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Four nuclei which are proved to be 2nbb emitters(76Ge, 82Se,150Nd, 238U), and four suspected, due to the
correspondingQ-values, to have this property(148Nd, 154Sm, 160Gd, 232Th), were treated within a proton-
neutron quasiparticle random phase approximationspnQRPAd with a projected spherical single particle basis.
The advantage of the present procedure over the ones using a deformed Woods-Saxon or Nilsson single particle
basis is that the actual pnQRPA states have a definite angular momentum while all the others provide states
having onlyK as a good quantum number. The model Hamiltonian involves a mean field term yielding the
projected single particle states, a pairing interaction for alike nucleons and a dipole-dipole proton-neutron
interaction in both the particle-holesphd and particle-particlesppd channels. The effect of nuclear deformation
on the single beta strength distribution as well as on the double beta Gamow-Teller transition amplitudesMGTd
is analyzed. The results are compared with the existent data and with the results from a different approach, in
terms of the process half-lifeT1/2. The case of different deformations for mother and daughter nuclei is also
presented.
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I. INTRODUCTION

One of the most exciting nuclear physics subject is that of
double beta decay. The interest is generated by the fact that
in order to describe quantitatively the decay rate one has to
treat consistently the neutrino properties as well as the
nuclear structure features. The process may take place in two
distinct ways:(a) by a 2nbb decay the initial nuclear system,
the mother nucleus, is transformed in the final stable nuclear
system, usually called the daughter nucleus, two electrons
and two anti-neutrinos(b) by the 0nbb process the final state
does not involve any neutrino. The latter decay mode is es-
pecially interesting since one hopes that its discovery might
provide a definite answer to the question whether the neu-
trino is a Majorana or a Dirac particle. The 0nbb decay is an
extremely rare process and moreover it is hard to distinguish
the electrons emerging from the two processes. For some
processes there exists information about the low limits of the
process half-lives. Combining this information with the
nuclear matrix elements, some conclusions about the upper
limits of both neutrino effective mass and effective right-
handedness of the electroweak interaction was possible. Un-
fortunately there are no reliable tests for the nuclear matrix
elements involved and therefore some indirect methods
should be adopted. It is worth mentioning that similar matrix
elements which are responsible for neutrinoless double beta
decay are also needed for calculating the 2nbb decay rate,
for which there exists experimental data. Due to this feature
an indirect test for the matrix elements used for 0nbb is to
use those m.e. which describe quantitatively the 2nbb decay.

For such reasons many theoreticians focused their efforts
in describing consistently the data for 2nbb decay. The con-
tributions over several decades have been reviewed by many
authors. Instead of enumerating the main steps achieved to-
ward improving the theoretical description we advise the

reader to consult few of the review works[1–8].
It is interesting to note that although none of the double

beta emitters is a spherical nucleus most formalisms use a
single particle spherical basis. More than 10 years ago, two
of us[9] proposed a formalism to describe the process of two
neutrinos double beta decay in a projected spherical basis. A
pnQRPA approach for a two body interaction in theph and
pp channels with a deformed single particle basis was per-
formed. Moreover, effects which are beyond the proton-
neutron quasiparticle random phase approximations
spnQRPAd have been accounted for by means of a boson
expansion procedure. A few years later the influence of
nuclear deformation upon the contribution of the spin-flip
configurations to the Gamow-Teller double beta transition
amplitude, was studied[10]. In the meantime several papers
have been devoted to the extension of the pnQRPA proce-
dure to deformed nuclei, the applications being performed
for studying the single beta decay properties as well as the
double beta decay rates. Thus, pnQRPA approaches using as
a deformed single particle basis, Nilsson or deformed
Woods-Saxon states have been formulated[11–13]. Also a
self-consistent deformed method was formulated where the
single particle basis was obtained as eigenstates of a de-
formed mean field obtained through a Hartree-Fock treat-
ment of a density dependent two body interaction of Skyrme
type [12].

