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A prescription to incorporate the effects of nuclear flow on the process of multifragmentation of hot nuclei
is proposed in an analytically solvable canonical model. Flow is simulated by the action of an effective
negative external pressure. It favors sharpening the signatures of liquid-gas phase transition in finite nuclei with
increased multiplicity and a lowered phase transition temperature.
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In intermediate energy heavy ion reactions, particularly
for the central and near-central collisions, the colliding nu-
clei get compressed in the initial phase with subsequent de-
compression thereby generating collective flow energy. At
energies around 100 MeV per nucleon or above, large radial
collective flow has been observed in many experiments
[1–4]. Theoretically it has been surmised that collective ex-
pansion has a strong influence on the fragment multiplicity.
In a hydrodynamical model with site-bond percolation, it has
been shown that compression is very effective[5] in multi-
fragmentation. Such a conclusion is further reached in mi-
croscopic BUU-type formulations[6] as well as in a grand
canonical thermodynamic calculation[7]. Its crucial impor-
tance on the extracted value of the freeze-out density from
yield ratios of fragment isotopes differing by one neutron
[8,9] in a statistical fragmentation model was also pointed
out [10].

Speculations have been made connecting multifragmenta-
tion to a liquid-gas type phase transition in finite nuclear
systems(detailed references may be found in Refs.[11–13]).
Experimental determination of the caloric curves in nuclear
multifragmentation studies suggest strongly the occurrence
of such a transition. The determination of temperature, how-
ever, is still shrouded in uncertainty and the order of the
transition is a subject of controversy. Theoretical models of
different genres have been proposed; these include percola-
tion [14], lattice-gas[15,16], statistical canonical[11] and
microcanonical models[12] and semimicroscopic models
like finite temperature Thomas-Fermi theory in both nonrel-
ativistic [17] and relativistic[18] framework. Many of these
models are based on the phase space considerations though
they differ in details. A canonical model based on this con-
sideration which is analytic in nature has been proposed in
Ref. [19] and some applications[20,21] of this model have
been made in the context of nuclear mutifragmentation. This
model is comparatively easily tractable, but still powerful
enough to reproduce many of the features of nuclear multi-
fragmentation including liquid-gas phase transition that can
be correlated to some of the experimental data. This model,
however, does not include the effects of nuclear flow ob-
served in intermediate energy heavy ion collisions. In this
communication we incorporate nuclear flow in the model
and study its effect on some inclusive multifragmentation
observables.

The flow effects are simulated through an external nega-
tive pressure[7]. In the stationary freeze-out volume calcu-
lation as no nucleonic matter exists beyond the freeze-out
boundary, the external pressure is assumed to be zero. A
positive uniform external pressure, i.e., an inwardly directed
pressure, gives rise to compression of the system. Similarly,
a negative external pressure gives rise to an inflationary sce-
nario(as in the case of early universe[22], for example). The
expanding nuclear system can then be simulated as under the
action of an effective negative external pressure. We define
the flow pressure to be equal and opposite to this negative
external pressure. It should be pointed out that the validity of
the model depends on the assumption that the thermody-
namic equilibration time is small compared to the time scale
for the expansion of the system. This is expected to be ful-
filled [7] when vflow / kvl is much small compared to unity;
here kvl is the average nucleonic velocity. This limits the
applicability of the model to flow energy up to,5 MeV per
nucleon.

We consider an excited nuclear system at a temperatureT
and under an external pressureP (negative in our case, the
flow pressurePfl =−P). The system consists ofN neutrons
and Z protons, the total number of nucleons beingAs=N
+Zd. The partition functionQA,Z of the system[23] is given
by

QA,Z = exps− G/Td = o
r

expf− sEr + PVrd/Tg. s1d

Here G=E−TS+PV is the Gibbs potential,Er the state de-
pendent energy andVr the state dependent volume. Ifvi j
represents the partition function for the fragmentsi j d consist-
ing of i nucleons andj protons, the partition function of the
system sA,Zd fragmenting into all possible configurations
hnj, assuming the fragment pieces are noninteracting, is
given by

QA,Z = o
hnj

p
i=1

A

p
j=0

Z
svi jdnij

nij !
. s2d

Herenij is the number ofsi j d species present. The sum runs
over all possible configurations conserving nucleon number
and charge. The average multiplicity ofsi j d species is
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knijl =
vi j

QA,Z
QA−i,Z−j . s3d

The functionQA,Z can be easily calculated using the recur-
sion relation[19]

