,

with a different thermal weight, thus

o
n

knuAm1
Am2

. . .Am2n+1
unle−bsEn−mQnd Þ 0. s6d

This represents the breaking of Furry’s theorem by a medium
with nonzero charge density or chemical potential.

Some points are in order: there is more than one kind of
density that may manifest itself in the plasma. There is the
net baryon density which requires that there be a difference
in the populations of quarks and antiquarks of a given flavor.
There is the net charge density which simply requires that
there be more of one kind(either positive or negative) of

FIG. 1. Diagrams that are zero by Furry’s theorem and exten-
sions thereof at finite temperature. These become nonzero at finite
charge density.
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charge carrier in the medium. Note that it is possible to have
a net baryon density and yet no charge density, and vice
versa, as Table I indicates. As mentioned in Sec. I, it will be
assumed that there is a net baryon density, which manifests
itself solely in the up and down flavors of the quarks. As the
up quark has a charge of +2

3 and the down quark −13, equal
densities of both will lead to a QGP with a net electric charge
density. It will be demonstrated in the following sections that
it is this density that leads to a dilepton signature of the
breaking of Furry’s theorem at leading order in the electro-
magnetic (EM) coupling constant. The baryon density
merely serves the purpose of generating such a charge den-
sity. Hence, this signal is not present, at leading order, in a
plasma with amu=md=ms, where the net charge is zero[14].

In the previous paragraph, pure QED diagrams have been
discussed. One may now make the most simple extension to
QCD, by replacing two of the photons with incoming gluons.
It is to be noted that while the photon is an eigenstate of the
charge conjugation operatorC the gluon is not[15]. There
are eight gluons, each carrying a color charge in the adjoint
representation of SU(3). The sole role played by color in this
calculation will be to furnish the factor of Trftatbg in the
Feynman rules. The calculations are identical to those in
QED. The reasons for considering this sort of diagram over
others are obvious: this is the lowest order effect in the se-
ries; loops with more particles attached will invariably be
suppressed by coupling constants and phase space argu-
ments. Also, diagrams with more than two gluons are non-
zero in the vacuum itself and finite density effects may then
be a mere excess on top of an already nonzero contribution.
Our exploratory calculation mainly seeks to highlight the
behavior of a new channel.

Cases with all values of the three-momentumpW of the
photon from zero(maximum timelike) up to almost the en-
ergy E of the photon(almost lightlike) will be considered.
We will consider cases where the gluons will be both mas-
sive and massless. The quarks will be massive in all cases.

III. FORMAL CALCULATION

In this section, the computation of the dilepton production
rate from the two-gluon channel is outlined. The first step is
the evaluation of the two-gluon-photon vertex in the imagi-
nary time formalism. This is then used to construct a three-

loop photon self-energy. The imaginary photon frequency is
then analytically continued to real values. On the real axis
one encounters various branch cuts: we pick the cut that
corresponds to the process of two-gluon fusion and evaluate
the imaginary part of the photon self-energy. This is a rather
technical procedure. However, a method has been proposed
which allows one to construct the imaginary part of the pho-
ton self-energy in terms of multiple scattering diagrams[10].
This technique has been loosely termed as the “spectator
interpretation” of self-energies. A detailed investigation of
this procedure has been carried out for two loop self-energies
in f4 theory [16] as well as in QCD[17]. In the following
subsections the spectator interpretation will be extended to
three loops. This represents a significant application of the
spectator interpretation, and this permits a physical explana-
tion of the extension and breaking of Yang’s theorem in the
medium.

A. The two-gluon-photon vertex atmÅ0 and p¢Å0

In the following, we will outline the formal derivation of
the two-gluon-photon vertex. Details of the method are pre-
sented in the appendix. The Feynman diagrams for the two-
gluon-photon vertex as illustrated in Fig. 2, consists of two
sets of quark triangle diagrams with the fermion number run-
ning in opposite directions. The two vertices are

Tmnr =
− 1

b
E d3q

s2pd3o
n

TrFiedkig
m isq” + md

q2 − m2 igtij
bgn

3
isq” − k” + md
sq − kd2 − m2igtjk

c gr isq” − p” + md
sq − pd2 − m2G , s7d

TABLE I. Different scenarios of plasmas with different baryon and charge densities.

No. of No. of No. of No. of No. of No. of Baryon Charge

u’s ū’s d’s d̄’s s’s s̄’s density density

n n n n n n 0 0

n n 0 0 0 0 0 0

n m 0 0 0 0 sn−md /3 2sn−md /3

0 0 n m 0 0 sn−md /3 sm−nd /3

n m n m 0 0 2sn−md /3 sn−md /3

n m n m n m sn−md 0

n m m n 0 0 0 sn−md

FIG. 2. The two-gluon-photon effective vertex as the sum of
two diagrams with quark number running in opposite directions.
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Tmrn =
− 1

b
E d3q

s2pd3o
n

TrFiedikgm isq” + p” + md
sq + pd2 − m2igtkj

c gr

3
isq” + k” + md
sq + kd2 − m2igtji

bgn isq” + md
q2 − m2 G , s8d

where the trace is implied over both color and spin indices.
As always in the imaginary time formalism, the zeroth com-
ponents of each four-momentum is a discrete even or odd
frequency:

q0 = is2n + 1dpT + m, p0 = i2mpT, k0 = i2jpT.

n, m, and j are integers,m is the quark chemical potential,
and thet’s are Gell-Mann matrices. The overall minus sign is
due to the fermion loop. The sum overn runs over all inte-
gers from −̀ to +`. This sum may be performed by two
distinct methods: the method of contour integration[9] and
the method of noncovariant propagators[18]. Each method is
more advantageous in certain cases. In this article, we use the
method of contour integration to evaluate Eqs.(7) and (8)
(for an evaluation of similar diagrams using noncovariant
propagators see Ref.[6]). For later convenience, we will
separate the momentum-dependent and mass-dependent parts
of the numerators of bothTmnr and Tmrn. This is merely a
formal procedure and forTmnr consists of the following:

Tmnr = BmanbrgT1abg
+ A1

mnr

=
eg2dbc

2b
E d3q

s2pd3o
n

TrF Bmanbrgqasq − kdbsq − pdg

sq2 − m2dfsq − kd2 − m2gfsq − pd2 − m2g
+ m2

Amanrqa + Amnbrsq − kdb + Amnrgsq − pdg

sq2 − m2dfsq − kd2 − m2gfsq − pd2 − m2g G . s9d

Where Amnrg represents the trace of fourg matrices and
Bmanbrg represents the trace of sixg matrices. The denomi-
nators of bothT1abg andA1

mnr are the same and hence have
the same set of poles.

The sum overn may be formally rewritten as a contour
integration over an infinite set of contours each encircling the
pointsq0= is2n+1dpT+m. The difference between this situ-
ation and that at zero densitysm=0d is that the contours are
on a line displaced bym from they axis. In the usual proce-
dure (see Sec. 3.6 of Ref.[9]), one separates the vacuum
piece, a thermal particle and antiparticle piece, and a pure
density contribution. However, it is possible to deform the
contours in a way entirely similar to the zero density situa-

tion. One obtains two infinite closed semicircular contours
(see the Appendix for details). The sole difference from the
zero density situation is that one of the contours will be
multiply connected: in the case ofTmnr this consists of the
exclusion of the points atq0= is2n+1dpT+m by an infinite
set of infinitesimal contours, while in the case ofTmrn, the
points at q0= is2n+1dpT−m are excluded. Performing the
contour integration will essentially result in the evaluation of
the residues of the functions in Eqs.(7) and(8) at its various
poles with appropriate finite density thermal weights. Com-
bining the results obtained from the application of this pro-
cedure onTmnr andTmrn one obtains

Tmnr =E d3q

s2pd3o
i
FusvidS 1

ebsq0−md + 1
−

1

ebsq0+md + 1
D + us− vidS 1

ebs−q0−md + 1
−

1

ebs−q0+md + 1
DG

3
eg2dbc

2b
Res .F Babg

mnrqasq − kdbsq − pdg

sq2 − m2dfsq − kd2 − m2gfsq − pd2 − m2g
+ 4m2gmnsq − p − kdr + gmrsq − k + pdn + gnrsq + k − pdm

sq2 − m2dfsq − kd2 − m2gfsq − pd2 − m2g
G

q0=vi

,

s10d

where thevi’s (with i running from 1 to 6) are the residues of
the function within the large square brackets. We find, as
would have been expected, that the entire contribution is
proportional to the difference of the quark and antiquark dis-
tribution functions. We denote these asDñsq0,md
=1/sebsq0−md+1d−1/sebsq0+md+1d. The residues will be

evaluated at the various poles of the integrand. A close in-
spection of Eq.(10) indicates that there are three poles on the
positivex axis at

q0 = Îq2 + m2 = Eq, s11d
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q0 = ÎuqW − kWu2 + m2 + k0 = Eq−k + k0, s12d

q0 = ÎuqW − pW u2 + m2 + p0 = Eq−p + p0, s13d

and three on the negativex axis,

q0 = − Îq2 + m2 = − Eq, s14d

q0 = − ÎuqW − kWu2 + m2 + k0 = − Eq−k + k0, s15d

q0 = − ÎuqW − pW u2 + m2 + p0 = − Eq−p + p0. s16d

We denote the residue at each of these poles as residues
(1)–(6). Before evaluating the function at each of these resi-
dues, we consider the fate of the remaining imaginary fre-
quencies in the expressionsk0, p0. The even frequencyk0

also has to be summed in a similar fashion asq0. The exter-
nal photon frequencyp0 will have to be analytically contin-
ued to a general complex value and finally the discontinuity
of the full self-energy across the real axis ofp0 will be con-

sidered. We perform this procedure in the next section.