The present investigation is, in fact, a continuation of the
work from Ref.[9]. Therein the single particle energies were
depending linearly on a parameter which simulates the
nuclear deformation. By contrast, here the core volume con-
servation constraint, ignored in the previous paper, deter-
mines a nonlinear deformation dependence for single particle
energies. Of course, having different single particle energies
one expects that the pairing properties and the double beta

PHYSICAL REVIEW C 69, 064321(2004)

0556-2813/2004/69(6)/064321(20)/$22.50 ©2004 The American Physical Society69 064321-1



matrix elements are modified. Another issue addressed in the
present paper is whether considering different deformations
for the mother and daughter nuclei, modifies significantly the
double beta transition amplitudesMGTd. To be more specific,
we recall that the standard pnQRPA approach including only
the two-body interaction in the particle-holesphd channel
yields aMGT value much larger than the experimental value
extracted from the corresponding half-life. Apparently, the
desiredMGT suppression might be obtained by a suitable
choice of the two-body interaction in the particle-particle
sppd channel. However, the fitted strength is close to the
value whereMGT cancels and moreover close to the critical
value where the pnQRPA breaks down. It is obvious that
increasing the deformation for the daughter nucleus the
pnQRPA phonon state is less correlated and therefore the
pnQRPA breaking point is pushed toward larger values. In
this respect, one may say that the value of thepp interaction
strength which reproduces the experimental value forMGT
becomes reliable, i.e., the corresponding pnQRPA ground
state of the daughter nucleus is stable against adding anhar-
monic effects.

The formalism and results of the present paper will be
presented according to the following plan. In Sec. II a brief
review of the projected spherical single particle basis will be
presented. Section III deals with the pnQRPA treatment of a
many-body Hamiltonian which describes the nuclear states
of the mother, daughter and intermediate odd-odd nuclei, in-
volved in the 2nbb process. In Sec. IV, we discuss the re-
sults for eight double beta emitters:76Ge, 82Se,148Nd 150Nd,
154Sm, 160Gd, 232Th, 238U for which the strength distribution
for single b− and b+ emission for mother and daughter nu-
clei, respectively, theMGT and half lives values for the
double beta decay process are presented. A short summary
and concluding remarks are given in Sec. V.

II. PROJECTED SINGLE PARTICLE BASIS

In Ref. [14], one of us,(A.A.R.), introduced an angular
momentum projected single particle basis which seems to be
appropriate for the description of the single particle motion
in a deformed mean field generated by the particle-core in-
teraction. This single particle basis has been used to study
the collective M1 states in deformed nuclei[15] as well as
the rate of double beta process[9,10]. Recently a new ver-
sion has been proposed where the deformation dependence
of single particle energies is nonlinear and therefore more
realistic [16,17]. In order to fix the necessary notations and
to be self-contained, in the present work we describe briefly
the main ideas underlying the construction of the projected
single particle basis. Also some new properties for the pro-
jected basis are indicated.

The single particle mean field is determined by a particle-
core Hamiltonian:

H̃ = Hsm+ Hcore− Mv0
2r2 o

l=0,2
o

−lømøl

alm
* Ylm. s2.1d

where Hsm denotes the spherical shell model Hamiltonian
while Hcore is a harmonic quadrupole bosonsbm

+d Hamil-
tonian associated to a phenomenological core. The interac-

tion of the two subsystems is accounted for by the third term
of the above equation, written in terms of the shape coordi-
natesa00,a2m. The quadrupole shape coordinates are related
to the quadrupole boson operators by the canonical transfor-
mation:

a2m =
1

kÎ2
fb2m

† + s− dmb2,−mg, s2.2d

wherek is an arbitraryC number. The monopole shape co-
ordinate is to be determined from the volume conservation
condition. In the quantized form, the result is

a00 = −
1

4k2ÎpF5 + o
m

f2bm
†bm + sbm

†b−m
† + b−mbmds− dmgG .

s2.3d

AveragingH̃ on the eigenstates ofHsm, hereafter denoted by
unljml, one obtains a deformed boson Hamiltonian whose
ground state is, in the harmonic limit, described by a coher-
ent state

Cg = expfdsb20
+ − b20dgu0lb, s2.4d

with u0lb standing for the vacuum state of the boson opera-
tors andd a real parameter which simulates the nuclear de-

formation. On the other hand, the average ofH̃ on Cg is
similar to the Nilsson Hamiltonian[18]. Due to these prop-
erties, it is expected that the best trial functions to generate,
through projection, a spherical basis are

Cnlj
pc = unljmlCg. s2.5d

The upper index appearing in the l.h.s. of the above equation
suggests that the product function is associated to the
particle-core system. The projected states are obtained, in the
usual manner, by acting on these deformed states with the
projection operator

PMK
I =

2I + 1

8p 2 E DMK
I *sVdR̂sVddV. s2.6d

We consider the subset of projected states:

Fnlj
IMsdd = Nnlj

I PMI
I funljI lCgg ; Nnlj

I Cnlj
IMsdd. s2.7d

which are orthonormalized.
The main properties of these projected spherical states are