QA,Z =
1

A
o
i=1

A

o
j=0

Z

ivi jQA−i,Z−j . s4d

The partition function is built up definingQ00=1. The parti-
tion functionvi j is

vi j = o
k
E d3p d3r

h3 expF− SEij
k +

PijV

nij
DYTG , s5d

where Pijsoi j Pij =Pd is the partial pressure due to thesi j d
species and

Eij
k =

p2

2mi
+ ei j

k + Vij
C. s6d

Here the first term on the right-hand side denotes the center
of mass kinetic energy andei j

k refers to the energy of thekth
internal state of the fragment;Vij

C is the single-particle Cou-
lomb energy which we evaluate in the complementary frag-

ment approximation[24]. Equation(5) reduces to

vi j =
s2pmTd3/2

h3 i3/2qij E dV exps− PijV/nijTd, s7d

where

qij = o
k

expf− sei j
k + Vij

Cd/Tg. s8d

We do not have anya priori notion about the dependence of
Pij andnij on volume as well as on temperature. We, there-
fore, make a simplifying assumption that the dependence of
PijV/nij =Pij /ri j [ri j being the density of thesi j d species] on
temperature is linear. It will be seen later that this is tanta-
mount to assuming the flow energy of a fragment propor-
tional to temperature. Such a prescription may not be unjus-
tified as both stronger compression(hence collective flow)
and larger temperature of the fragmenting system result from
enhanced bombarding energy. We then writePij /ri j =CijT,
Cij being a constant for the fragment species.

For fragment masses up toi =16, the input forei j
k is taken

from the experimental data; for fragment masses above 16,
the liquid-drop expression

qij = expfsW0i − ssTdi2/3 + aiT
2 − Vij

Cd/Tg, s9d

is taken using Fermi-gas approximation. Here the volume
energy termW0=16 MeV, the temperature dependent sur-
face tension isssTd=s0fsTc

2−T2d / sTc
2+T2dg5/4 with s0

=18 MeV, and the critical temperatureTc=18 MeV. The
level density parameter is taken asai = i /16 MeV−1.

The total energy of the system is evaluated as

E =
1

QA,Z
o

r

Er expf− sEr + PVrd/Tg

= o
i j

knijlF3

2
T + His− W0 + T2/16d + ssTdi2/3

− T
ds

dT
i2/3 + Vij

CJG − PkVl. s10d

In deriving Eq.(10), use has been made of the same approxi-
mation as in Eq.(7). The first term in the square brackets is
the kinetic energy of the fragments for the center of mass
motion and the term within the curly bracket is the internal
energy of the fragments lifted by the Coulomb energy. The
last term is identified as the flow energy(note here thatP is
negative). In absence of a better prescription, we have re-
placed the average volumekVl by a freeze-out volumeVf. It
is then seen that the flow energyefl

i j of a fragment belonging
to the si j d species isPij /ri j . We then haveefl

i j =CijT. We
consider the flow to be radial. As the heavier fragments are
formed relatively closer to the center, the flow energy per
particle decreases with the mass number of the fragment. So
we parametrizeefl

i j as diaT with a,1. The parameterd de-
termines the flow energy of a nucleon at a temperatureT.
The total flow energy is

FIG. 1. In the top panel the average multiplicities per nucleon
kMl /A as a function of temperature at constant volume(a) and at
constant flow pressurePfl =0.025 MeV fm−3 (b) are shown. All
lines correspond to197Au except the dashed line that refers to
109Ag. The different lines refer to different sets of flow parameters
as given in the legend. In the bottom panel the average IMF multi-
plicity per nucleonkNIMFl /A is displayed both at constant volume
(c) and at constant flow pressure(d). The notations for the panels
(c) and (d) are the same as those in the panels(a) and (b),
respectively.
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Efl
tot = dTo

i j

knijlia. s11d

The decrease of flow energy per particle with increasing
mass of the fragment is taken care of through the parameter
a. It can be checked that fora=1, the fragmentation pattern
remains unaltered. With these prescriptions, the integral per-
taining to Eq.(7) is Vf expsdiad. The effect of flow is thus
tantamount to an increase in the effective freeze-out volume
which is dependent on the fragment species. The larger the
species, the larger the effective freeze-out volume. Such an
effect was already observed in a previous analysis of experi-
mental data with radial flow[10].