B. The photon self-energy and its imaginary part

We are now in a position to calculate the contribution
made by the diagram of Fig. 2 to the dilepton spectrum ema-
nating from a quark gluon plasma. To achieve this, we
choose to calculate the discontinuity of the photon self-
energy as represented by the diagram of Fig. 3 across the real
axis of p0. In the previous section we presented expressions
for Tmnrsp,k,p−kd: the vertex with the two-gluon momenta
incoming and the photon momentum outgoing. To derive the
expression for the full self-energy we also need expressions
for T8mnrs−p,−k,k−pd: the vertex with the photon momen-
tum incoming and the gluon momenta outgoing. This vertex
also admits a decomposition into two pieces for quark num-
ber running in opposite directions,

T8mnrs− p,− k,k − pd = T8mnr + T8mrn, s17d

where the factorT8mnr can be written as

T8mnr = BmgnbraT`gba8 + A18
mnr

=
eg2dbc

2b
E d3q

s2pd3o
n
F Bmgnbraqgsq + kdbsq + pda

sq2 − m2dfsq + kd2 − m2gfsq + pd2 − m2g
+

Amgnrqg + Amnbrsq + kdb + Amnrasq + pda

sq2 − m2dfsq + kd2 − m2gfsq + pd2 − m2g G . s18d

The traces of four and sixg matrices admit the following
identities:

Amgnr = Arngm = Amrng, s19d

Amnbr = Arbnm = Amrbn, s20d

Amnra = Aarnm = Amarn, s21d

Bmgnbra = Barbngm = Bmarbng. s22d

In each equation above, the first equality uses the fact that
the trace ofn g matrices in a particular order is the same if
the order is fully reversed. The second equality uses the cy-
clic properties of the trace to putgm at the start in each case.
Substituting the above identities in Eqs.(17) and (18), we
may easily demonstrate that

T8mnrs− p,− k,k − pd = Tmnrsp,k,p − kd. s23d

Implementing the above simplifications we may, formally,
write down the full expression for the three-loop photon self-
energy in the imaginary time formalism as(note, there are
many other photon self-energy diagrams at three loops, how-
ever we only consider the contribution which arises due to
the breaking ofC invariance)

iPmnspd =
i

b
o
k0
E d3k

s2pd3iT8mrns− p,− k,k − pd

3DrzskdiTnzdsp,k,p − kdDdgsp − kd

=
i

b
o
k0
E d3k

s2pd3iTmrgsp,k,p − kd

3DrzskdiTnzdsp,k,p − kdDdgsp − kd. s24d

The diagram that we are considering is that of Fig. 3. In the
above equationDrzskd is the gluon propagator. We perform
the calculation in the Feynman gauge for the gluons:

Drzskd =
− igrz

k2 . s25d

In order to calculate the differential rate of dilepton produc-
tion we need to evaluate the discontinuity of the photon self-
energy. This involves, first, converting the sum over discrete
k0 frequencies into a contour integral over a complex con-
tinuousk0, as was done forq0. This would be followed by
the evaluation of the contour integral by summing over the
residues of the integrand at each of the poles ofk0. Finally
we look for poles and branch cuts in this expression as a
function of p0 by analytically continuingp0 onto the real
axis. There are many poles ink0 for which we have to evalu-
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ate residues. Some of these poles are in the denominators of
the gluon propagators, while some are in the verticesTmnr

andT8mnr. As the residues at each of these poles is analyti-
cally continued inp0 from a discrete imaginary frequency to
a complex number and finally to a real continuous energy,
various branch cuts will appear. This procedure of evaluation
of residues and analytic continuation may also be performed
prior to thed3k or d3q integrations: at this stage the branch
cuts on the realp0 axis appear as poles in thed3k or d3q
integrations asp0→E+ ie. The presence of theie will allow
each integrand to be unambiguously broken up into a set of
principle values and imaginary parts. Combining these will
lead to various real and imaginary parts of the full self-
energy and will correspond to various physical processes of
photon propagation and decay in the medium. Twice the in-
tegral over the imaginary parts will give us the required dis-
continuity.

To obtain the discontinuity we essentially choose a pair of
poles in the expression; evaluate the residue of thedk0 inte-
gration at the first pole and twice the imaginary part of the
d3k,d3q integration asp0→E+ ie at the second pole. Each
such combination constitutes a “cut” of the self-energy or a
part of a cut of the self-energy. The cut line essentially passes
through a set of propagators in the self-energy, dividing it
into two disjointed pieces(see, for example, Fig. 3). The
propagators that have been cut are indicated by the energy
momentum delta functions obtained from the residue and
discontinuity procedure. If we denote the Feynman rule for
one of the disjointed pieces asM1 and the other byM2,
then this particular discontinuity of the self-energy gives the
Feynman rule forM2

*M1 or M1
*M2. If the cut is symmet-

ric, i.e., M1=M2, then we obtain the square of the ampli-
tude for the processuM1u2. For this calculation we are solely
interested in the square of the amplitude of the process
shown in the lower panel of Fig. 3. Our preceding discussion
indicates that this will be given by the cut line indicated in

the upper panel of the figure. This is the process of gluon-
gluon fusion to produce a heavy photon resulting in a dilep-
ton. The other cuts represent extra finite density contribu-
tions to processes already nonvanishing at zero density.

The above discussion indicates that we merely have to
look for poles in the denominators of the gluon propagators.
Isolating this piece from Eq.(24), we note the denominators
of the two sets of gluon propagators is

1

k2

1

sp − kd2 =
1

sk0 − kdsk0 + kd
1

sp0 − k0 − Ep−kdsp0 − k0 + Ep−kd
,

s26d

where Ep−k= upW −kWu. The k0 integration will encounter four
possible poles atk0= ±k, andk0=p0±Ep−k. Each choice will
lead to a different process asp0 is analytically continued to
the real axis. All choices will not lead to the desired process.
We now investigate each of these possibilities in turn.

We begin by evaluating the residue of the remaining inte-
grand at the polek0=k. At this pole the remaining three
denominators are

1

2k

1

p0 − k − Ep−k

1

p0 − k + Ep−k
.

On analytically continuingp0 we will obtain two locations
on the real line ofp0 where a discontinuity may occur:p0

=E=k+Ep−k and p0=k−Ep−k. The second pole will lead to
the photon invariant massE2−p2,0, i.e., a spacelike pho-
ton, we ignore this cut. Substituting the first value forp0, we
obtain the discontinuity of the self-energy atE=k+Ep−k. This
turns the gluon denominators into

− ipdsE − k − Ep−kd
1

2k

1

2Ep−k
.

Evaluating the residue atk0=−k, we obtain the remaining
denominators as

1

− 2k

1

− p0 − k − Ep−k

1

− p0 − k + Ep−k
.

This leads to two possible locations on the real line ofp0

where a discontinuity may occur: −k−Ep−k andEp−k−k. The
first choice leads to a negative energy photon and the second
to a photon with a spacelike invariant mass, thus we ignore
this k0 pole altogether.

Evaluating the residue atk0=p0+Ep−k and analytically
continuingp0, we once again obtain a negative energy pho-
ton and a spacelike photon and thus this residue is ignored as
well. The final residue is atk0=p0−Ep−k. This leads to pos-
sible discontinuities atp0=E=k+Ep−k andEp−k−k. The sec-
ond possibility leads to a spacelike photon and is ignored.
The first gives a timelike photon with positive energy and
thus is included in the cuts considered. With this choice we
obtain the gluon denominators as

FIG. 3. The full photon self-energy at three loops and the cut
that is evaluated.
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− ipdsE − k − Ep−kd
1

2k

1

− 2Ep−k
.

Thus, in performing the sum over the Matsubara frequencies
k0 we will only confine ourselves to two poles: one on the
positive side of the real axis atk0=k, one on the negative
side atk0=p0−Ep−k. For both poles, we analytically continue
p0 to E=k+Ep−k, leading to

k0 = p0 − Ep−k = E − Ep−k = k + Ep−k − Ep−k = k.

Thus, in the rest of the expression we will simply replace
k0→k and use the appropriate distribution functions in each
case depending on whether the initialk0 pole was on the
positive or negative side. Then, we will use the delta function
to set the value ofk. The results of this procedure as well as
the final expressions and their properties will be discussed in
the next subsection.

One may also expect the gluons to acquire a thermal dis-
persion relation in the hot QCD medium(see Ref.[19]). In a
later section we will employ a simplified version of the in-
medium gluon dispersion relations: the gluons will be as-
cribed a thermal mass. The above derivation of the photon
self-energy and the pole analysis are still valid, provided we
use a massive vector propagator such as

Drzskd = − i

grz −
krkz

mg
2

k2 − mg
2 , s27d

and we substitute in the vertex expressions every occurrence
of the massless gluon energyk by its massive equivalent
Ek=Îk2+mg

2, wheremg is the thermal gluon mass.

C. The spectator interpretation

In this section we evaluate the particular cut of Fig. 3 of
the three-loop photon self-energy. Focusing on the two poles
of k0 highlighted in the preceding subsection and performing
the associated analytic continuation ofp0, we obtain the dis-
continuity in the photon self-energy as

DiscPmn =E d3k

s2pd3TmrgsE,k,Ep−kd
grz

2k
TnzdsE,k,Ep−kd

gdg

2Ep−k

3F1

2
+

1

ebk − 1
Gs− 1df− 2pidsE − k − Ep−kdg

−E d3k

s2pd3TmrgsE,k,Ep−kd
grz

2k
TnzdsE,k,Ep−kd

gdg

2Ep−k

3F1

2
+

1

ebs−Ep−kd − 1
Gs− 1df− 2pidsE − k − Ep−kdg.

s28d

Combining the gluon distribution functions and using the
relationEp−k+k=E, we obtain

FIG. 4. Multiple scattering expansion of the quark loop. Each
diagram corresponds to a residue of theq0 integration.

FIG. 5. Multiple scattering expansion of the lower diagram in Fig. 3. Each diagram corresponds to a residue of theq0 integration.
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DiscPmn =E d3k

s2pd3TmrgsE,k,Ep−kd
grz

2k
TnzdsE,k,Ep−kd

gdg

2Ep−k

3sebE − 1dnskdnsEp−kdf2pidsE − k − Ep−kdg.

s29d

To obtain the differential rate for dilepton production we
need the quantityr =fpmpn /p2−gmngDiscf−iPmng. We substi-
tute the expression for DiscfPmng and note that the interven-
ing factors of the metric, as, well the factorpmpn /p2−gmn,
are obtained from the sum over the polarizations of the in-
coming gluons and the outgoing photon:

o
i

«ir
* skd«izskd → − grz, s30d

o
l

«lmspd«ln
* spd =

pmpn

p2 − gmn. s31d

Substituting the above relations intor, we obtain

r = o
i

o
j

o
l
E d3k

s2pd32k2Ep−k
f«lmTmrg«i

*
r« j

*
ggf«l

*
nT

nzd« jd«izg

3sebE − 1dnskdnsEp−kdf2pdsE − k − Ep−kdg. s32d

Introducing factors of 2p and extra delta functions we may
formally write the above as a straightforward kinetic theory
equation:

r = o
i

o
j

o
l
E d3k

s2pd32k
E d3v

s2pd32v
fMi,j ,lg*fMi,j ,lg

3sebE − 1dnskdnsEp−kdfs2pd4d4sp − k − wdg, s33d

whereMi,j ,l is the thermal matrix element for two gluons in
polarization statesi , j to make a transition into a photon in a
polarization statel. The entire process is weighted by the
appropriate thermal gluon distribution functions and has the
usual energy momentum conserving delta function. In this
calculation both gluons are massless; thus they have only
two physical polarizations. The photon being massive has an
extra polarization«3

m. Note that the thermal matrix elements
Mi,j ,l still contain thermal distribution functions. Thus they
encode information regarding incoming and outgoing quarks
from the process into the medium. Using the polarization
vectors, the thermal matrix elements may be easily expressed
as vacuum multiple scattering diagrams with thermal weights
for the incoming and outgoing quarks as well. This reformu-
lation of the thermal loops is the spectator interpretation. We
now no longer have a quark loop; it is replaced with a set of
coherent tree diagrams.