(a) They are orthogonal with respect toI and M quantum
numbers.(b) Although the projected states are associated to
the particle-core system, they can be used as a single particle
basis. Indeed, when a matrix element of a particle-like op-
erator is calculated, the integration on the core collective
coordinates is performed first, which results in obtaining a
final factorized expression: one factor carries the dependence
on deformation and one is a spherical shell model matrix
element.(c) The connection between the nuclear deformation
and the parameterd entering the definition of the coherent
state Eq. (2.4) is readily obtained by requiring that the

RADUTA et al. PHYSICAL REVIEW C 69, 064321(2004)

064321-2



strength of the particle-core quadrupole-quadrupole interac-
tion be identical to the Nilsson deformed term of the mean
field:

d

k
=Î2p

45
sV'

2 − Vz
2d. s2.8d

Here,V' and Vz denote the frequencies of Nilsson’s mean
field related to the deformationd=Î45/16pb by

V' = S2 + d

2 − d
D1/3

, Vz = S2 + d

2 − d
D−2/3

. s2.9d

The constantk was already defined by Eq.(2.2). This is at
our disposal since the canonical property of the quoted trans-
formation is satisfied for any value ofk. The average of the

particle-core HamiltonianH8=H̃−Hcore on the projected
spherical states defined by Eq.(2.7) has the expression

«nlj
I = kFnlj

IMsdduH8uFnlj
IMsddl

= «nlj − "v0SN +
3

2
DCI0I

j2jC1/201/2
j2j sV'

2 − Vz
2d

3

+ "v0SN +
3

2
DF1 +

5

2d2 +
oJ

sCI−I0
jIJ d2IJ

s1d

oJ
sCI−I0

jIJ d2IJ
s0dG

3
sV'

2 − Vz
2d2

90
. s2.10d

Here, we used the Condon-Shortley convention and notation
for the Clebsch Gordan coefficientsCm1m2m

j1j1j . IJ
skd stands for

the following integral:

IJ
skd =E

0

1

PJsxdfP2sxdgkexpfd2P2sxdgdx, k = 0,1,

s2.11d

wherePJsxd denotes the Legendre polynomial of rankJ. It is
worth mentioning that the norms for the core’s projected
states as well as the matrix elements of any boson operator
on these projected states can be fully determined once the
overlap integrals defined in Eq.(2.11), are known[17]. Since
the core contribution does not depend on the quantum num-
bers of the single particle energy level, it produces a shift for
all energies and therefore is omitted in Eq.(2.10). However,
when the ground state energy variation against deformation
is studied, this term must be included.

The first term from Eq.(2.10) is, of course, the single
particle energy for the spherical shell model stateunljml. The
second term, linear in the deformation parameterd, is the
only one considered in the previous works devoted to the
double beta decay of deformed nuclei within a projected
spherical basis formalism. The third term from Eq.(2.10) is
determined by the monopole-monopole particle-core cou-
pling term after implementing the volume conservation con-
dition. This term is the one responsible for the nonlinear
deformation dependence ofenlj

I . The energiesenlj
I are repre-

sented as a function of the deformation parameterd, for the

major shells withN equal to 3 and 4, in Fig. 1. We remark
that the energies shown in the above mentioned plot depend
on deformation in a different manner than those obtained in
Ref. [14]. Indeed, therein they depend linearly on deforma-
tion, while here nonlinear effects are present. The difference
between the two sets of energies is caused by the fact that
here the volume conservation condition was used for the
monopole shape coordinate, while in Ref.[14] this term is
ignored. The difference in the single particle energies is ex-
pected to cause significant effects on the single and double
beta transition probabilities. Actually, this is the main moti-
vation for the present investigation.

As shown in Fig. 1, the dependence of the new single
particle energies on deformation is similar to that shown by
the Nilsson model[18].

