
Extended optical model analyses of elastic scattering and fusion cross sections for heavy-ion
collisions with loosely bound projectiles at near-Coulomb-barrier energies

W. Y. So, S. W. Hong, and B. T. Kim
Department of Physics and Institute of Basic Science, Sungkyunkwan University, Suwon 440-746, Korea

T. Udagawa
Department of Physics, University of Texas, Austin, Texas 78712, USA

(Received 10 October 2003; published 9 June 2004)

Within the framework of an extended optical model, simultaneousx2 analyses are performed for elastic
scattering and fusion cross-section data for9Be+209Bi and 6Li+ 208Pb systems, both involving loosely bound
projectiles, at near-Coulomb-barrier energies to determine the polarization potential as decomposed into direct
reaction sDRd and fusion parts. We show that both DR and fusion potentials extracted fromx2 analyses
separately satisfy the dispersion relation, and that the expected threshold anomaly appears in the fusion part.
The DR potential turns out to be a rather smooth function of the incident energy, and has a magnitude at the
strong absorption radius much larger than the fusion potential, explaining why a threshold anomaly has not
been seen in optical potentials deduced from fits to the elastic-scattering data without such a decomposition.
Using the extracted DR potential, we examine the effects of projectile breakup on fusion cross sectionssF. The
observed suppression ofsF in the above-barrier region can be explained in terms of the flux loss due to
breakup. However, the observed enhancement ofsF in the subbarrier region cannot be understood in terms of
the breakup effect. Rather, the enhancement can be related to theQ value of the neutron transfer within the
systems, supporting the ideas of Stelsonet al. [Phys. Lett. B205, 190 (1988); Phys. Rev. C41, 1584(1990)]
that subbarrier fusion starts to occur when the colliding ions are at a distance where the barrier against the flow
of the valence neutrons disappears and thus neutron exchange can take place freely.
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I. INTRODUCTION

In our earlier publications[1–3], we proposed a unified
approach to describe fusion within the framework of the di-
rect reaction(DR) theory, the simplest of which was an ex-
tended optical model. There, we assumed an optical potential
consisting of a volume-type fusion part,UFsr ,Ed, and a
surface-type DR part,UDsr ,Ed, both being complex and en-
ergy dependent, together with the real CoulombVCsrd and
the bare(Hartree-Fock) nuclear potentialV0srd. The total DR
and fusion cross sections,sD andsF, respectively, were then
calculated as an absorption cross section due toUDsr ,Ed and
UFsr ,Ed. In Refs.[2,3], using the extended optical model, we
successfully carried out simultaneousx2 analyses of elastic
scattering, total(sum of all different) direct reaction, and
fusion cross-section data for heavy-ion collisions.

The original development[1] of the DR approach to fu-
sion was motivated by questions concerning the radial dis-
tance at which fusion begins to occur. We called such a dis-
tance the fusion potential radiusRF, where RF=rFsA1

1/3

+A2
1/3d. An obvious question was raised when we recognized

that there were two conflictingrF values, i.e., therF value
assumed in the barrier penetration model(BPM) [4,5] and
the much largerrF value implied in the DR theory. The BPM
assumes that fusion occurs after two colliding ions pass
through or go over the Coulomb barrier and approach each
other within a critical distanceRcr=rcrsA1

1/3+A2
1/3d. The value

of rcr has customarily been assumed to be about 1.0 fm. Thus
in the BPM, one hasrF< rcr<1.0 fm. However, in the DR
theory, it is envisioned that fusion occurs once the colliding

ions contact each other within the strong absorption radius
[6] Rsa=rsasA1

1/3+A2
1/3d. The value ofrsa is known to be about

1.5 fm. This means thatrF< rsa<1.5 fm. TherF values as-
sumed in the BPM and in the DR theory thus differ by about
50%.

Collisions between heavy ions are strongly dissipative,
which means that once the ions start to interact and get ex-
cited, they go into states of more and more complex excita-
tions, causing a strong damping of the relative kinetic energy
between the two ions. Once this happens, the system can
hardly go back to the elastic channel. The largerF value
implied in the DR theory reflects this highly dissipative na-
ture of the collisions. The approach of Ref.[1] was devel-
oped to describe fusion in a way consistent with this picture.
It is worth emphasizing here that the success of the distorted-
wave Born approximation(DWBA) in dealing with DR is
due to the strong absorption of the distorted waves inside
Rsa, so that the reaction can take place only in the peripheral
region, where the interaction between the two colliding ions
is effectively weak. Thus one can treat the interaction by
means of the Born approximation.

In a more recent publication[7], we extended the optical
model approach of Refs.[2,3] to permit evaluation of the
angular distribution of the total DR. This has enabled us to
integrate the angular distribution data during the analyses.
The method has been applied to16O+208Pb [7] and 6He
+ 209Bi [8] systems at incident energies near the Coulomb-
barrier height.

In Ref. [8], the 6He+209Bi system was considered as an
example of collisions involving loosely bound projectiles,
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which has been extensively studied recently. There are two
important questions raised in these studies: One concerns the
so-called threshold anomaly[9,10] (rapid energy variation in
the strength of the optical potential), and the other concerns
the effect of a high probability of breakup on the fusion cross
section,sF. Thus data have been taken not only for elastic
scattering but also for fusion and breakup in collisions in-
duced by such loosely bound projectiles, e.g.,6He [11–13],
6Li [14–20], and 9Be [21–25,27,28]. As expected, largea
production(breakup) cross sections have been observed in
these collisions[13,15–18,25–28].

These data have shown that the threshold anomaly almost
always seen for tightly bound projectiles is absent for such
loosely bound projectiles. The absence of the threshold
anomaly has often been ascribed to the large probability of
breakup of these loosely bound projectiles[9]. The experi-
mental fusion cross sections are strongly suppressed at ener-
gies above the Coulomb barrier, while they are in some cases
enhanced at subbarrier energies, particularly for6He+209Bi
[11].