Recall that in the evaluation ofTmnr we had performed a
contour integration overq0 and obtained six residues[see
Eqs.(11)–(16)]. We did not elucidate the residues at the time,
as we still had two complex frequencies,k0 and p0, in the
expressions. Once the residue in thek0 integration has been
taken andp0 analytically continued, we obtain the following
results.

For the pole atq0=Îq2+m2=Eq we obtain

T1
mnrsq0 = Eq,k

0 = k,p0 = Ed =
eg2dbc

2
E d3q

s2pd3F Babg
mnrqasq − kdbsq − pdg

2Eqfsq − kd2 − m2gfsq − pd2 − m2g

+ 4m2gmnsq − p − kdr + gmrsq − k + pdn + gnrsq + k − pdm

2Eqfsq − kd2 − m2gfsq − pd2 − m2g
GDñsEq,md. s34d

Once againBabg
mnr represents the trace of six gamma matrices. The term above may be reinterpreted as

T1
mnr =

− eg2dbc

2
E d3q

s2pd32Eq
o

r

ūrsqdgnsq” − k” + mdgrsq” − p” + mdgmursqd
ssq − kd2 − m2dssq − pd2 − m2d

3
1

2
fh1 − ñsEq,md − ñsEq,mdj − h1 − ñsEq,− md − ñsEq,− mdjg

=t1
mnr1

2
fh1 − ñsEq,md − ñsEq,mdj − h1 − ñsEq,− md − ñsEq,− mdjg, s35d

wherer is the spin of the quark(or antiquark) of momentum
q. The distribution functions have been written in a way to
distinguish the contributions from quarks and antiquarks. If
we concentrate only on the coefficient of the quark part of
the distribution functions we note thatmi,j ,l

1 =«lmt1
mrg«ir

* « jg
* is

simply the Feynman rule for the process indicated asT1 in
Fig. 4. The spins for the incoming quark have been averaged

over, while its momentum has been integrated over. One may
also show that the coefficient of the antiquark part of the
distribution functions corresponds to the diagram referred to
asT4 in Fig. 4, with the incoming quark line replaced by an
incoming antiquark line.

Following the procedure, as outlined above, one may eas-
ily demonstrate that each residue ofq0 corresponds to a mul-
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tiple scattering topology. As a result there are six different
coherent tree diagrams as shown in Fig. 4. Each tree diagram
in Fig. 4 corresponds to a residue of theq0 integration. No
particular time ordering is implied except that the gluons are
incoming and the photon is outgoing. The quarks can be both
incoming and outgoing. As a result, the thermal matrix ele-
mentMi,j ,l in Eq. (33) may be expanded as

Mi,j ,l =
1

2
smi,j ,l

1 + mi,j ,l
2 + mi,j ,l

3 + mi,j ,l
4 + mi,j ,l

5 + mi,j ,l
6 d

3fh1 − ñsEq,mdj − ñsEq,mdg

+
1

2
sm̄i,j ,l

1 + m̄i,j ,l
2 + m̄i,j ,l

3 + m̄i,j ,l
4 + m̄i,j ,l

5 + m̄i,j ,l
6 d

3fh1 − ñsEq,− mdj − ñsEq,− mdg, s36d

wheremi,j ,l
1 is the vacuum amplitude of the diagram referred

to asT1 in Fig. 4, andm̄i.j ,l
1 is the same diagram with the in

and outgoing quark replaced with an antiquark. It may be
easily demonstrated, by a simple variable transformation,
that m̄i,j ,l

1 −mi,j ,l
4 . The same is true for the other amplitudes

with antiquarks, each is the negative of a different vacuum
amplitude from the six. As a result we obtain

Mi,j ,l = smi,j ,l
1 + mi,j ,l

2 + mi,j ,l
3 + mi,j ,l

4 + mi,j ,l
5 + mi,j ,l

6 d

3f− ñsEq,md + ñsEq,− mdg. s37d

From the above expression it is obvious that if the chemical
potential m=0, then the rate is zero as well. Note that the
imaginary time formalism only provides us with the square
of the above term. Indeed it isM2 which will eventually
determine the rate. The uncoupling of theM2 to individual
tree amplitudes constitutes the proof of the spectator inter-
pretation of the imaginary time formalism. One may derive
the rate starting from these simple tree amplitudes, without
invoking the complicated machinery of the imaginary time
formalism.

We may now state the spectator interpretation for the
square of the matrix element. This is shown in Fig. 5. This is
the spectator interpretation of the loop diagram of Fig. 3. It
represents the process of two gluons in statessi , jd encoun-
tering two incoming medium quarks(or antiquarks) with
quantum numbersq,Q leading to the emission of a photon in
statel and two quarks(or antiquarks) with identical quantum
numbersq,Q. In the amplitude on the left-hand side of Fig.
5 q participates in the reaction, whereasQ is a spectator. In
the amplitude on the right hand side of Fig. 5, the reverse is
true. Note that we do not requireq,Q to be simultaneously
quarks or antiquarks; they may be either. We have thus ex-
pressed the complicated loop-containing matrix element as a
coherent sum of simpler tree diagrams. The main purpose of
such a decomposition is more than just a physical perspec-
tive: it allows us an understanding of the mechanism of sym-
metry breaking not provided by the rules of the imaginary
time formalism. This will be discussed in the subsequent
section.

In passing, we should once again point out how the spec-
tator interpretation greatly simplifies any thermal calculation.
The diagrams of Fig. 4 are not difficult to motivate from first

principles. They represent the set of all possible means(at
lowest order in coupling) by which one may couple two
gluons to a photon with two fermions from the medium.
Along with this is the restriction that the fermions return
back to the states that they vacated. The six diagrams repre-
sents the six different means of ordering the gluons and the
photon. The two kinds of thermal factors(ñsEq, ±md ,h1
− ñsEq, ±mdj) represent the possibilities of the fermion being
ejected from the medium prior to its reabsorption, and vice
versa. The two fermions are allowed to be both quarks and
antiquarks as required by a relativistic medium.

IV. ROTATIONAL INVARIANCE AND YANG’S THEOREM

The vacuum analogue of the two-gluon-virtual photon
process does not exist due to Furry’s theorem. If it did, it
would represent an instance of two identical massless vectors
fusing to form a massive spin one object, or, alternatively, a
massive spin one object decaying into two massless vectors.
There exist other such processes not protected by Furry’s
theorem, e.g.,v→gg. Such a process, though not blocked
by Furry’s theorem, is still vanishing in the vacuum. We
effectively have a situation where there are two massless
spin one particles in the in state and a spin one particle in the
out state, or vice versa. In such circumstances another sym-
metry principle is invoked. This symmetry principle, due to
Yang [11], is based on the parity and rotational symmetries
of the in and out states and will, henceforth, be referred to as
Yang’s theorem.

A. Yang’s theorem in vacuum

The basic statement of Yang’s theorem, as far as it relates
to this calculation, is that it is impossible for a spin one
particle in vacuum to decay into two massless vector par-
ticles. This statement is obviously also true for the reverse
process of two massless vectors fusing to produce a spin one
object, and as a result, a fermion and antifermion combina-
tion in the triplet state. This may be understood through the
following simple observation. Imagine that we boost to the
frame where the two incoming vectors(in this case gluons)
are exactly back-to-back with their three-momenta equal and
opposite. The outgoing vector(the virtual photon in this
case) is produced at rest and eventually disintegrates into a
lepton pair. We will now apply various symmetry operators
(parity, rotation, etc.) on both the incoming and outgoing
states. Note that, as we are only interested in strong and
electromagnetic interaction, hence, parity is a good quantum
number. If both incoming and outgoing states are found to be
eigenstates of the symmetry operator then they must be
eigenstates with exactly the same eigenvalues, else this tran-
sition is not allowed.

We begin the discussion with the parity operatorP. We
align thez axis along the direction of one of the incoming
gluons. The outgoing or final state is parity-odd, as we know
that our final state is the photon, or a state composed of a
lepton and antilepton in the3S state. The gluons, on-shell in
this calculation, are each parity-odd. We may still construct a

BROKEN SYMMETRIES AND DILEPTON PRODUCTION… PHYSICAL REVIEW C 69, 064901(2004)

064901-9



parity-odd in state via the following method: we label the
possible in states as

uR+ ;R−l, uL + ;L−l, uL + ;R−l, uR+ ;L−l,

where theuR+ ;R−l is the state where both gluons are right
handed. TheuL+ ;R−l state indicates that the gluon moving
in the positivez direction is left handed while that moving in
the negativez direction is right handed(we have used the
notation that the + sign indicates the gluon moving in the
positive z direction). The parity operation interchanges the
momenta of the two gluons but leaves the direction of their
spins intact. Hence, the stateuR+R−l− uL+L−l is odd under
parity operation. This implies that only this combination of
incoming gluons is allowed by parity to fuse to form the
virtual photon and hence the lepton pair.

We next turn to the rotation operator,R. The in state is
the state of two gluons; the out state may be considered to be
either the temporary virtual photon, or the finally produced
pair of lepton antilepton. One may choose either for this
analysis; we decide on the photon as it is simpler. For the in
state we use the only state that is allowed by parity, i.e.,uR
+R−l− uL+L−l. This state may be reexpressed as the action
of creation and annihilation operators on the vacuum state as

uR+ R−l − uL + L−l = faR+
† aR−

† − aL+
† aL−

† gu0l, s38d

Where u0l is the vacuum state. The creation operatoraR+
†

creates a right-handed gluon traveling in the positivez direc-
tion. The remaining creation operators have obvious mean-
ings. The out state is the photon at rest and thus has the
rotation properties of the spherical harmonicsY1,msu ,fd. As
the in state has both gluons either right handed or left
handed, thez component of the net angular momentum is
zero. Hence, the photon out state also hasm=0.

We will rotate the in state and the out state by anglep
about thez axis and then about thex axis. The photon out
state, mimicking the rotation properties ofY1,0su ,fd, is an
eigenstate of either rotation with eigenvalues +1 and −1,
respectively. Focusing on the in state, we note that rotation
by an anglef about the axisn̂ is achieved by the action of
the appropriate operatorUsRf

nd on the state in question:

UsRf
z duR+ ;R+l = UsRf

z daR+
† aR+

† u0l,

=UsRf
z daR+

† U−1sRf
z dUsRf

z daR+
† U−1sRf

z dUsRf
z d

3u0l. s39d

Recalling the action of the rotation operators on creation
operators(see Ref.[12]), we obtain

UsRf
z daR+

† U−1sRf
z d = o

h

DsRf
z dRhah,p̂

† , s40d

whereDsRf
z dRh=kRueiJzfuhl is the rotation matrix for the ro-

tation of the state(in this case vector). The indexh runs over
all the possiblez components of the spin of the particle. The
vector p̂ represents the new direction of motion of the par-
ticle after rotation. The action of any unitary operator, such
as a rotation, on the vacuum will result in the vacuum again.
Settingf=p we obtain the simple relation for the action of

the rotation operator on the gluon creation operator:

UsRp
z daR+

† U−1sRp
z d = eipaR+

† ,

UsRp
z daR−

† U−1sRp
z d = e−ipaR−

† . s41d

Using the above, it is not difficult to demonstrate that the in
state of two gluons is an eigenstate ofRf

z with eigenvalue +1.
Thus, both the in state and out state are eigenstates ofRf

z

with the same eigenvalue. As a result, there is no restriction
to this transition on the basis of this symmetry.