In order to study the flow effects on nuclear multifrag-
mentation, results are shown for197Au taken as a represen-
tative system along with those for109Ag to explore the mass
dependence of the observables calculated. Anab initio deter-
mination of the parametersa andd is beyond the scope of a
statistical model. We vary the parametersa and d to study
their sensitivity on the observables. In Fig. 1, the average per
nucleon multiplicity kMl /A (top panels) and the average
number of intermediate mass fragments per nucleon
kNIMFl /A (bottom panels) are displayed as a function of tem-
perature. The IMF’s are defined as fragments with 3øZ
ø20. In panel(a) the fragment multiplicities that are dis-
played are calculated at a constant freeze-out volumeVf
=6V0 where V0 is the normal volume of the fragmenting

system. All the subsequent calculations at constant volume
are done at the aforementionedVf. The meanings of the dif-
ferent lines corresponding to variation ofa and d are dis-
played in the legend. Unless specifically mentioned in the
legend, the lines correspond to197Au as the fragmenting sys-
tem. The comparison of the dotted line with the full line
shows the influence of flow on the fragment multiplicity. It is
evident that flow enhances the multiplicity. We note that the
multiplicity kMl /A has a sudden enhancement at a particular
temperature. It will be seen later that such enhancement also
occurs in the heat capacity and entropy at around this tem-
perature which we identify as a liquid-gas type phase transi-
tion in a finite nucleus. This transition temperature decreases
with increasing flow. At a constant volume, we note that
generally multiplicity increases with decreasinga. The mul-
tiplicity and the transition temperature are weakly dependent
on the parametera. Their dependence on the mass of the
fragmenting system is also not very significant as is evident
from the results displayed for109Ag (dashed line) in the fig-
ure. The fragment multiplicity at constant flow pressurePfl
=0.025 MeV fm−3 is displayed in the panel(b). The values
of the parameter sets corresponding to different lines are
given in the legend. For all the results presented in Figs. 1–3,
the legends of panels(a) and (b) apply for calculations per-
formed at constant volume and at constant flow pressure,
respectively. From the comparison of the solid line and the
dotted line it is found that the multiplicity increases signifi-
cantly with the increase in the flow energy. As in the case of
constant volume, the multiplicity is seen to be not sensitive

FIG. 2. The average multiplicity per nucleonkMl /A (top panel)
and the average IMF multiplicity per nucleonkNIMFl /A (bottom
panel) are shown as a function of excitation energy. The notations
are the same as in Fig. 1. Some representative experimental data for
IMF multiplicity are also displayed.

FIG. 3. The caloric curves at constant freeze-out volumeVf

=6V0 (top panel) and at constant flow pressurePfl

=0.025 MeV fm−3 (bottom panel). The notations are the same as in
Fig. 1. The experimental data refer to Refs.[4] (filled circles) and
[25] (open triangles).
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to the parametera and the mass of the fragmenting system.
The jump at the transition temperature is somewhat more
marked here as compared to that for constant volume calcu-
lations. The total flow energy is quite insensitive to the pa-
rametera and is mostly governed by the parameterd. For
d=0.5, at the transition temperature the flow energy is
,1.6 MeV per nucleon which increases to,2.3 MeV per
nucleon for d=0.8. In the lower panels of the figure, the
average number of intermediate mass fragments per nucleon
kNIMFl /A are displayed as a function of temperature both at
constant volume and at constant flow pressure as indicated.
Below the transition temperature the number ofNIMF’s are
very small; at the transition temperature there is a sudden
enhancement in the IMF multiplicity. The dependence of
kNIMFl /A on the parametersa andd as well as on the mass
of the fragmenting system are similar as found for the frag-
ment multiplicity kMl /A.

Experimentally, the multiplicities are measured as a func-
tion of excitation energy. The calculated results along with
the measuredkNIMFl /A as a function ofEp /A both at con-
stant volume and at constant pressure are displayed in Fig. 2.
The average multiplicity per nucleonkMl /A is seen to in-
crease smoothly withEp /A; thekNIMFl /A is found to rise and
fall smoothly as a function of excitation energy. It is found
that the calculated results at constant pressure conforms bet-
ter with the experimental data. In the experimental situation,
the mass of the fragmenting system decreases appreciably
with the excitation energy. However, from the calculated re-
sults for Ag and Au, we find that the IMF multiplicities
nicely scale with the mass of the fragmenting system. This

justifies the comparison ofkNIMFl /A calculated for a single
system for all the excitation energies with the experimental
data.