It was pointed out some time ago[29] that the threshold
anomaly was due to fusion, specifically to the coupling of the
elastic channel with fusion channels. In the case where fu-
sion dominates the reaction, the threshold anomaly naturally
manifests itself in the optical potentials extracted from the
analyses of elastic scattering data. However, in the case
where breakup(or DR in general) dominates, the energy de-
pendence of the resultant optical potentials is governed by
DR and thus is quite smooth[9]. One can thus expect that a
rapid variation would not appear in the potential when a
process is dominated by DR. In order to see the threshold
anomaly in such cases, it is thus necessary to separate the
potential into fusion and DR(breakup) parts. The optical
model approach used in Refs.[1–3] is a possible way to
achieve such a separation. In Ref.[8], by using such an ap-
proach, simultaneousx2 analyses were performed on the data
for the elastic scattering, breakup, and fusion for6He
+ 209Bi, and a clean separation of the fusion potential from
the DR portion was achieved. It was shown that a threshold
anomaly appeared in the fusion potential as expected. At the
same time, it was possible to explain the suppression of the
fusion cross section at above-barrier energies as a result of
large breakup.

The aim of the present study is to extend this type of
analysis to the6Li+ 208Pb and9Be+209Bi systems, both in-
volving loosely bound projectiles. In making such an exten-
sion, however, we encounter the difficulty that no reliable
total DR cross-section data are available. For these systems
the a production cross sections have been measured
[15–18,25–28], but the results are still controversial.(After
writing the paper we came across Ref.[28], where the ex-
perimental total DR cross sections were reported for the
9Be+209Pb system. We will mention these data in Secs. III
and IV D) Also, there is no guarantee that the measured
breakup(a production) cross section exhausts the total DR
cross section, so that one can use the breakup cross section as
sD

exp. In the present study, we thus generate first the semiex-
perimental total reaction cross section,sR

semi-exp from the
measured elastic scattering cross section,dsE

exp/dV. Such an
approach to generatesR

semi-exp from dsE
exp/dV has been pro-

posed and tested, e.g., in Refs.[6,30–33]. In Sec. II, we first
discuss characteristic features of elastic and breakup cross-
section data considered in the present study. In Sec. III, de-
tails of the method of generatingsR

semi-exp are explained.
Using sR

semi-exp, we further generate a semiexperimental total
DR cross section,sD

semi-exp, as sD
semi-exp=sR

semi-exp−sF
exp,

which will be used assD
exp. Simultaneousx2 analyses of the

data ofdsE
exp/dV, sF

exp, andsD
semi-exp are then carried out as

discussed in Sec. IV, which presents details of the analysis
method. In Sec. V, the results are summarized and discussed
with an emphasis on two important issues, i.e., the threshold
anomaly and the breakup effects on fusion. Finally, Sec. VI
concludes the paper.

II. REVIEW OF EXPERIMENTAL DATA

We begin by discussing some of the characteristic features
of elastic scattering and DR data for the6Li+ 208Pb and
9Be+209Bi systems considered in this study, in comparison
with those for6He+209Bi studied previously and discussed in
Ref. [8]. As remarked there, unusual features of collisions
with loosely bound projectiles can best be seen in the ratio
Pi, defined by

Pi ;
dsi

dV
YdsC

dV
= dsi/dsC si = E or Dd, s1d

as a function of the distance of the closest approachD (or the
reduced distanced) [6,30,34], whereD is related to the scat-
tering angleu by

D = dsA1
1/3 + A2

1/3d =
1

2
D0S1 +

1

sinsu/2dD s2d

with

D0 =
Z1Z2e

2

E
,

and D0 is the distance of the closest approach in a head-on
collision (s wave). Here sA1,Z1d and sA2,Z2d are the mass
and charge of the projectile and target ions, respectively, and
E is the incident energy in the center-of-mass system.PE and
PD as defined by Eq.(1) are referred to as the elastic and DR
probabilities, respectively.

In Figs. 1 and 2, we present experimental values ofPE
andPD for all available incident energies as a function of the
reduced distanced for 6Li+ 208Pb and 9Be+209Bi, respec-
tively. Note thatPD in Fig. 1(b) is that for thea-singles cross
section and does not include cross sections of, e.g., deuteron
production that may come from breakup followed by absorp-
tion of ana by the target nucleus(incomplete fusion). There
is experimental evidence[19] that such incomplete fusion
events give rise to a significant contribution toPD. This
means thatPD shown in Fig. 1(b) may be underestimated by
a certain factor. In Fig. 2, plotted are thePE values only,
since for9Be+209Bi the angular distribution data needed for
PD are not available.

As seen in Figs. 1(a) and 2, the values ofPE at different
incident energies line up to form a very narrow band. This is
a characteristic feature seen in heavy-ion collisions[7], irre-
spective of whether the projectile is tightly bound or not,
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reflecting the semiclassical nature of these collisions.PE re-
mains close to unity until the two ions approach each other
within a distancedI, wherePE begins to fall off. The distance
dI is usually called the interaction distance, at which the
nuclear interactions between the colliding ions are switched
on, so to speak. The values ofdI are about 1.9 fm for6Li
+ 208Pb and 1.8 fm for9Be+209Bi. Note that the correspond-
ing value for 6He+209Bi is 2.2 fm [8]. These values for
loosely bound projectiles are significantly larger than those
sdI <1.68 fmd for tightly bound projectiles[6,7,30,34].

As demonstrated[34] for tightly bound projectiles,PE
falls off approximately exponentially(linearly in the loga-

rithmic scale) for d,dI. This is, however, not the case for
loosely bound projectiles as seen in Figs. 1 and 2. In the
region just inside ofdI, PE falls off roughly quadratically in
the logarithmic scale. This is also the case for6He+209Bi [8].
Thus, the existence of the quadratic falloff region just inside
dI seems to be another characteristic feature ofPE for loosely
bound projectiles.