We now concentrate on rotation byp about thex axis.
The out state is an eigenstate of this operation with eigen-
value −1. Using Eq.(40) we note that

UsRp
x daR+

† U−1sRp
x d = aR−

† ,

UsRp
x daR−

† U−1sRp
x d = aR+

† ,

UsRp
x daL+

† U−1sRp
x d = aL−

† ,

UsRp
x daL−

† U−1sRp
x d = aL+

† . s42d

One may thus demonstrate that the two-gluon in state is an
eigenstate of the above rotation with eigenvalue +1:

UsRp
x dsuR+ ;R−l − uL + ;L−ld

= fUsRp
x daR+

† U−1sRp
x dUsRp

x daR−
† U−1sRf

z d

− UsRp
x daL+

† U−1sRf
z dUsRp

x daL−
† U−1sRf

z dgUsRp
x du0l

=faR−
† aR+

† − aL−
† aL+

† gu0l=uR− ;R+l − uL − ;L+l. s43d

This implies that this transition is not allowed by any inter-
action. Thus, we demonstrate Yang’s theorem in the vacuum:
this transition is not allowed.

B. Yang’s theorem in media

The above argument for no transition has been formulated
for two massless vectors fusing to a spin one final state in the
vacuum. We now intend to extend this to a transition in the
medium. One may argue at this point that the correct method
of analyzing this situation would be to start from a particular
many body state; invoke the matrix element of the transition
(this would give us the requisite creation and annihilation
operators) and end up in a particular final many body state

M = kn1
f ,n2

f . . .n`
f uSE d4xHIsxdDn

un1
i ,n2

i . . .n`
i l. s44d

This has to be followed by squaring the matrix element and
weighting it by the Boltzmann factore−bEi, whereEi is the
total energy of the in state andb is the inverse temperature.
Then, this quantity must be summed over all initial and final
states to obtain the total transition probability per unit phase
space for this process as
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P = o
f

o
i

e−bEiUkn1
f ,n2

f . . .n`
f uSE d4xHIsxdDn

un1
i ,n2

i . . .n`
i lU2

.

s45d

The above method, though comprehensive, does not allow a
simple amplitude analysis as the case for the vacuum. Such
an analysis may be constructed by drawing on the spectator
analysis of loop diagrams. This method as applicable to this
process has been expounded in the previous section. Our
results are essentially contained in Fig. 5.

The following analysis with spectators may appear to be
rather heuristic at times. The reader not interested in such a
discussion may consider the fact that the introduction of the
medium formally involves the introduction of a new four-
vectorn into the problem. If we were to consider the case of
dileptons produced back-to-back in the rest frame of the me-
dium, the results from the vacuum should still hold, as in this
case the only new ingredient is a new four-vector of the bath
fn=s1,0,0,0dg. This four-vector is obviously rotationally in-
variant and cannot in any way introduce rotational noninvari-
ance via dot or cross products with any three-vector in the
problem. However, if the two gluons are not exactly back-
to-back or equivalently the medium has a net three-
momentum, then rotational invariance is explicitly broken.
Even if we were to boost to the frame where the gluons are
exactly back-to-back, we would find the medium streaming
across the reaction. The above argument for the validity of
the theorem for static dileptons will now be demonstrated via
the spectator interpretation.

We consider the Feynman diagrams of Figs. 4 and 5. The
effect of the medium, on the transition, is understood as a
change in the in state to include an incoming quark from a
particular quantum-states, where the indexs will be used to
indicate all the characteristics of the quark in question such
as the momenta, spin or helicity, color, etc. The out state will
also be modified as indicated to include a quark emanating
from the transition and reentering the medium in the same
quantum-states vacated by the incoming extra quark. In the
discussion that follows, we will keep referring to the original
state containing the two incoming gluons as the in state, and
the one with the outgoing dilepton as the out state. The extra
particles that enter the reaction from the medium or exit the
reaction and go back into the medium will be referred to as
“medium particles.” The full effect of the medium will only

be incorporated on summation of the transition rates ob-
tained by including all such statess weighting the entire
process(incoming particles→ reaction → outgoing par-
ticles) by appropriate thermal distribution factors for the in-
coming and outgoing medium particles. The thermal factors
will essentially be those of Eq.(36). No doubt, there must
also appear thermal factors for the incoming gluons. For the
duration of the entire discussion, we will constrain the two
gluons to have the same momenta; the distribution functions
will thus play no role, and hence have been ignored.

The new total in states and out states will now be given by
state vectors that look like

o
s

suR+ ;R−lusl − uL + ;L−lusl → ug*lusldf1 − 2ñsEsdg.

In the above equation, we have taken the incoming and out-
going particle from the medium to be a fermion, as is appro-
priate in this case. The reader will recognize the thermal
factors to be exactly those of Eq.(36). Each state may once
again be obtained by the action of the corresponding creation
operators on the vacuum state. The new additional factors
ñsEsd are the appropriate distribution functions, used in the
expressions to indicate particles leaving and entering the me-
dium. Unlike the in and out states, the contributions from
these medium states are added coherently, i.e., one does not
square the amplitude and then sum over spins and momenta
but rather the procedure is carried out in reverse, as indicated
by Fig. 5. The sumos , represents integration over all mo-
menta, sum over spins and colors, etc.

Our method of extending Yang’s symmetry will involve
identifying certain subsets of the entire sum to be performed,
which will turn out to be eigenstates of the rotation and
parity operations to be carried out once more on these states.
The argument will essentially be the following: if we can
decompose the entire in and out states into certain subsets,
with each subset being an eigenstate of the symmetry opera-
tor with the same eigenvalue, then the entire in and out states
will also be eigenstates with the same eigenvalues. Then, as
for the vacuum process, we will compare the eigenvalues for
the in state and out state.

To illustrate, we focus on a subset of four terms in the full
sum in which one of the incoming medium fermions has a
three-momentumqW. To keep the discussion simple we pickqW
to be in theyz plane(the discussion may be easily general-
ized to includeqW in an arbitrary direction). The four pro-
cesses under consideration are

fsuR+ ;R−l − uL + ;L−lduqW ;↑l → ug*luqW ;↑lgs1 − 2ñsEqW,↑dd

+ fsuR+ ;R−l − uL + ;L−lduRp
z qW ;↑l → ug*luRp

z qW ;↑lgs1 − 2ñsER
p
z qW,↑dd

+ fsuR+ ;R−l − uL + ;L−lduRp
x qW ;↓l → ug*luRp

x qW ;↓lgs1 − 2ñsER
p
x qW,↓dd

+ fsuR+ ;R−l − uL + ;L−lduRp
zRp

x qW ;↓l → ug*luRp
zRp

x qW ;↓lgs1 − 2ñsER
p
z R

p
x qW,↓dd, s46d

whereRp
z qW represents the three-momentumqW rotated by an anglep about thez axis, andRp

x qW representsqW rotated about by
an anglep about thex axis. The arrows↑, ↓ represent thez component of the spin of the medium fermion. As we are in the
center of mass of the thermal bath we have
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EqW,↑ = ER
p
z qW,↑ = ER

p
x qW,↓ = ER

p
z R

p
x qW,↓. s47d

Thus we may completely factor out the distribution functions. Without loss of generality we may combine all four in states and
out states to give

suR+ ;R−l − uL + ;L−ldfuqW ;↑l + uRp
z qW ;↑l + uRp

x qW ;↓l + uRp
zRp

x qW ;↓lg

→ ug*lfuqW ;↑l + uRp
z qW ;↑l + uRp

x qW ;↓l + uRp
zRp

x qW ;↓lg. s48d

Now, it is simple to demonstrate using the methods of rotation of creation operators outlined in the vacuum case, that both the
in and out states are eigenstates ofRp

x . Concentrating on the rotation of the in state we obtain

UsRp
x dsuR+ ;R−l − uL + ;L−ldfuqW ;↑l + uRp

z qW ;↑l + uRp
x qW ;↓l + uRp

zRp
x qW ;↓lg=UsRp

x dsaR;+
† aR;−

† − aL;+
† aL;−

† dU−1sRp
x d

3fUsRp
x daqW;↑

† U−1sRp
x dUsRp

x daR
p
z qW;↑

† U−1sRp
x dUsRp

x daR
p
x qW;↓

† U−1sRp
x dUsRp

x daR
p
z R

p
x qW;↓

† U−1sRp
x dgu0l

=− isuR+ ;R−l − uL + ;L−ldfuRp
x qW ;↓l + uRp

xRp
z qW ;↓l + uqW ;↑l + uRp

z qW ;↑lg . s49d

Note that the medium fermions just mix into each other, but
the over all state remains the same. Following the above
method one can show that the out state is also an eigenstate
of Rp

x but with an eigenvalue ofi. Thus, we can decompose
the entire sum over spins and integration over the three-
momenta of the medium fermions into sets of states as indi-
cated, each will result in an in state and an out state between
which no transition is allowed. For the rotationRp

z we note
that the eigenstates are in fact a subset of two states: in this
case, the sum of the first two states of Eq.(46) are eigen-
states ofRp

z , as is the sum of the third and fourth state.
This would imply that such a transition, as implied by the

Feynman diagrams of Fig. 4, cannot occur. There is, how-
ever, a caveat to the above discussion. Note that in the
vacuum case we expressly boosted to the frame where the
two gluons would be exactly back-to-back with their three-
momenta equal and opposite. Then, rotational symmetry was
invoked to demonstrate the impossibility of this transition. In
the case of the processes occurring in medium, we tacitly
began the analysis with the two gluons once again exactly
back-to-back in the rest frame of the bath. However, if the
two gluons are not exactly back-to-back or equivalently the
medium has a net three-momentum, then rotational invari-
ance is explicitly broken. Even if we were to boost to the
frame where the gluons are exactly back-to-back, we would
find the medium streaming across the reaction. This would
make the distribution functions of the two gluons different
(even though in this frame they have the same energy), Eq.
(47) would no longer hold. As a result it will not be possible
to construct eigenstates of the rotation operatorsRp

z andRp
z

as done previously. As the in and out states will no longer be
eigenstates ofRp

z andRp
z with different eigenvalues, transi-

tions will, now, be allowed between them.
In the above discussion, we have demonstrated how the

medium may, once again, break another symmetry of the
vacuum; in this case rotational symmetry. This allows the
transition of Fig. 2 to take place in the medium. This process
is strictly forbidden, in the vacuum, by two different symme-
tries (charge conjugation and rotation). It is forbidden in the

exact back-to-back case by rotational symmetry in aC bro-
ken medium, i.e., the effect is zero forpW =0. To obtain a
nonzero contribution, rotational symmetry has to be broken
by a netpW . The magnitude of the signal from such a symme-
try breaking effect may only be deduced via a detailed cal-
culation. In the next section we shall outline just such a
calculation.