Although the energy levels are similar to those of the
Nilsson model, the quantum numbers in the two schemes are
different. Indeed, here we generate from eachj a multiplet of
s2j +1d states distinguished by the quantum numberI, which
plays the role of the Nilsson quantum numberV, runs from
1/2 to j and moreover the energies corresponding to the
quantum numbersK and −K are equal to each other. On the
other hand, for a givenI there are 2I +1 degenerate substates
while the Nilsson states are only double degenerate. As ex-
plained in Ref.[14], the redundancy problem can be solved
by changing the normalization of the model functions:

FIG. 1. (Color online) Proton single particle energies for the
N=3 andN=4 major shells, given in units of"v0, are plotted as
function of the deformation parameterd. The quantum numbers on
the right-hand side arenljl , defined by Eqs.(2.5) and (2.7).
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kFa
IM uFa

IMl = 1 ⇒ o
M

kFa
IM uFa

IMl = 2. s2.12d

Due to this weighting factor the particle density function is
providing the consistency result that the number of particles
which can be distributed on thes2I +1d substates is at most 2,
which agrees with the Nilsson model. Here,a stands for the
set of shell model quantum numbersnlj . Due to this normal-
ization, the statesFa

IM used to calculate the matrix elements
of a given operator should be multiplied with the weighting
factor Î2/s2I +1d. The role of the core component is to in-
duce a quadrupole deformation for the matrix elements of the
operators acting on particle degrees of freedom. Indeed, for
any such an operator the following factorization holds:

kFnlj
I uuTkuuFn8l8 j8

I8 l = fnljI
n8l8 j8I8knlj uuTkuun8l8 j8l. s2.13d

The factor f carries the dependence on the deformation pa-
rameterd while the other factor is just the reduced matrix
elements corresponding to the spherical shell model states.
For details we advise the reader to consult Refs.[14,17].

Concluding, the projected single particle basis is defined
by Eq. (2.7). Although these states are associated to a
particle-core system, they can be used as a single particle
basis due to the properties mentioned above.

Therefore, the projected states might be thought of as
eigenstates of an effective rotational invariant fermionic one-
body Hamiltonian Heff, with the corresponding energies
given by Eq.(2.10),

Heff Fa
IM = «a

I sddFa
IM . s2.14d

This definition should be supplemented by the request that
the matrix elements of any operator between statesFa

IM and

Fa8
I8M8, are given by Eq.(2.13). Due to these features, these

states can be used as single particle basis to treat many-body
Hamiltonians which involve one-body operators. This is the
case of Hamiltonians with two-body separable forces. As a
matter of fact, such a type of Hamiltonian is used in the
present paper.

According to our remark concerning the use of the pro-
jected spherical states for describing the single particle mo-
tion, the average valuesenlj

I may be viewed as approximate
expressions for the single particle energies in deformed Nils-
son orbits[18]. We may account for the deviations from the
exact eigenvalues by considering, later on, the exact matrix
elements of the two-body interaction when a specific treat-
ment of the many-body system is applied.

Few words about the vibrational limit,d→0, for the pro-
jected basis are necessary. It can be proved that the following
relations hold:

lim
d→0

Cnlj
IM = dI,junljM lu0lb,

lim
d→0

sNnlj
I d−1 = dI,j ,

lim
d→0

kFnlj
j uuTkuuFn8l8 j8

j8 l = knlj uuTkuun8l8 j8l,

lim
d→0

enlj
j = enlj . s2.15d

Note, that in the limitd→0, the norms of the states withI
Þ j are not defined while the limit of theI = j state, normal-
ized to unity, is just the product stateunljM lu0lb. Indeed, the

TABLE I. The pairing and Gamow Teller interactions strength are given in units of MeV. The ratio of the
two dipole interaction(particle-hole and particle-particle) strengths, denoted bygpp is also given. The list of
the deformation parameterd and the factork of the transformation(2.2) are also presented. The manner in
which these parameters were fixed is explained in the text.

Nucleus d k GpfMeVg GnfMeVg xfMeVg gpp

76Ge 1.9 7.1 0.300 0.295 0.35 0.112
76Se 0.295 0.285
82Se 1.6 3.5 0.150 0.160 0.35 0.112
82Kr 0.210 0.215

148Nd 1.555 10.81 0.118 0.200 0.15733 0.11154
148Sm 0.120 0.220
150Nd 1.952 9.89 0.160 0.150 0.15586 0.11154
150Sm 0.190 0.190
154Sm 2.29 5.58 0.190 0.134 0.15302 0.11154
154Gd 0.145 0.138
160Gd 2.714 4.384 0.160 0.155 0.14898 0.11154
160Dy 0.155 0.160
232Th 2.51 4.427 0.120 0.183 0.11486 0.11154
232U 0.090 0.225
238U 2.62 4.224 0.130 0.165 0.080 0.11154
238Pu 0.165 0.235
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fourth equation(2.15) is fulfilled by neglecting a small quan-
tity s5/s8pk2dd caused by the zero point motion term of the
monopole-monopole particle-core interaction. Although in
the limit d→0 the norm of the statesI Þ j is not defined, the
limit of Fnlj

IM, with I Þ j , exists. However, the corresponding
energies are not identical to but very close to the spherical
shell model state energy:

lim
d→0

enlj
I = enlj + "v0SN +

3

2
DS5

2
+ S1

2
j − I

+
1

2
f1 − s− d j−IgDD 1

4pk2, j Þ I . s2.16d

Indeed, this term should be compared with the spherical os-
cillator energy fsN+ 3

2
d"v0g from enlj. Since the factor

1/s4pk2d is very small (see Table I) the correction of the
shell model term is negligible.