We may ascribe these features to breakup, or more gener-
ally to DR; in fact thedI values are strongly correlated with
the magnitudes of the total DR cross sections. This is shown
in Fig. 3, where the maximum values ofPDsPD

maxd that pre-
sumably measure the strength of DR are plotted againstdI.
As seen,PD

max increases approximately linearly withdI (DR
cross sections tend to be larger for systems with largerdI).
Furthermore, as can be seen in Fig. 1, if one addsPD to PE,
the sumPE+PD comes very close to unity in the region of
the quadratic falloff(more so, if one takes into consideration
the incomplete fusion contribution toPD remarked above),
implying that the falloff of PE from unity in the quadratic
region is primarily due to breakup(DR). The same feature
was also observed for6He+209Bi (see Fig. 1 of Ref.[8]).
From what has been discussed so far, we may safely con-
clude that thedI value can be used as a measure of the
importance of the breakup(DR) effect. Along this line of
reasoning, sincedI for 6He, 6Li, and 9Be are about 2.2, 1.9,
and 1.8 fm, respectively,6He is the most characteristic

FIG. 1. The experimental(a) elastic and(b) DR probabilities,
PE andPD, respectively, as functions of the reduced distanced for
the 6Li+ 208Pb system atEc.m.=28.2, 30.1, 32.1, 34.0, and
37.9 MeV. The data are taken from Refs.[14,18]. The solid curve
plotted in the lower panel is our theoretical prediction(see details in
the discussion in Sec. IV C). The experimental errors inPE andPD

are less than 10% and 1%, respectively.

FIG. 2. The experimental elastic probability,PE, as a function of
the reduced distanced for the 9Be+209Bi system atEc.m.=38.4,
40.3, 42.2, 44.1, and 46.0 MeV. The data are taken from Ref.[23].
The errors inPE are less than 16%.

FIG. 3. The maximum values of DR probabilityPDsPD
maxd are

plotted against the interaction radiusdI extracted fromPE. For
6He+209Bi, Fig. 1 of Ref. [8] is used to extractPD

max. PD
max for

6Li+ 208Pb is obtained by adding the breakup contribution[the
maximum PD in Fig. 1(b)] to the incomplete fusion contribution
(about 30% from Fig. 3 of Ref.[19]). This sum agrees with the
maximum value of our predictedPD (solid curve) in Fig. 1(b). For
9Be+209Bi, PD

max is obtained by summing breakup, transfer, and
Coulomb excitation contributions at 12.5 fm in Fig. 3 of Ref.[27],
and the incomplete fusion contribution(about 20% from Fig. 2 of
Ref. [22]). For 16O+208Pb, Fig. 1 of Ref.[7] is used to extractPD

max.
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loosely bound projectile(in fact a well-known halo nucleus),
6Li is the next, and9Be is the least among these three under
consideration.

The experimental data ofPD will be used for fixing the
values of the geometrical parametersrD and aD for the DR
potential. This point[together with the nature of the solid
line shown in Fig. 1(b)] will be discussed again later in Sec.
IV.

III. EXTRACTING SEMIEXPERIMENTAL DR
CROSS SECTION

It has been suggested[6,30–33] that in heavy-ion colli-
sions the total reaction cross sectionsR can be extracted
from the measured elastic scattering cross sectiondsE/dV as

sR = sC − sE, s3d

where sC and sE are the angle-integrated total Rutherford
and elastic scattering cross sections, respectively,

si =E dsi

dV
dV si = C or Ed. s4d

Equation (3) is based on the optical theorem for charged
particles[6], which reads

sR = sC − sE + Ds, s5d

where Ds, the correction term, is given in terms of the
nuclear part of the forward scattering amplitude,fNsu=0d, as

Ds =
4p

k
ImffNsu = 0dg. s6d

For heavy-ion collisions,Ds is generally small, justifying
the use of Eq.(3) for generatingsR. We refer tosR calcu-
lated by Eq.(3) as a semiexperimental reaction cross section,
sR

semi-exp. OncesR
semi-exp is extracted, and if the experimental

fusion cross section,sF
exp, is available, one can further gen-

erate a semiexperimental total DR cross section,sD
semi-exp, as

sD
semi-exp= sR

semi-exp− sF
exp. s7d

Unfortunately, it is usually difficult to use this method of
generatingsR

semi-exp as described above. The reason is that,
besides the well-known difficulty of measuringdsE/dV at
forward angles, data fordsE

exp/dV are usually available only
over a limited range of angles, which makes it difficult to
obtain a reliable value of the angle-integratedsE. We thus
resort here to the empirical fact[35] that the total reaction
cross section calculated from the optical model fit to the
available elastic scattering cross section data,dsE

exp/dV, usu-
ally agrees well with the experimentalsR, in spite of the well
known ambiguities of the optical potential. This means that
we may replacesC−sE in Eq. (3) by the total reaction cross
section calculated from the optical model fit to available
dsE

exp/dV. This approach seems to work even for loosely
bound projectiles, as demonstrated recently by Kolataet al.
in the 6He case[11].

In this study, we thus first carry out rather simple optical
model x2 analyses of elastic scattering data for the6Li

+ 208Pb and9Be+209Bi systems. For these preliminary analy-
ses, we assume the optical potential to be a simple sum of
two volume-type potentialsV0srd andU1sr ,Ed, whereV0srd
is the real, energy-independent bare potential[the same bare
potential will be used in Eq.(9) later for the fullx2 analyses],
while U1sr ,Ed is a complex potential with common geo-
metrical parameters for both real and imaginary parts. The
elastic scattering data are then fitted with a fixed radius pa-
rameterr1 for U1sr ,Ed but with all three other parameters
varied, the real and the imaginary strengthsV1 andW1, and
the diffuseness parametera1. Thex2 fitting is done for three
choices of the radius parameter:r1=1.3, 1.4, and 1.5 fm.
These different choices of ther1 value are made in order to
examine the dependence of the resultingsR

semi-exp on the
choice of the parameters.