The derivation of Yang’s theorem depended expressly on
the the two incoming gluons being massless. This enforced
their polarizations to be purely transverse. Another way of
breaking rotational invariance is thus by giving masses to the
gluons. This is not unjustified since in medium they acquire
a thermal mass. If the gluons are considered as being mas-
sive, this implies that they now have three rather than two
physical polarizations. The longitudinal polarization state is
then physical and can be seen as being responsible for the
breaking of Yang’s theorem. Under parity, rotation around
the x axis of p, and rotation around thez axis of p, the
creation operator of the new 0-polarization state transforms,
respectively, as

Pa0±
† P−1 = − a07

† , s50d

UsRp
x da0±

† U−1sRp
x d = − a07

† , s51d

UsRp
z da0±

† U−1sRp
z d = a0±

† . s52d

Then we can construct the two new in states with total an-
gular momentum along thez direction of +",

1
Î2

huR+ ;0−l − u0 + ;L−lj, s53d

and −",

1
Î2

hu0 + ;R−l − uL + ;0−lj. s54d

We must now inquire as to the possibility of a transition with
a virtual final photon in them= ±1 states. First note that now
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the out states are not eigenstates ofUsRp
x d operator, but still

are ofUsRp
z d with eigenvalue −1. Applying this operator on

the in states, one finds that they are eigenvectors with eigen-
value −1. Therefore, the in states and out states share the
same eigenvalues. Thus the transition is not prohibited by
parity and rotational symmetries.

In a real medium both effects discussed(i.e., finite mo-
mentum and massive gluons) would be present and simulta-
neously lead to the breaking of this symmetry. In this article
we separate these two effects and study each in turn. The
complete calculation incorporating the two simultaneously
will be left for a future effort[20].

There remains yet another means by which the symmetry
of Yang’s theorem may be broken: that of a rotationally non-
invariant regulator. The results from this scenario have al-
ready been presented in Refs.[6,8]. In these calculations the
dileptons were produced back-to-back, i.e., from a virtual
photon which is static in the rest frame of the plasma from
the fusion of massless gluons. The reader will note that
Yang’s theorem holds for such a process and hence should
result in a vanishing rate. Yet this rate was found to be non-
zero. The reason behind this result is the choice of the regu-
lator used in those calculations. From Eqs.(48) and(49) we
note that we required the coherent sum of at least four quark
states, with the incoming quark occupying symmetric angles,
for Yang’s theorem to hold. If we designate one of the gluons
to be along thez axis, and one of the incoming quarks is
assigned the momentasq,u ,fd, then the configuration that
obeys the rotational symmetry of Yang’s theorem will in-
clude incoming quarks atsq,u ,f+pd, sq,p−u ,fd, and
sq,p−u ,f+pd. Thus in theu integration, one must include
balancing contributionsu andp−u.

As is the case in this article, the results of Refs.[6,8]
consisted of the sum of contributions from multiple residues,
some of which displayed singularities asu→0 or u→p.
This corresponds to one of the internal lines in Fig. 4 going
on shell. This divergence is canceled when all the different
residues are combined, as will be shown in the next section.
Each residue is then evaluated using a regulator. Two obvi-
ous choices are the angled,u,p−d, and the magnitude of

three-momentum of the intermediate statex= uqW +kWu
=Îq2+k2+2kq cosu, whereuq−ku+e,x,q+k−e. All resi-
dues are then evaluated in the limitd→0 or e→0, where the
same regulator is used throughout. The divergence will be
canceled in either case when all the residues are summed. In
the calculations of Refs.[6,8] the three-momentum regulator
was chosen.

From the preceding discussion, it is obvious that integra-
tion using the angular regulatord obeys Yang’s theorem as
symmetric contributions fromu=d and u=p−d are in-
cluded. However, this is not the case with the three-
momentum regulator. Thoughe=0 corresponds tod=0, at
e→0 we find thatx= uq+ku−e corresponds to au=d1→0,
while x= uq−ku+e corresponds to au=p−d2→0. After some
calculation, it may be demonstrated that

d1 .Î2uk + que
kq

, s55d

while

d2 .Î2uk − que
kq

. s56d

Thus for a givenk, q the samee corresponds to different
limits of the angular integration. The rotational invariance
required for Yang’s theorem is broken and a nonvanishing
contribution results. The physical interpretation of the non-
vanishing results of Refs.[6,8] thus become unclear. The
results obtained here do not depend on those prior findings.
In this sense, the current article constitutes an update and a
correction. In what follows, the symmetry in Yang’s theorem
will be broken only by real physical effects prevalent in hot
media.

V. RESULTS FOR p¢Å0

We concentrate on the breaking of the symmetry under-
writing Yang’s theorem by imposing a nonzero three-
momentum to the process. In other words, the virtual photon
has a net three-momentum in the rest frame of the bath. The
gluons are considered to be massless. As may be easily un-
derstood from the preceding section, the magnitude of sym-
metry breaking rises with the magnitude of the three-
momentum. Thus the largest possible values ofpW will lead to
the largest signals.

We want in the end to calculate the number of dileptons
per unit spacetime per unit energy per unitupW u=p, i.e.,

d6N

dx4 dE dp
=

d2R

dE dp
=E d2Vpp

2d4R

dp4 ,

where we have integrated the differential rate over all solid
anglesVp. The angle ofpW is always measured from the di-
rection of the more energetic incoming parton: In this case
the gluon with energy.E/2. This procedure will also be
followed for the Born term and will be explained in greater
detail in the last subsection.

We begin by presenting results for a simpler case. We
look at the differential rate when the two incoming quarks or
gluons are forced to be back-to-back but have different en-
ergies. This may be obtained by setting the angled between
the photon and the in coming gluon to zero. Alternatively
one may obtain this by expanding the rate in a Taylor expan-
sion in angle and keeping only the first term. One reason for
considering this special case is that this is the simplest gen-
eralization from thepW =0 case. Yet another reason for con-
sidering this case is the possibility of an analytical solution.
We provide complete analytic results in this case, as opposed
to the general case where the final integrations can only be
performed numerically.

A. Differential rate for back-to-back gluons

We begin by evaluating the sum of the six matrix ele-
ments on the right-hand side of Eq.(37). Recall that i , j
indicate the polarizations of the incoming gluons, whereasl
is the polarization of the outgoing photon. In this configura-
tion, a variety of simplifying relations result:
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M+,−,l = M−,+,l = 0. s57d

As expected(and pointed out before), in a back-to-back situ-
ation, both gluons have to arrive with the same polarization,
i.e., either both must be right handed or both left handed.
This will result in a netz component of angular momentum
Lz=0. The configuration with one left-handed and one right-
handed in a back-to-back scenario will have anLz=2 and
thus will not couple to a spin one object:

Mi,j ,+ = Mi,j ,− = 0. s58d

There is no contribution to the transverse modes of the pho-
ton. This is obvious as the two gluons form a system with a
net Lz=0.

We are now in a position to write down explicit expres-
sions for the various matrix elements of Eq.(37), i.e.,
Mi,j ,l =smi,j ,l

1 +mi,j ,l
2 +mi,j ,l

3 +mi,j ,l
4 +mi,j ,l

5 +mi,j ,l
6 dDñsEq,md. On

performing all the angular integrations, frequency sums, and
contractions with polarization vectors, the results are:

M+,+,3= M−,−,3=
eg2dbc

2
E dqq2DñsEq,md

s2pd3Eq
ÎE2 − p2F32

pm2ps4q2 − p2 + E2 + 4m2dlnsu− Îq2 + m2 + qud
fsE − pd2 − 4sq2 + m2dgfsE + pd2 − 4sq2 + m2dgq

− 32
p m2ps4 q2 − p2 + E2 + 4 m2dlnsÎq2 + m2 + qd
fsE − pd2 − 4sq2 + m2dgfsE + pd2 − 4sq2 + m2dgq

− 16
p m2sE − 2Îq2 + m2dlnsu− 1/2E2 + 1/2p2 + EÎq2 + m2 − qpud

qsE + p − 2Îq2 + m2ds2Îq2 + m2 − E + pd

+ 16
pm2s2Îq2 + m2 + Edlnsu− 1/2E2 + 1/2p2 − EÎq2 + m2 − qpud

qs− 2Îq2 + m2 − E + pds2Îq2 + m2 + E + pd

+ 16
pm2sE − 2Îq2 + m2dlnsu− 1/2E2 + 1/2p2 + EÎq2 + m2 + qpud

qsE + p − 2Îq2 + m2ds2Îq2 + m2 − E + pd

− 16
pm2s2Îq2 + m2 + Edlnsu− 1/2 E2 + 1/2 p2 − EÎq2 + m2 + qpud

qs− 2Îq2 + m2 − E + pds2Îq2 + m2 + E + pd
G . s59d

We are thus concentrating on the virtual photon produced
only by back-to-back gluons of unequal momenta, and will
compare with the rate of production from only back-to-back
quarks of unequal momenta. We are thus breaking Yang’s
symmetry by the introduction of a net three-momentump. It
is a simple exercise to check that the above matrix element
vanishes linearly withp as p→0. The apparent pole inq is
canceled between the six terms. There is still thedq integra-
tion to be performed, which is done numerically.

The differential production rate for pairs of massless lep-
tons with total energyE and and total momentumpW is given
in terms of the discontinuity in the photon self-energy as(see
Eq. (32), and Ref.[21])

dR

d4p
=

e2

3s2pd5

r

sp2d
1

ebE − 1
, s60d

wherer =fpmpn /p2−gmngDiscf−iPmng. In general, the matrix

element depends on the angled betweenpW andkW. As a result,
two equivalent means of angular integration present them-
selves. We may setpW along thez direction, in which case the

matrix element will depend on the polar angled=uk of kW. As
a result, the integral overVp yields an overall factor of 2p.

Alternatively we may setkW along thez direction, in which
case the rate depends on the angled=up, and the integral
over Vk yields an overall factor of 2p. Both methods are
equivalent. We chose the latter prescription. Thus we calcu-

late the derivative of the differential rate with respect to the
incoming gluon angleVk:

dR

d4pdVk
=

e2

3s2pd5sp2dfebE − 1g
dr

dVk
. s61d

As mentioned before, temperatures in the plasma formed at
RHIC and LHC have been predicted to lie in the range from
300–800 MeV [22,23]. For this calculation, we useT
=400 MeV and 800 MeV. To evaluate the effect of a finite
chemical potential we perform the calculation with two val-
ues of chemical potentialm=0.1T (left plot in Fig. 6) and
m=0.5T (Right plot in Fig. 6) [24]. This calculation is per-
formed for two flavors of quarks with current masses.