The caloric curves, i.e., the dependence of the excitation
energy on temperature both at constant volume(top panel)
and at constant pressure(bottom panel) are presented in Fig.
3. The dashed line corresponds to109Ag, the other ones refer
to Au with different choices of parameters as explained in
connection with Fig. 1. The caloric curve at constant volume
shows a monotonic increase of temperature with excitation
energy; however, a clear plateau is observed at aroundT
=6.7 MeV for calculation without flow and at,5.8 MeV for
all values ofa chosen withd=0.5. A few representative ex-
perimental data(given by filled circles[4] and open triangles
[25]) are shown in the figure. There is a wide variation in
mass of the excited fragmenting system in these data. Mass
variation is an important factor that has been often empha-
sized[26] in any interpretation of the caloric curve; however,
in the mass range 100–200, there is not much quantitative
change in the experimental data[27]. This is also reflected in
our calculations. It is seen that with a modest flow energy of
,2 MeV per nucleon around the transition temperature, the
qualitative features of the data can be fairly reproduced. The
caloric curve at constant flow pressure, on the other hand,
exhibits instead of a plateau a mild undulation in a very
narrow region of temperature near the phase transition. The
excitation energy is triple valued at a fixed temperature in
this region. This corresponds to three different freeze-out
volumes.(For Figs. 1 and 5, the relevant quantities are taken
at the highest volume whereG is found to be the minimum.)

FIG. 5. The entropy per nucleonS/A at constant volume 6V0

(top panel) and at constant flow pressure 0.025 MeV fm−3 (bottom
panel) with a andd as indicated for the system197Au.

FIG. 4. The heat capacity per nucleon at constant volume 6V0

(top panel) and at constant flow pressure 0.025 MeV fm−3 (bottom
panel) are displayed for197Au with a=0.8 andd as indicated. The
meaning of the vertical dashed lines is explained in the text.
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In a canonical model without flow, such a behavior has also
been observed at constant thermal pressure by Daset al.
[28]. Inspection of the caloric curves both at constant volume
and at constant pressure shows that they are nearly insensi-
tive to the values ofa and the mass of the fragmenting
systems chosen. However, increase in flow energy(increase
in d) reduces the transition temperature.

The heat capacity at constant volumeCv as a function of
excitation energy is shown in the top panel of Fig. 4 for the
system197Au with a=0.8 and values ofd as marked in the
figure. The peaked structure inCv signals a liquid-gas phase
transition, the peak becoming stronger with increasing flow.
Results corresponding to the choice of other parameters are
not shown as they yield very similar results. The heat capac-
ity at constant flow pressure(bottom panel) with d=0.5 and
a=0.8 shows a negative branch in the excitation energy zone
corresponding to the narrow temperature range where the
caloric curve displays a negative slope in the undulating re-
gion. The dashed vertical lines correspond to the maximum
and minimum in the caloric curve whereCp is discontinuous.
Similar behavior has also been observed in the lattice-gas
model by Chomazet al. [16]. The qualitative nature ofCp
with choice of other flow parameters remains unchanged and
are not shown.

The entropy per particleS/A as a function of temperature
at constant volume and at constant flow pressurePfl are dis-
played in the top and in the bottom panel of Fig. 5, respec-
tively, for the values of the flow parameters as given in the
figure. At the transition temperature, there is a jump in the
entropy which becomes more pronounced for calculations at
constantPfl . The larger entropy at any particular temperature
with flow can be understood either from the enhanced frag-
ment multiplicity with flow or from the increased effective
freeze-out volume.

In summary, we have performed calculations for multi-
fragmentation of a heated nucleus in a canonical model with
incorporation of flow both at constant volume as well as at
constant flow pressure. It may be pointed out that under the
experimental conditions none of these constraints may exist.
In the absence of any definite knowledge of the actual sce-
nario, the calculations are done with these constraints im-
posed. It is found that the average multiplicity increases with
flow; the average IMF multiplicity shows a rise and fall with
excitations commensurate with the experimental data. The
calculated caloric curves also follow the experimental trend
very closely. The plateau in the caloric curve and the peaked
structure of the corresponding heat capacity at around
5–6 MeV signal a liquid-gas phase transition in the finite
nuclear systems. At constant flow pressure, the caloric curve
shows a negative slope in a small domain of temperature and
gives rise to negative heat capacity. Negative heat capacity at
constant thermal pressure has been observed in the same
model without flow[28]; it is interpreted as arising in re-
gions of mechanical instability where the isobaric volume
expansion coefficient is negative. The same effect is seen to
persist with incorporation of flow. A sudden jump in entropy
is also seen, both at constant volume and at constant pres-
sure. It is interesting to note that the maximum in thekNIMFl,
the peak inCv, the discontinuity inCp, and the sudden jump
in entropy are all around the same temperature signalling a
liquid-gas phase transition.
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