The values ofsR
semi-exp thus extracted are summarized in

Table I, where the values ofDs estimated from these pre-
liminary optical model calculations are also shown.(The op-
tical potential parameters from these preliminary calculations
are not listed here for brevity.) ThesR

semi-expvalues calculated
in Refs.[14] and[23] for 6Li+ 208Pb and9Be+209Bi, respec-
tively, are also listed in the last column. As seen in Table I,
the estimatedDs values are rather small compared with
sR

semi-exp, justifying the use of Eq.(3). Also, the mean-square
deviations ofsR

semi-exp obtained by the use of differentr1
values are rather small. Further,sR

semi-exp as determined in
Refs. [14] and [23] using optical potential parameters quite
different from those used above, agree with ours within 10%,
suggesting that this method can yieldsR

semi-exp without much
ambiguity.

UsingsR
semi-exp extracted in this way, we generatesD

semi-exp

by employing Eq.(7). For the case of6Li+ 208Pb, sD
semi-exp

thus generated are found to be 10% –30% larger than the
experimental total breakup cross section measured by Signo-
rini et al. [18], which seems to be reasonable; the difference
may be due to the incomplete fusion events mentioned in
Sec. II. For the9Be+209Bi case, extractedsD

semi-exp are some-
what larger than the observed breakup cross section reported
in Ref. [16], but close to the values reported in Ref.[27].
Also, the sum of the DR cross section measured for9Be
+ 208Pb [28] agrees well with oursD

semi-exp as will be seen
later in Fig. 8.

IV. SIMULTANEOUS x2 ANALYSES

Simultaneousx2 analyses were performed on the data for
dsE

exp/dV, sF
exp, and sD

semi-exp for the 6Li+ 208Pb and 9Be
+ 209Bi systems;sD

semi-exp are generated fromdsE
exp/dV as

described in the previous section.dsE
exp/dV and sF

exp are
taken from the literature[14,19,21,23]. SincesF

exp data for
6Li+ 208Pb were not available at the time the analyses were
carried out, use was made of data taken for6Li+ 209Bi [19].
After finishing the analyses, we received data taken for6Li
+ 208Pb [20]. But since the new data are found to be essen-
tially the same as the data used, no attempt has been made to
repeat the calculations using the new data.

A. Necessary formulas

The optical potentialUsr ,Ed that we use in the present
study has the following form:
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Usrd = VCsrd − fV0srd + UFsr ;Ed + UDsr ;Edg, s8d

where VCsrd is the usual Coulomb potential withrC

=1.25 fm, andV0srd is the bare(Hartree-Fock) nuclear po-
tential. UFsr ;Ed and UDsr ;Ed are, respectively, fusion and
DR parts of the so-called polarization potential[36] that
originates from couplings to the respective reaction channels.
Both UFsr ;Ed andUDsr ;Ed are complex and their forms are
assumed to be of volume-type and surface-derivative-type
[7], respectively. Explicitly,V0srd, UFsr ;Ed, andUDsr ;Ed are
given by

V0srd = V0fsX0d, s9d

UFsr ;Ed = fVFsEd + iWFsEdgfsXFd, s10d

and

UDsr ;Ed = fVDsEd + iWDsEdg4aD
dfsXDd

dRD
, s11d

where fsXid=f1+expsXidg−1 with Xi =sr −Rid /ai si
=0, D , andFd is the usual Woods-Saxon function, while
VFsEd, VDsEd, WFsEd, andWDsEd are the energy-dependent
strength parameters. We assume the geometrical parameters
of the real and imaginary potentials to be the same, and thus
the strength parametersVisEd andWisEd (i =F or D) are re-
lated through a dispersion relation[9],

VisEd = VisEsd +
E − Es

p
PE

0

`

dE8
WisE8d

sE8 − EsdsE8 − Ed
,

s12d

where P stands for the principal value andVisEsd is the value
of VisEd at a reference energyE=Es. Later, we will use Eq.
(12) to generate the final real strength parametersVFsEd and
VDsEd, after WFsEd and WDsEd are fixed fromx2 analyses.
Note that the breakup cross section may include contribu-

tions from both Coulomb and nuclear interactions, which
imply that the direct reaction potential includes effects com-
ing not only from the nuclear interaction, but also from the
Coulomb interaction.

V0srd in Eq. (9) may also have an energy dependence
coming from the nonlocality due to the knockon-exchange
contribution. We ignore such effects as they are expected to
be small for heavy-ion scattering[6], and employ the real
potential parameters used in Ref.[33] assuming that all the
unusual features of the potential may be put into the polar-
ization parts, particularly the DR part. The parameters used
are V0=18.36 MeV, r0=1.22 fm, anda0=0.57 fm for 6Li
+ 208Pb andV0=23.02 MeV, r0=1.22 fm, anda0=0.57 fm
for 9Be+209Bi [33]. Note that these potentials are shallow,
which is often required in fitting elastic scattering data of
such projectiles as6Li and 9Be [37].

In performing the optical model calculation, one can
evaluate sF and sD by using the following expression
[1–3,38]

si =
2

"v
kxs+duWisrduxs+dl si = F or Dd, s13d

wherexs+d is the usual distorted wave function that satisfies
the Schrödinger equation with the full optical model poten-
tial Usr ,Ed in Eq. (8). sF andsD are thus calculated within
the same framework asdsE/dV. Such a unified description
enables us to treat all the different types of reactions on the
same footing.