In Fig. 6, the differential rate[Eq. (61)] for the production
of dileptons with an invariant mass from 0 to 156 MeV is
presented. The energy is held fixed at 500 MeV and the
three-momentump of the dilepton is varied(a dilepton in-
variant massM =156 MeV for an energyE=500 MeV cor-
responds to the three-momentum of the dileptonp
=475 MeV). In the figures, the dashed line is the rate from
tree level qq̄; the solid line is that from the processgg
→e+e−. We note that in both cases the gluon-gluon process
dominates at very low mass and dies out at higher mass
leaving theqq̄ process dominant at higher mass or lower
momentum. The Born term displays a sharp cutoff at photon
invariant massM =Î2mE. The back-to-back annihilation of
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two massive quarks(of massm) to form the virtual photon of
energyE and invariant massM is no longer kinematically
allowed. Also, the annihilation of a quark-antiquark pair to
form a dilepton is not allowed for any incoming angle for
dileptons with an invariant massM ,2m. The gluons being
massless continue to contribute in this region: this contribu-
tion is shown in the right panel of Fig. 7. Thus the signal
from gg fusion (for partons with current masses) is dominant
at low invariant masses for intermediate dilepton energies. In
Fig. 7, we indicate the influence of a higher plasma tempera-
ture on the rates. Here, a plasma temperature of 800 MeV
andm=0.5 T is used; the left panel displays the rates below

the Born term threshold and the right panel displays the rates
above threshold. We note in the left panel of Fig. 7, as ex-
pected, that the gluon fusion term rises further due to thermal
loop enhancement, however this rise is rather minimal. In the
right panel we note that the rates forgg→e+e− continue to
rise due to the growing distribution functions for soft gluons.
In a realistic calculation the gluons would be endowed with a
thermal mass that would cut off the steep rise in thegg rate.

B. Full differential rates

In the previous subsection, we calculated the six matrix
elements of Eq.(37) (or Fig. 4), for the special case of the

FIG. 6. The differential production rate of low mass dileptons from two back-to-back processes. Invariant mass runs from 156 MeV to
0 MeV. The energy of the dilepton isE=500 MeV, and the abscissa is the three-momentump. The dashed line represents the contribution
from the processqq̄→e+e−. The solid line corresponds to the processgg→e+e−. Temperature is 400 MeV.(Left panel) quark chemical
potential is 0.1T. The right figure is the same as the left but withm=0.5T.

FIG. 7. The left panel is the same as in Fig. 6 but with a temperature of 800 MeV. The quark chemical potential is 0.5 T. The right panel
is the rate ofgg→e+e− just below and beyond the Born term threshold. The Born term threshold is atp=499.6 MeV for a dilepton energy
of E=500 MeV and quark current masses of 10 MeV.
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angle betweenkW and pW , i.e., d=0. A close inspection of the
diagrams of Fig. 4 will convince the reader that, in the event
that the incoming gluons and the outgoing photon are in the
same line, the angular integration over all quark directions
displays an azimuthal symmetry. This implies that the inte-
gration dfq results in a mere overall factor of 2p. The du
integration, though nontrivial, can be performed analytically
and results in Eq.(59). The integration over the quark mag-
nitude cannot be performed analytically and we resorted to
numerical means.

In the case of adÞ0, the azimuthal symmetry in thed3q
integration is absent and bothdfq and duq integrations are
nontrivial. It is no longer possible to perform both analyti-
cally. Following thedq integration, we also have to perform
the integration over the angled. This will give us the differ-
ential rated2R/dE dp. This turns out to be a complicated
problem to solve in general. However, from the previous
subsection we have learned that the rate form this process is
comparable to the Born term only at very low massM
=ÎE2−p2→0, or ratherp→E (see Figs. 6 and 7). If we
insist on calculating solely in this limit an approximation
scheme may be constructed.

There are two basic scales that we input into this problem:
The mass of the quarksm and the temperature of the plasma
T (the chemical potential is always estimated as a fraction of
the temperature, hence it does not constitute a separate
scale). At the low invariant masses(of observed dileptons) in
question the strange quark does not contribute. For the up
and the down quark, we are considering plasmas wherem
!T. We now insist on observing dileptons with large four-
momenta E,p,T, yet very small invariant massM
=ÎE2−p2,m!T. Yet another smaller scale is that ofx=E
−p, where x=M2/ sE+pd,M2/E@M. One may construct
three-dimensionless scales from these quantities: 1@M /E
@x/E.

We denote the incoming gluons by their polarizationsi , j .
Now, sayi is more energetic and is ascribed the momentak,

the others jd has momentumupW −kWu by conservation. As out-
lined in the previous section, we intend to integrated from

d=0 when the two gluons are back-to-back andk@ upW −kWu
=E−k (i is a very hard gluon andj is very soft) up to d

=dmax, wherek= upW −kWu=E/2 (where, throughout the gluoni
is more energetic than the gluonj). The remainder of thed
integration may be obtained by simply replacingi with j and
noting that the remainder is nothing but the same integration
with the gluon j now ascribed the larger energyk and d
defined such that thej points in the positivez direction. The
magnitude ofdmax may be estimated simply from the preced-
ing discussion. As the gluons are massless

E − k = EupW−kWu = upW − kWu = Îp2 + k2 − 2pk cossdd. s62d

This implies that

cossdd =
2Ek− M2

2pk
. s63d

The value ofd=dmax occurs atk=E/2, hence

cossdmaxd = 1 −
d2

2
=

p

E
=1 −

x

E
. s64d

Thusdmax=Î2x/E,M /E.
Yet another inference about the behavior of the rate withd

may be drawn from Eq.(32). Here we note the presence of
two Bose-Einstein distribution functions:nskd ,nsE−kd and
the factork/ sE−kd in the measure. Note that asd→0, k
tends to its maximum value, andv=E−k tends to its mini-
mum value. This greatly enhances the factorfhk/ sE
−kdjnskdnsE−kdg, as compared to its value atd=dmax, where
k and E−k are of the same magnitude. This implies that if
the matrix element does not rise sharply withd then the
differential rate falls off asd is raised.

The above mentioned observations allow us to expand the
matrix element in a series ind. On expansion we note the
following behavior for the longitudinal photon:

Mi,j ,3sdd = m0 − m2d2 + . . . ,

where themi’s are all positive contributions, and depend on
E,p,T,m. Thus for smalld the matrix element(or the square
of the matrix element) drops asd rises from zero. A plot of
this behavior(in arbitrary units) for a typical case is shown
in Fig. 8. It should be pointed out that the angular integra-
tions of the quark momenta(i.e., u ,f) may be analytically
performed only after the expansion ind. The remaining in-
tegration over the quark-momentumq is performed numeri-
cally. If the matrix element was not expanded in a series ind
one would have to perform four sets of integrations numeri-
cally. The presence of poles in the matrix elements of the
diagrams in Fig. 4 makes this a prohibitively difficult proce-
dure.

Now that we have moved away form the back-to-back
scenario, we will also witness the production of transverse
photons. On expansion ind we note the following behavior:

Mi,j ,±sdd = m1d − m3d3 + . . . .

As expected this contribution goes to be zero asd→0. It also
turns out to be very much smaller than the longitudinal con-
tribution in the limit of small invariant mass dileptons. We
thus obtain that the dominant contribution to the rate ema-
nates from the longitudinal photons.

It should be pointed out that such an expansion is only
strictly valid as long asd is of the order of the smallest scale
in the problem i.e.,x/E. However, as demonstrated by the
plot of the imaginary part of the self-energy in Fig. 8, it
remains valid much beyond this point. This is due to the
influence of the measure and the gluon distribution functions
which drop rapidly as one moves away fromd=0. It should
be pointed out that only the matrix elements have been ex-
panded in a series, all other factors(e.g., gluon distribution
functions, measures, etc.) retain their closed expressions ind.

We are now in a position to integrate overd. This is also
performed numerically. As we have expanded the matrix el-
ements ind and retained only a finite number of terms, the
square of the matrix elementsuMu2 grow beyond a certain
d=d1. This growth is not real and is merely a facet of our
finite expansion ind. Two possible means of carrying out the
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d integration present themselves. We may terminate the inte-
gral at d1. Ostensibly, this represents the lower limit of the
rate. These are represented in Fig. 9 as the solid lines(both
with and without symbols). We may continue to integrate up
to d=dmax; this will include the integration of a growing rate
convoluted with an increasing angular measuressin dd. This
represents the upper limit of the rate. These are represented
in Fig. 9 as the dotted lines. As the invariant mass is lowered
or the energy of the pair is raised the differential rate drops
sharply from its value atd=0; this invariably results inm2
@m1. As a result the integration beyondd=d1 produces a

large contribution; this in turn leads to the excess growth
displayed by the upper limit at small invariant mass and large
energies.

The rates after integration overd are presented in Fig. 9.
The dot-dashed lines are the rates from the Born term at
various energies of the virtual photon. The solid lines are the
lower limits of the rates from gluon-gluon-fusion for the re-
spective energies of the virtual photon. The dotted lines are
the upper limits of the respective rates. In general the rates
from gluon-gluon fusion are suppressed as compared to the
Born term except at very high momenta or very low invari-

FIG. 8. The left panel shows the behavior ofsM =m0−m2d2d /Msd=0d as a function ofd for a typical case ofT=0.5 GeV,m=0.5 T,
E=1 GeV, andp=0.9999 GeV. The right panel shows the behavior of ImsPm

md / ImsPm
mdsd=0d as a function ofd.

FIG. 9. (Color online) Differential rate for the production of dileptons at high momenta and small invariant mass. See text for details.
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ant mass. Three cases have been presented where the energy
of the dilepton is set at 0.25, 0.5, and 1 GeV. As may be
noted, the results are quite similar to the back-to-back gluon
fusion rates, i.e., the case atd=0. The rate from gluon fusion
rises beyond the Born threshold due to the rising Bose-
Einstein distributions of soft massless gluons.