In Ref. [7], we proposed using the following expression:

PD < TD;, =
8

"v
E

0

`

ux,srdu2WDsrddr, s14d

which is derived using the semiclassical nature of heavy-ion
collisions. The above relation may be used to analyze angu-
lar distribution data, and particularly to fix the shape param-
eters for the DR potential,rD andaD involved in fsXDd, since

TABLE I. sR
semi-exp (in mb) extracted from Eq.(3) is compared with other values ofsR

semi-exp. In this tablesR
semi-exp is shortened assR for

simplicity.

r1

Elab 1.3 fm 1.4 fm 1.5 fm

System (MeV) sR Ds sR Ds sR Ds Average Othersa

6Li+ 208Pb 29 222 0.0 221 0.0 221 0.0 221 228

31 395 0.0 394 0.0 393 0.0 394 431

33 625 −0.1 624 −0.1 621 0.0 623 666

35 865 −0.3 850 −0.4 824 −0.6 846 897

39 1293 0.2 1278 −0.1 1237 −1.0 1269 1303
9Be+209Bi 40 256 0.0 256 0.0 253 0.0 255 281

42 451 0.0 449 0.0 444 0.0 448 463

44 612 −0.1 611 −0.1 616 −0.1 613 601

46 771 2.6 766 −1.3 774 0.0 770 766

48 929 −0.4 919 1.0 931 −0.6 926 950

asR
semi-exp for 6Li+ 208Pb are taken from Ref.[14], while sR

semi-exp for 9Be+209Bi are calculated by using the optical potential parameters
deduced in Ref.[23].
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PD is sensitive to these parameters. In Sec. IV C we shall
discuss the use of Eq.(14) to fix the values of the parameters.

B. Threshold energies of subbarrier fusion and DR

In the present study, we utilize as an important ingredient
the so-called threshold energiesE0,F and E0,D of subbarrier
fusion and DR, respectively, which are defined as zero inter-
cepts of the linear representation of the quantitiesSisEd, de-
fined by

Si ; ÎEsi < aisE − E0,id si = D or Fd, s15d

whereai is a constant.Si with i =F, i.e., SF is the quantity
introduced originally by Stelsonet al. [39], who showed that
in the subbarrier regionSF from the measuredsF can be
represented very well by a linear function ofE (linear sys-
tematics) as in Eq.(15). In Ref. [7], we extended linear sys-
tematics to DR cross sections; in fact, the DR data are also
well represented by a linear function.

In Fig. 4 we present the experimentalSFsEd and SDsEd
results for both6Li+ 208Pb and9Be+209Bi. From the zeros of
SisEd, one can extract theE0,i values;E0,D=22.0 MeV and
E0,F=26.8 MeV for 6Li+ 208Pb, as well asE0,D=29.0 MeV
and E0,F=35.5 MeV for 9Be+209Bi. In both cases, the ob-
servedSi are very well approximated by straight lines and
thusE0,i can be extracted without much ambiguity.

E0,i may then be used as the energy where the imaginary
potential WisEd becomes zero, i.e.,WisE0,id=0 [7,8]. This
procedure will be used later in obtaining a mathematical ex-
pression forWisEd.

C. x2 analyses

All x2 analyses in the present work were carried out by
using V0srd as given in Sec. IV A and by using the fixed
geometrial parameters for the polarization potentials. The
fixed shape parameters are listed in Table II. These values are
obtained by making some preliminary analyses, starting with
rF=1.40 fm, aF=0.40 fm, rD=1.58 fm, and aD=0.85 fm,
which are the averages of each parameter determined in our
previous studies[7,8]. In fixing the rD and aD values for
6Li+ 208Pb, the experimentalPD was fitted by using Eq.(14).
In Fig. 1(b), we show as an example(solid curve) PD as
calculated forEc.m.=34.0 MeV in the course of these pre-
liminary calculations. It is remarkable that the elastic scatter-
ing and the DR data require large diffuseness parameters of
aD=0.85 and 0.72 fm for6Li+ 208Pb and9Be+209Bi, respec-
tively. These values are much larger than thatsaD

=0.45 fmd for a typical tightly bound projectile, such as16O
[7], and reflect the largedI values for these systems.

With the geometrical parameters in Table II thex2 analy-
ses then proceeded in two steps: in the first step, all four
strength parameters,VDsEd, WDsEd, VFsEd, andWFsEd were
varied. In this step, we were able to fix nicely the strength
parameters of the DR potential,VDsEd and WDsEd, in the
sense thatVDsEd and WDsEd were determined as smooth
functions of E. The values ofVDsEd and WDsEd thus ex-
tracted are presented in Figs. 5 and 6 by open circles. It is
remarkable that the resultantWDsEd can be well represented
by the following function ofEs=Ec.m.d (in units of MeV):

WDsEd =5
0 for E ø E0,D = 22.0

0.083sE − 22.0d for 22.0, E ø 28.0

0.023sE − 28.0d + 0.50 for 28.0, E ø 37.9

0.73 for 37.9, E

s16d

for the 6Li+ 208Pb system and

WDsEd = 50 for E ø E0,D = 29.0

0.026sE − 29.0d for 29.0, E ø 40.0

0.29 for 40.0, E

s17d

for the 9Be+209Bi system. Note that the threshold energy
where WDsEd becomes zero is set equal toE0,D as deter-
mined in the preceding section. The dotted lines in the lower
panels of Figs. 5 and 6 represent Eqs.(16) and (17). The
dotted lines in the upper panels of Figs. 5 and 6 denoteVD as
predicted by the dispersion relation Eq.(12), with WDsEd
given by Eqs.(16) and(17), respectively. As seen, the dotted

FIG. 4. The Stelson plot ofSi =ÎEc.m.si for DR (i =D, open
circles) and fusion(i =F, solid circles) cross sections for(a) 6Li
+208Pb and(b) 9Be+209Bi systems. The straight lines are drawn to
show the extraction of the threshold energiesE0,i.

TABLE II. Geometrical parameters used in thex2 analyses.

6Li+ 208Pb 9Be+209Bi

rFsfmd 1.40 1.40

aFsfmd 0.42 0.32

rDsfmd 1.47 1.51

aDsfmd 0.85 0.72
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lines reproduce the open circles very well, indicating that
VDsEd and WDsEd extracted by thex2 analyses satisfy the
dispersion relation well.

In the firstx2 fit, however, the values ofVFsEd andWFsEd
could not be reliably fixed in the sense that the values ex-
tracted fluctuated considerably as functions ofE. This is un-
derstandable from the expectation that the elastic scattering
data can probe most accurately the optical potential in the
peripheral region, which is nothing but the region character-
ized by the DR potential. The part of the nuclear potential
responsible for fusion is thus difficult to pin down in such a
way.

In order to obtain more reliable information onVF and
WF, we thus performed the second step of thex2 analysis;
this time, instead of doing a four-parameter search, we fixed
VD andWD as determined by the firstx2 fitting, i.e., WDsEd
given by Eqs.(16) and (17) andVDsEd as given by the dis-
persion relation. We then performed a two-parameterx2

analyses, treating onlyVFsEd and WFsEd as adjustable pa-
rameters. The values thus determined are presented in Figs. 5
and 6 by solid circles. As seen,VFsEd andWFsEd are found
in this way to be smooth functions ofE. WFsEd can be well
represented by

WFsEd = 50 for E ø E0,F = 26.8

0.403sE − 26.8d for 26.8, E ø 34.0

2.90 for 34.0, E

s18d

for the 6Li+ 208Pb system and

WFsEd = 50 for E ø E0,F = 35.5

1.60sE − 35.5d for 35.5, E ø 38.0

4.00 for 38.0, E

s19d

for the 9Be+209Bi system. As in the case forWDsEd, the
threshold energy whereWFsEd becomes zero is set equal to
E0,F. The solid lines in the lower panels of Figs. 5 and 6
representWFsEd in Eqs.(18) and(19). UsingWFsEd given by
these equations, one can generateVFsEd from the dispersion
relation. The results are shown by the solid curves in the
upper panels of Figs. 5 and 6, which again reproduce the
extracted solid circles well. This means that the fusion po-
tential determined from the present analysis also satisfies the
dispersion relation.

D. Final calculated cross sections and comparison
with the data

Using WDsEd given by Eqs.(16) and (17), and WFsEd
given by Eqs.(18) and(19), together withVDsEd andVFsEd
generated by the dispersion relation, we performed the final
calculations of the elastic, DR, and fusion cross sections. The
results are presented in Figs. 7 and 8 in comparison with the
experimental data. All the data are well reproduced by the
calculations. We remark that the sum of the DR cross sec-
tions for 9Be+208Pb [28] plotted by the squares in Fig. 8(b)
agree well with oursD

semi-exp denoted by the open circles. The
final calculated cross sections obtained by employingVisEd
from the dispersion relation are found to be essentially the
same as those obtained by the secondx2 analyses.

In the next section, we shall present discussions of the
results of the present analyses, with an emphasis on the

FIG. 6. The same as in Fig. 5, but for the9Be+209Bi system.
The solid (dotted) line in the lower panel denotesWF sWDd from
Eq. (19) [Eq. (17)]. The solid (dotted) curve in the upper panel
representsVF sVDd obtained by the dispersion relation.

FIG. 5. The strength parametersVi (upper panel) andWi (lower
panel) for i =D andF as functions ofEc.m. for the 6Li+ 208Pb sys-
tem. The open and solid circles are the values fori =D and F,
respectively. The lines in the lower panel denoteWD andWF from
Eqs.(16) and(18), respectively, while the curves in the upper panel
representVD andVF calculated by using the dispersion relation Eq.
(12) with Wi given by Eqs.(16) and (18).
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threshold anomaly and the effect of the breakup onsF. A
brief discussion will also be given on the effects of the DR
and fusion potentials on the elastic scattering cross section.

V. DISCUSSIONS

A. Threshold anomaly

Since we have succeeded in decomposing the polarization
potential into fusion and DR parts, it is now possible to ex-
amine their energy dependence separately: As seen in Figs. 5
and 6, the strength parametersVFsEd andWFsEd of the fusion
potential show strong variations as functions of energy
around the Coulomb-barrier energies, while that is not the
case for the DR potential strengthsVDsEd andWDsEd. They
are rather smooth functions ofE. Similar results have already
been seen for the6He+209Bi system[8].

Because the radial shapes of the fusion and DR potentials
are different from each other, the magnitudes of the strength
parameters alone cannot provide information on the relative
importance of the two potentials. It may best be seen by
comparing the values of these potentials at the strong absorp-
tion radiusRsa; VisRsa;Ed and WisRsa;Ed. These values are
plotted in Fig. 9 as a function ofEc.m.−VB, whereVB is the
Coulomb-barrier height.(Here use is made of the values of
VB in Table IV, to be discussed in Sec. V C.) The open
circles in Fig. 9 denote the values of th DR potential, while
the solid circles are the values of the fusion potential. For the
sake of comparison we present there also the values for the
6He+209Bi system[8].

It is remarkable that the values of the real and imaginary
parts of the DR potential atRsa, VDsRsa,Ed, andWDsRsa,Ed
are both considerably greater than those of the fusion poten-
tial, VFsRsa,Ed andWFsRsa,Ed, respectively. This means that
the total real and imaginary potentials atRsa are dominated
by the DR part, and thus the energy dependence of the
summed potential is determined by that of the DR potential.
This explains why the threshold anomaly was not seen in the
potentials deduced in previous studies, unless they separated
the optical potential into two parts[12,14,21].

B. Effects of breakup on fusion

There are two competing physical effects of breakup on
fusion cross sections. The first is the lowering of the fusion
barrier, which tends to enhancesF. The other is the removal
of flux from the elastic into the breakup channel, which sup-
pressessF.

In the present treatment, these two competing effects are
described in terms of the realfVDsr ;Edg and the imaginary
fWDsr ;Edg parts of the DR potential.VDsr ,Ed can describe
precisely the effect of lowering the barrier, whileWDsr ,Ed
represents the removal of the flux from the elastic channel.
To see the effects quantitatively, we introduce the following
factor Ri:

Ri = sFsid/sFsVD = WD = 0d si = V,W,or VWd, s20d

wheresFsVD=WD=0d is sF obtained by settingVD=WD=0,
i.e., neglecting both barrier-lowering and flux-loss effects,

FIG. 7. Ratios of the elastic scattering cross sections to the
Rutherford cross section calculated with our final dispersive optical
potential for(a) 6Li+ 208Pb and(b) 9Be+209Bi systems are shown in
comparison with the experimental data. The data are taken from
Refs.[14,23].