VI. RESULTS FOR mg.0

We now turn to the case where gluons acquire a medium-
induced mass and where the virtual photon has no net three-
momentumspW =0d. As we have seen, the gluon’s longitudinal
degree of polarization allows to circumvent Yang’s theorem.
More specifically, we expect transitions to occur when the
net component of the angular momentum is ±":

Mi,j ,3 = 0, s65d

M±,3,± = M3,±,± = −
mg

k

eg2d bc

2
E dq

s2pd2DñsEq,mdJsq,kd,

s66d

where

Jsq,kd =

qk+
q

k
mg

2

8EkEq
ln3 sEqEk + qkd2 −

mg
4

4

sEqEk − qkd2 −
mg

4

4
4

−
q

4k
ln3Eq

2Ek
2 − Sqk−

mg
2

2
D2

Eq
2Ek

2 − Sqk+
mg

2

2
D24 , s67d

whereEk=Îk2+mg
2. Therefore, in the back-to-back configu-

ration with massive and equally energetic gluons we find that
the nonzero matrix elements are proportional to the gluon
mass and scale like,m confirming the finite density nature
of this process. We point out that the integrand diverges un-
less mg,2mq. Beyond this limit the self-energy analytical
structure becomes intricate. In this section, we present results
only where the above relation holds. Dilepton production
rates from regions beyond this threshold, as well as rates
emanating from the fusion of massive gluons withpW Þ0, will
be addressed in a future effort[20].

To explore dilepton production in the range where the
mass inequality is respected, we begin by ascribing current
masses of 10 MeV to the quarks, setting the quark chemical
potential tom=40 MeV, and the gluon mass to almost twice
that of the quark(i.e., mg=19.99 MeV) as a reference point.

FIG. 10. (Color online) Differential production rates forT=400 MeV. See text for details.

FIG. 11. Differential production rates for 2g→ ll̄ with T
=400 MeV, mq=40 MeV, mq=250 MeV, and different gluon
masses.
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With these, we see that the differential production rate due to
the gluon fusion is lower than the contribution from the Born
term across the range of the invariant mass(see Fig. 10).
However, if we increase the quark chemical potential tom
=200 MeV or reduce the quark current mass tomq=1 MeV
while maintaining the gluon to quark mass ratio(i.e., 1.999),
we see that the gluon fusion rate may dominate over the
Born term up to an invariant mass of 125 MeV in the case
where the quark chemical potential reaches 200 MeV. We
also present results where the gluon mass is set equal to that
of the quark(i.e., 10 MeV). In this case we see that the rate
from the gluon fusion dominates at a low invariant mass. If
we lower the gluon mass beyond that of the quark then the
process will have a nonvanishing contribution in a region
forbidden for the qq̄ process due to its threshold(see
Fig. 11).

If instead of current masses, the quark masses are set to
values of the order ofgT, then we find the rate from gluon
fusion to be suppressed as compared to the Born term(see
Fig. 11). This is not unexpected as the gluons fuse through a
quark triangle; the presence of large masses in the quark
propagators leads to the rates being suppressed in this region
of parameter space.

As in the case of gluon fusion withpW Þ0, an interesting
feature of the differential rate is its strong dependence onm2

(Fig. 12) and its weak dependence on temperature and other
energy scales: as the chemical potential increases, the rate
rises. For the Born term the opposite behavior is true. As the
chemical potential increases, the antiquark population is de-
pleted, inhibiting the production of dileptons through this
channel. Thus, an accurate estimate of the differential rate
will require a good knowledge of the baryon chemical po-
tential as well as its variation with time in a QGP.

VII. DISCUSSIONS AND CONCLUSIONS

In this article we have presented a detailed study of the
observational effects of broken charge conjugation, and bro-
ken rotational invariance in a QGP formed in a heavy-ion
collision. The signal under consideration was the spectrum of

dileptons emanating from such a medium. The reason behind
this choice is evident: electromagnetic signatures provide a
direct probe of all time sectors of a heavy-ion collision. The
breaking of these symmetries is manifested at lowest order in
the spectrum of dileptons produced by two-gluon fusion into
a virtual photon through a quark loop.

Such a process is forbidden in the vacuum by both Furry’s
theorem and Yang’s theorem. Charge conjugation was bro-
ken explicitly by the introduction of a nonzero population of
u and d valence quarks in the plasma. A nonzero baryon
density, present solely in these flavors, causes a net electric
charge density in the medium. This leads to the breaking of
Furry’s theorem, which holds purely in neutral media.

The presence of a preferred rest frame of the medium
leads to the introduction of a bath four-vectorn into the
problem. If calculations are performed in this frame thenn
=s1,0,0,0d. No such vector exists in the vacuum. If two
massless back-to-back gluons with equal energy fuse in
vacuum along thez axis through the quark triangle, then the
out state consisting of a static virtual photon will have thez
component of its spinJz=0. Both the in state and out state
are eigenstates of a rotation byp about thex axis but have
different eigenvalues. Hence, such a transition is forbidden.
This is the statement of Yang’s theorem and is based on the
invariance of both the in state and out state under a rotation
by p about thex axis.

The above argument of no transition(due to the in state
and out state possessing different eigenvalues with respect to
the rotation byp about thex axis) continues to hold even for
the production of a static photon in the rest frame of the bath
where the in state and out state are modified to include spin-
half fermions. It should be pointed out that we have tacitly
assumed the plasma to be infinite in extent and isotropic; a
realistic plasma of finite extent, which is not spherically

FIG. 12. m2 scaling of the differential production rates withT
=400 MeV,mq=250 MeV, andmg=1.5mq.

FIG. 13. The contours used to evaluate the Matsubara sum with
a finite chemical potential. See text for details.
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symmetric, will explicitly break rotational invariance. To our
knowledge, this fact may be understood solely in the specta-
tor interpretation of loop diagrams. The spectator interpreta-
tion represents a formal procedure by which the imaginary
part of a diagram containing loops may be reexpressed in
terms of the product of matrix elements consisting solely of
tree diagrams and particles from the bath that do not partake
in the reaction process. The spectator interpretation for the
imaginary part of a three-loop diagram was derived for this
process and is essentially contained in Fig. 5. In the spectator
interpretation different states containing fermions with dif-
ferent spins are added coherently. This allowed us to con-
struct a subset of the entire sum of in states that respected the
rotation symmetry of the vacuum state[see Eq.(48)]. For
each such subset no transition was allowed by arguments
similar to those used in the construction of Yang’s theorem
(see Sec. IV B).

This invariance will be broken by the presence of any
three-vector in the problem. The two possible choices for
such a three-vector are a net three-momentum of the virtual
photon(pW Þ0 in the bath frame), or a nonzeroz component
of its spinsJzÞ0d. In the first case one may boost to the rest
frame of the static photon. However, this will no longer be
the rest frame of the plasma and rotational invariance will be
explicitly broken. In the second case the production of a
virtual photon with aJzÞ0 will require an incoming massive
gluon which breaks one of the principal conditions required
for Yang’s theorem to hold. In a real QGP we would expect
both effects to be present simultaneously. In the interest of a
clearer understanding of the mechanism of symmetry break-
ing we had chosen to explore both possibilities in isolation.

In the case of a virtual photon with a net three-momentum
pW , we began with the case of two massless gluons in a back-
to-back configuration along thez axis but with unequal en-
ergies. This resulted in a virtual photon with a net three-
momentum along thez axis. Under this kinematic restriction
we present a closed analytical expression for the matrix ele-
ment [see Eq.(59)]. The rates from this matrix element are
plotted in Figs. 6 and 7 in comparison with the Born term.
These figures represent the cases with plasma temperatures at
400 and 800 MeV, corresponding to the cases of QGP
formed at RHIC and LHC energies. We find as expected that
the differential rate rises with increasing chemical potential
m; two extreme cases withm=0.1T and m=0.5T have been
explored. The rates however show a rather modest rise with
increasing temperature. This has been pointed out earlier due
to the vanishing of theg2T2 component in the HTL calcula-
tion of this loop diagram[8]. The rates are also observed to
rise with increasing three-momentumupW u (for a given fixed
energy) as expected due to the breaking of Yang’s theorem.
As the gluons are massless they continue to contribute to the
region beyond the Born threshold(see Fig. 7). In this region,
contributions originate from the fusion of a gluon carrying a
large majority of the photon energy with an ultrasoft gluon
carrying a tiny fraction of the photon energy. In fact the
rising rate in the right panel of Fig. 7 is due to the Bose
enhancement obtained from the distribution function of the
soft gluon. The presence of a gluon dispersion relation or a
gluon mass will lead to this rate reaching a maximum at a
threshold set by twice the gluon mass.

Integrating over all incoming gluon angles turned out to
be an involved procedure and led us to invoke an approxi-
mation scheme. At a very small invariant mass, we noted that
the gluon fusion rate is dominated by back-to-back gluon
fusion. We thus expanded in the angle between the photon
and the more energetic gluond. Results for the differential
rate per unit energy and per unit momentumd2R/dE dphave
been presented in Fig. 9, in comparison with the Born term.
As expected, the rate from gluon-gluon fusion becomes com-
parable to the Born term only at a very low invariant mass,
for photon energies of 0.25, 0.5, and 1 GeV. As noted in the
previous section a large portion of the enhancement may be
attributed solely to the lack of a mass for the gluons and
Bose-Einstein distributions as opposed to Fermi-Dirac distri-
butions for the quarks.

In the case of a virtual photon with a netJz, the possible
choices areJz= ±1. This requires one of the incoming gluons
to be in a longitudinally polarized state. Hence, the gluons
were endowed with a mass. One may ascribe the origin of
such a mass to dispersion in the medium. As in the previous
case, the rate is seen to rise sharply with increasing chemical
potential. Due to analytic considerations, the quark mass
smqd was always set to be larger than half the gluon mass
smg,2mqd. In this kinematic region, the rates from gluon-
gluon fusion turned out to dominate over the Born term for
low invariant masses of dileptons, if the quarks were chosen
to be lightmq!T. However, the rates were subdominant to
the Born term for the production of dileptons with large in-
variant masses, or for quark masses,gT. We point out that
in this calculationT=400 MeV, hence,g,2. Thus, unlike
the case for plasmas at very high temperature,gT,T.