FIG. 8. DR and fusion cross sections calculated with our final
dispersive optical potential for(a) 6Li+ 208Pb and(b) 9Be+209Bi
systems are shown in comparison with the experimental data.
sD

semi-exp, denoted by the open circles, are as described in Sec. II.
sD

exp denoted by the solid squares for9Be+209Bi are actually from
the experimental DR cross sections for9Be+208Pb [28]. The fusion
data are from Refs.[19,21]. Note that the data of Ref.[19] are not
for the 6Li+ 208Pb, but for6Li+ 209Bi. (See the text for the details.)
The errors insF

exp are less than 10%.
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while sFsid is sF obtained by including eitherVD (for i =V)
or WD (for i =W), or both (for i =VW). Thus RV and RW
describe the barrier-lowering and flux-loss effects, respec-
tively, while RVW gives the net effect. Note thatsFsi =VWd is
nothing but our final fusion cross sectionsF. The values of
these ratios are summarized in Table III. As seen in Table III,
RV is always larger than unity, indicating that the barrier
lowering enhancessF. On the other hand,RW is smaller than
unity, demonstrating that the flux loss suppressessF.

In order to show the net effect clearly, we plot in Fig. 10
theRVW values for the three systems considered in Table III,
as functions ofEc.m.−VB. It is remarkable thatRVW shows an
interesting projectile dependence; the curve for9Be has the
largestRVW values, that for6Li the next largest, and the curve
for 6He has the smallest values. It may be interesting to
remark here that this order in the magnitudes of the ratioRVW
is related to the values ofdI, discussed earlier in Sec. II, that
measure the strength of the breakup effect; the nuclear sys-
tem with smallerdI value has a largerRVW value. In the
higher-energy region, allRVW values are smaller than unity,
indicating that the flux-loss effect surpasses the barrier-
lowering effect, resulting in the net suppression ofsF.

Table III shows that the suppression factorsRVW at the
highest energy for6He, 6Li, and 9Be are 0.76, 0.64, and 0.89,
respectively. These values may be compared with the experi-

mental values ofRexp=0.76, 0.59, and 0.92, respectively,
which we deduce from

Rexp= sF
exp/sF

cl, s21d

where sF
cl is the well-known BPM expression valid in the

above-barrier energies,

sF
cl = pRB

2S1 −
VB

Ec.m.
D . s22d

Here RB is the barrier radius, which we estimated by using
the empirical formula of Vas, Alexander, and Satchler[4].
The values thus estimated areRB=11.68, 10.34, and
11.48 fm, respectively, for the6He, 6Li, and 9Be cases. Thus,
our calculatedRVW factors are very close toRexp, indicating
that the observed suppression in the above-barrier region can
essentially be explained in terms of the net breakup effect.

C. Enhancement ofsF in the subbarier region

WhethersF for loosely bound projectiles is enhanced or
not in the subbarrier region is a subject of great current in-
terest. We begin our discussion on this subject by defining a
subbarrier enhancement factorD,

D = VB − E0,F, s23d

whereE0,F is the subbarrier threshold energy introduced by
Stelsonet al. [39] [see also Eq.(15)] andVB is the Coulomb-
barrier height.D is a measure of how far below the barrier

FIG. 9. The real(left panel) and imaginary(right panel) parts of
fusion (solid circles) and DR(open circles) potentials as functions
of Ec.m.−VB at the strong absorption radiusRsa for (a) 6He+209Bi
sRsa=13.0 fmd, (b) 6Li+ 208Pb sRsa=11.9 fmd, and (c) 9B
+209BisRsa=12.3 fmd systems. The lines connecting the circles are
only to guide the eyes.

TABLE III. Ri =sFsid /sFsVD=WD=0d for i =V, i =W, and
i =VW.

Ec.m. Ec.m.−VB

System sMeVd sMeVd RV RW RVW

6He+209Bi 14.3 −6.0 1.03 0.92 0.94

15.8 −4.5 1.13 0.84 0.93

17.3 −3.0 1.24 0.73 0.88

18.6 −1.7 1.26 0.68 0.83

21.4 1.1 1.15 0.66 0.73

23.5 3.2 1.08 0.68 0.76

26.3 6.0 1.05 0.71 0.75

29.2 8.9 1.04 0.73 0.76
6Li+ 208Pb 26.2 −2.4 1.33 0.77 1.03

28.2 −1.4 1.34 0.78 1.02

30.1 0.5 1.19 0.66 0.77

32.1 2.5 1.08 0.64 0.69

34.0 4.4 1.05 0.63 0.66

37.9 8.3 1.01 0.63 0.64
9Be+209Bi 36.4 −2.5 2.30 0.90 2.01

38.3 −0.6 1.78 0.83 1.43

40.3 1.4 1.41 0.78 1.08

42.2 3.3 1.22 0.78 0.95

44.1 5.2 1.14 0.80 0.91

46.0 7.1 1.09 0.81 0.89
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fusion can still take place, and thus we refer to it as a sub-
barrier enhancement factor. Since bothE0,F and VB can be
extracted from the measured fusion cross-section data by us-
ing Eqs. (15) and (22), respectively,D provides a model-
independent measure of the subbarrier enhancement.

Table IV summarizes the values ofD, together withVB,
E0,F and also “x number of neutron” transfer threshold en-
ergy Qxn. These values are listed not only for the three sys-
tems considered here, but also for the4He+209Bi and 11Be
+ 209Bi systems. Restricting our interests to the first three
projectile cases, we see that6He has the largestD, 9Be the
next, and6Li the smallestD. This contradicts what is ex-
pected from the calculatedRVW values, which predicts that
sF for 6He should be suppressed there. This indicates that the
observed enhancement for6He cannot be explained in terms
of breakup effects, suggesting that breakup is not the primary
mechanism that governs subbarrier fusion.

We recall at this stage that an alternative mechanism has
been proposed by Stelsonet al. [39]; according to the au-

thors, the subbarrier fusion starts to occur when the colliding
nuclei come within a distance where the barrier against va-
lence neutron flow disappears and thus the flow takes place
freely. This means that subbarrier fusion will be more en-
hanced if a collision system has a larger positive neutron(s)
transferQ value[or equivalently if a projectile has less neu-
tron(s) binding energy].

In Fig. 11, we present the valuesD as a function ofQxn,
wherex=1 for all cases except6He with x=2. As seen,D has
a strong correlation withQxn, supporting the idea of Stelson
et al. It should be noted that a similar argument supporting
the idea of Stelsonet al. has been given by Kolataet al. [11]
who took the data for6He, and also very recently by Zagre-
baev[40].

Finally, we note that this mechanism of enhancement due
to neutron transfer is phenomenologically implemented in
the present description through the parameters of the fusion
potentials, specifically by the strength parametersWFsEd of
WFsr ;Ed.

D. Effects of the DR and fusion potentials on elastic scattering
cross sections

So far, we have concentrated on the breakup effects on the
fusion cross section. It may also be interesting to see the
effect on the elastic scattering cross section. In Fig. 12 we
illustrate the effect, taking, as an example, the case for9Be
+ 209Bi at Elab=46 MeV. Plotted in Fig. 12 are the calculated
PE obtained by settingVD=0 or WD=0, or VD=WD=0 in
comparison with thePE from the full calculation. As seen, if
one neglects eitherVD or WD, or both, PE changes, but
mostly in the region ofd=dsa,dI. This is understandable,
since it is the region where DR takes place and thus the DR
potential is most influential in that region. It is remarkable
that once the DR potential is neglected, the interaction dis-
tance of the resultantPE is reduced todI <1.65, close to the
value for the normal tightly bound projectiles.

We have further studied the effects of the fusion potential
on the elastic-scattering cross section, particularly focusing

TABLE IV. Subbarrier enhancement factors. Uncertainties in the
VB andE0,F values listed here are expected to be only a few percent,
but those in theD values may amount to as large as 10%, sinceD is
determined as a difference betweenVB andE0,F.

E0,F VB D

System sMeVd sMeVd sMeVd Qxn x

6He+209Bi 15.4 20.3 4.9 8.77 2
9Be+209Bi 35.5 38.9 3.4 2.94 1
6Li+ 208Pb 26.8 29.6 2.8 −1.73 1
11Be+209Bi 36.2 39.6 3.4 4.10 1
4He+209Bi 18.2 20.2 2.0 −8.35 1

FIG. 10. The calculated ratiosRVW=sFsVWd /sFsVD=WD=0d
with sFsVD=WD=0d calculated by settingVDsEd=WDsEd=0,
sFsVWd calculated by including bothVDsEd and WDsEd, thus de-
scribing the net breakup(DR) effect, are shown as functions of
Ec.m.−VB for 6He+209Bi, 6Li+ 208Pb, and9Be+209Bi systems.

FIG. 11. The experimental values of the subbarrier enhancement
factor D as a function of the neutron(s) transferQ value.
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on the fusion radius parameter,rF. Presented in Fig. 13(a) is
a plot of thex2 values as a function ofrF, calculated by using
the same parameters as used for the final cross-section cal-
culation exceptingrF. As seen, thex2 value has a well estab-
lished minimum atrF=1.40 fm. To see the variations inPE
values when they are calculated withrF values different from
the best fit value ofrF=1.40 fm, we plot in Fig. 13(b) PE for
three cases ofrF=1.35, 1.40, and 1.45 fm in comparison
with the data. As seen, if one changes therF value from the
best fit value, the fit to the data gets deteriorated, particularly
in the region ofd,dsa<1.55 fm, where fusion is supposed
to take place strongly.

VI. CONCLUSIONS

In summary, we have carried out simultaneousx2 analy-
ses of elastic scattering, DR(breakup), and fusion cross sec-
tions for the 6Li+ 208Pb and 9Be+209Bi systems at near-
Coulomb-barrier energies within the framework of an
extended optical model that introduces two types of complex
polarization potentials: the DR and fusion potentials. The
results show that the extracted potentials satisfy the disper-
sion relation well and that the fusion potential exhibits a
threshold anomaly very similar to that observed for tightly
bound projectiles. The results also show that at the strong
absorption radius, the magnitudes of the fusion potential are
much smaller than those of the DR potential. As a conse-
quence, the resulting total polarization potential becomes
rather a smooth function of the incident energy, similar to
that of the DR potential. This explains why the threshold
anomaly has not been observed in potentials determined
without separating the fusion part from the DR part.

Using the extracted DR potentials, studies were made of
the breakup(DR) effects on the fusion cross sectionsF. The
effects are found to be strongly projectile-dependent, reflect-

ing the significance of the probability of breakup of the pro-
jectile. It is also argued that breakup is not the main cause of
the subbarrier enhancement of the fusion cross section, but
that the mechanism that governs the enhancement is neutron
flow as originally suggested by Stelsonet al. [39]. In the
present description, this effect is phenomenologically imple-
mented in the imaginary part of the fusion potential. We also
find that the experimental suppression factors forsF in the
above-barrier region are 0.76, 0.59, and 0.92 for6He, 6Li,
and 9Be, respectively, which are in fairly good agreement
with theoretical suppression factors of 0.76, 0.64, and 0.89,
respectively.
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FIG. 13. (a) The x2 values as a function ofrF evaluated for
1.30 fm, rF,1.50 fm and(b) PE as a function ofd evaluated with
rF=1.35, 1.40, and 1.45 fm for the9Be+209Bi system atElab

=46 MeV.

FIG. 12. Effects of the DR potential onPE for the 9Be+209Bi
system atElab=46 MeV.PE calculated by settingVDsEd=0 (dashed
line), WD=0 (dotted line), andVDsEd=WD=0 (dash-dotted line) are
compared withPE, including bothVD andWD (solid curve).
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