Gluons with masses at and above this thresholds2mqd
may decay into two quarks which are both simultaneously on
shell. In the language of spectators, this corresponds to one
of the propagators in the diagrams of Fig. 4 going on shell.
The calculational and interpretive complications that arise
from this situation are rather involved and represent a prob-
lem for the spectator interpretation. A preliminary calculation
without the use of the spectator interpretation at this thresh-
old in the limit of massless quarks and gluons found the rate
to be large[6]; however these required the use of momentum
cutoffs which did not respect the symmetry required by
Yang’s theorem. As pointed out earlier this made the physical
interpretation of these results unclear. The computation of
the rates at and beyond this threshold with full quark and
gluon dispersion relations at finite three-momentum and their
interpretation in terms of the spectator picture will be dealt
with in a subsequent calculation[20]. Our goals in the
present article have been to separately elucidate certain sym-
metries of the vacuum which are broken by a particular chan-
nel of dilepton production in a quark gluon plasma. For the
purposes of simplicity we computed the rates from this chan-
nel for a plasma in complete thermal and chemical equilib-
rium. As the dileptons in this channel are produced essen-
tially from the fusion of gluons, this process may display far
greater significance in early plasmas, which are estimated to
be out of chemical equilibrium with large gluon populations.
An accurate estimation of the full dilepton rate from this
channel will require a two-step process. One needs to com-
bine the two effects of symmetry breaking discussed in this
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article. This rate will then have to be folded in with a real-
istic space-time model of the evolution of the plasma. Such a
model will have to include an estimation of the early gluon
population with estimates for the effective inmedium masses
of the gluons and the evolution of these quantities with time.
Work in this direction is currently in progress[20].
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APPENDIX: CONTOUR INTEGRATION OF Tmnr

In this Appendix, we outline the formal calculation of the
two-gluon-photon vertex in the imaginary time formalism,
using the method of contour integration. In this case, the
standard method of contour integration will be modified to
allow for the appearance of expressions which may be easily
generalized from the case at zero density. This procedure
allows for the construction of the spectator interpretation. As
mentioned before in Eqs.(7) and (8) the Feynman rules for
the two-gluon-photon vertex in the imaginary time formal-
ism are

Tmnr =
− 1

b
E d3q

s2pd3o
n

TrFiedkig
m isq” + md

q2 − m2 igtij
bgn isq” − k” + md

sq − kd2 − m2igtjk
c gr isq” − p” + md

sq − pd2 − m2G , sA1d

Tmrn =
− 1

b
E d3q

s2pd3o
n

TrFiedikgm isq” + p” + md
sq + pd2 − m2igtkj

c gr isq” + k” + md
sq + kd2 − m2igtji

bgn isq” + md
q2 − m2 G , sA2d

where the trace is implied over both color and spin indices. The zeroth components of each four-momentum are

q0 = is2n + 1dpT + m, p0 = i2mpT, k0 = i2jpT,

wheren,m, j are integers andm is the quark chemical potential. The overall minus sign is due to the fermion loop. The sum
over n runs over all integers from −̀ to +`. As mentioned previously, the momentum- and mass-dependent parts of the
numerators of Eqs.(A1) and (A2) may be separated as

Tmnr = BmanbrgT1abg + A1
mnr =

eg2dbc

2b
E d3q

s2pd3o
n

TrF Bmanbrgqasq − kdbsq − pdg

sq2 − m2dfsq − kd2 − m2gfsq − pd2 − m2g

+ m2
Amanrqa + Amnbrsq − kdb + Amnrgsq − pdg

sq2 − m2dfsq − kd2 − m2gfsq − pd2 − m2g G , sA3d

Tmrn = BmarbngT2abg + A2
mnr

=
eg2dbc

2b
E d3q

s2pd3o
n

TrF Bmarbngsq + pdasq + kdbsqdg

sq2 − m2dfsq + kd2 − m2gfsq + pd2 − m2g
+ m2

Amarnsq + pda + Amrbnsq + kdb + Amrngqg

sq2 − m2dfsq + kd2 − m2gfsq + pd2 − m2g G ,

sA4d

whereAmnrg represents the trace of fourg matrices andBmanbrg represents the trace of sixg matrices. Employing the methods
of residue calculus, the sum overn may be formally rewritten as a contour integration over the infinite set of contoursC1 (see
Fig. 13)

To
n

ffq0 = is2n + 1dpT + mg =
T

2pi
r C1

dq0fsq0d
1

2
b tanhF1

2
bsq0 − mdG . sA5d

The contoursC1 may be deformed to those ofC2 (see Fig. 13). These are a set of two linear contours meeting at ±i`, one
from q0=−i`+m+e→q0= i`+m+e, and another fromi`+m−e→−i`+m−e. Here, and henceforth in all discussions of
contours, residues, and analytic continuations,e will represent a vanishingly small quantity. One may now proceed by the
standard method of[9] and separate a vacuum part, thermal part, and a pure density contribution. Instead, another set of
contours is introduced: these run along they axis from q0=−i`+e→q0= i`+e and from i`−e→−i`−e. Admittedly, ase
→0 this contour will produce a vanishing contribution. The integrand in Eq.(A1) has six powers ofq0 in the denominator and
only three in the numerator. Hence, it vanishes faster than a linear term asq0→`. As a result, this quantity obeys Jordan’s
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Lemma and the two integration contours around 0 andm may be connected by line segments at ±i`. These line segments,
shown as curved lines in the third contour of Fig. 13, will have zero contribution to the entire integral. The total contour thus
obtained is referred to asC3. We now split the integrand into two, one piece for all the contours on the positive of thex axis
denoted asC3

a and one piece for the sole contour on the negative side of thex axis denoted asC3
b, i.e.,

T

2pi
r

C1
dq0fsq0d

1

2
b tanhS1

2
bsq0 − mdD

=
1

2pi
E

i`−eC3
b

−i`−e

dq0fsq0dS−
1

2
+

1

ebsm−q0d + 1
D+

1

2pi SE−i`+e

i`+e

+E
i`+m−e

−i`+m−e

+E
−i`+m+e

i`+m+e D
C3

a

dq0fsq0dS1

2
−

1

ebsq0−md + 1
D .

sA6d

The terms may now be separated into a vacuum piece and a matter piece. Note the similarity between this and the zero
density separation. In this procedure, we differ from the standard method[9] in not extracting an explicit finite density piece.
The main reason for the extra contour deformation is to obtain the final answer in a form where the zero density contribution
is obvious. In this spirit, we now reverse the direction of integration inC3

b and note that the vacuum piece has no poles at
is2n+1dpT+m. Thus the contours in the vacuum term may be allowed to overlap by settinge=0. We obtain

T

2pi
r C1

dq0fsq0d
1

2
b tanhS1

2
bsq0 − mdD

=
1

2pi
E

−i`

i`

dq0fsq0d+
1

2pi
E

−i`−e

i`−e

dq0fsq0d
− 1

ebs−q0+md + 1
+ SE

−i`+e

i`+e

+E
i`+m−e

−i`+m−e

+E
−i`+m+e

i`+m+e Ddq0fsq0d
− 1

ebsq0−md + 1
. sA7d

We now lete→0 on the contours on the positive side of thex axis. This procedure will deform the two linear contours atm±e
back to the small circles around the pointsis2n+1dpT; this part will become similar to the initial contourC1. The rest of the
contour can be closed by including the infinite arc in theq0= +` direction in the clockwise sense. This multiply connected
contour is indicated asC4

a−C1 and displayed on the right of the fourth plot in Fig. 13. The linear contour on the negative side
may be closed off as always by the infinite arc extending toq0=−`. This is indicated asC4

b and shown as the left contour in
the fourth plot of Fig. 13. The contour integration over either contour may be replaced by the sum over all the residues at all
the poles enclosed by the contour. Note that the poles atis2n+1dpT+m, excluded by the multiply connected contour, are not
to be included in the sum over residues. Thus our final, formal result is

T

2pi
r C1

dq0fsq0d
1

2
b tanhS1

2
bsq0 − mdD =

1

2pi
E

−i`

i`

dq0fsq0d− o
i

us− vidRes.ffsq0dg

3U 1

ebs−q0+md + 1
U

q0=vi

+ o
i

us− vidRes.ffsq0dgU 1

ebsq0−md + 1
U

q0=vi

. sA8d

We may substitute the full integrand in Eq.(A1) to obtain the result of contour integration as

Tmnr =
1

2pi
E

−i`

i`

dq0E d3q

s2pd3Feg2dbc

2b
S Babg

mnrqasq − kdbsq − pdg

sq2 − m2dfsq − kd2 − m2gfsq − pd2 − m2g

+ 4m2gmnsq − p − kdr + gmrsq − k + pdn + gnrsq + k − pdm

sq2 − m2dfsq − kd2 − m2gfsq − pd2 − m2g
D+ o

i
HF usvid

ebsq0−md + 1
−

us− vid

ebs−q0+md + 1
G

3
eg2dbc

2b
Res .S Babg

mnrqasq − kdbsq − pdg

sq2 − m2dfsq − kd2 − m2gfsq − pd2 − m2g

+ 4m2gmnsq − p − kdr + gmrsq − k + pdn + gnrsq + k − pdm

sq2 − m2dfsq − kd2 − m2gfsq − pd2 − m2g
DJ

q0=vi

G . sA9d

A similar contour analysis as above may be performed for Eq.(A2), with the added extra step of settingq0→−q0, qW →
−qW. This procedure will produce a final contour of integration which is a mirror image ofC4. There will, once again, be an
infinite semicircle extending to +̀ connected with the line running from −i`+e→ i`+e. There will also be an infinite
semicircle extending to −̀ connected to the vertical line running on the negative side of thex axis. This contour will, however,
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be multiply connected with the poles at −is2n+1dpT−m excluded from the region bounded by the infinite semicircle. As
before, these poles shall be excluded from the sum over residues. Following this procedure, one obtains the result of the
contour integration for Eq.(A2) as

Tmrn = −
1

2pi
E

−i`

i`

dq0E d3q

s2pd3Feg2dbc

2b
S Babg

mnrqasq − kdbsq − pdg

sq2 − m2dfsq − kd2 − m2gfsq − pd2 − m2g

+ 4m2gmnsq − p − kdr + gmrsq − k + pdn + gnrsq + k − pdm

sq2 − m2d + fsq − kd2 − m2gfsq − pd2 − m2g
D

+ o
i
HF usvid

ebsq0+md + 1
−

us− vid

ebs−q0−md + 1
Geg2dbc

2b
Res .S Babg

mnrqasq − kdbsq − pdg

sq2 − m2dfsq − kd2 − m2gfsq − pd2 − m2g

+ 4m2gmnsq − p − kdr + gmrsq − k + pdn + gnrsq + k − pdm

sq2 − m2dfsq − kd2 − m2gfsq − pd2 − m2g
DJ

q0=vi

G . sA10d

Note, that the vacuum term is at least naively linearly divergent and thus the shift in momentum integrations may not be
performed as above. However, from Furry’s theorem, one obtains that the sum of the vacuum terms from Eqs.(A9) and(A10)
must be identically zero. Also note that the presence of the thermal distribution functions over quark momenta renders these
integrals ultraviolet finite. Quark-momentum shifts are thus definitely allowed for the thermal parts of Eqs.(A9) and (A10).
Hence, we ignore the vacuum pieces and combine the matter pieces of both terms to obtainTmnr=Tmnr+Tmrn as

Tmnr =E d3q

s2pd3o
i
FusvidS 1

ebsq0−md + 1
−

1

ebsq0+md + 1
D + us− vidS 1

ebs−q0−md + 1
−

1

ebs−q0+md + 1
DG

3
eg2dbc

2b
Res .S Babg

mnrqasq − kdbsq − pdg

sq2 − m2dfsq − kd2 − m2gfsq − pd2 − m2g
+ 4m2gmnsq − p − kdr + gmrsq − k + pdn + gnrsq + k − pdm

sq2 − m2dfsq − kd2 − m2gfsq − pd2 − m2g
D

q0=vi

.

sA11d
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