Due to the properties mentioned above, we may state that
in the vibrational limit,d→0, the projected spherical basis
goes to the spherical shell model basis.

To complete our description of the projected single par-
ticle basis, we recall a fundamental result obtained in Ref.
[17], concerning the product of two single particle states
which comprises a product of two core components. Therein
we have proved that the matrix elements of a two-body in-
teraction corresponding to the present scheme are very close
to the matrix elements corresponding to spherical states pro-
jected from a deformed product state with one factor as a
product of two spherical single particle states, and a second
factor consisting of a common collective core wave function.
The small discrepancies of the two types of matrix elements
could be washed out by using slightly different strengths for
the two-body interaction in the two methods.

III. THE MODEL HAMILTONIAN AND
ITS pnQRPA APPROACH

As we already stated, in the present work we are inter-
ested to describe the Gamow-Teller two neutrino double beta
decay of an even-even deformed nucleus. In our treatment
the Fermi transitions, contributing about 20% and the “for-
bidden” transitions are ignored which is a reasonable ap-
proximation for the two neutrino double beta decay in me-
dium and heavy nuclei. Customarily, the 2nbb process is
conceived as two successive singleb − transitions. The first
transition connects the ground state of the mother nucleus to
a magnetic dipole state 1+ of the intermediate odd-odd
nucleus which subsequently decays to the ground state of the
daughter nucleus. Going beyond the pnQRPA procedure by
means of the boson expansion procedure we were able to
consider the process leaving the final nucleus in an excited
collective state[19]. Such processes are not treated in the
present paper. The states, mentioned above, involved in the
2nbb process are described by the following many-body
Hamiltonian:

H = o 2

2I + 1
setaI − ltadctaIM

† ctaIM − o Gt

4
PtaI

† PtaI8

+ 2x o bm
−spndb−m

+ sp8n8ds− dm

− 2x1 o P1m
− spndP−m

+ sp8n8ds− dm. s3.1d

The operatorctaIM
† sctaIMd creates(annihilates) a particle of

type t s=p,nd in the stateFa
IM, when acting on the vacuum

stateu0l. In order to simplify the notations, hereafter the set
of quantum numbersas=nljd will be omitted. The two-body
interaction consists of three terms, the pairing, the dipole-
dipole particle holesphd and the particle-particlesppd inter-
actions. The corresponding strengths are denoted by
Gt ,x ,x1, respectively. All of them are separable interactions,
with the factors defined by the following expressions:

PtI
† = o

M

2

2I + 1
ctIM

† c
tIM̃

†
,

bmspnd = o
M,M8

Î2

Î
kpIMusmunI8M8l

Î2

I 8̂
cpIM

† cnI8M8,

P1m
− spnd = o

M,M8

Î2

Î
kpIMusmunI8M8l

Î2

I 8̂
cpIM

† c
nI8M8˜

†
.

s3.2d

The remaining operators from Eq.(3.1) can be obtained from
the above defined operators by hermitian conjugation.

The one-body term and the pairing interaction terms are
treated first through the standard BCS formalism and conse-
quently replaced by the quasiparticle one body term
otIM EtatIM

† atIM. In terms of quasiparticle creationsatIM
† d

and annihilationsatIMd operators, related to the particle op-
erators by means of the Bogoliubov-Valatin transformation,
the two-body interaction terms, involved in the model
Hamiltonian, can be expressed just by replacing the opera-
tors (3.2) by their quasiparticle images:

bm
−skd = skA1m

† skd + s̄kA1,−mskds− d1−m + hkB1m
† skd

− s̄kB1,−mskds− d1−m,

bm
+skd = − fs̄kA1m

† skd + skA1,−mskds− d1−m − h̄kB1m
† skd

+ skB1,−mskds− d1−mg,
s3.3d

P1m
− skd = hkA1m

† skd − h̄kA1,−mskds− d1−m − skB1m
† skd

+ s̄kB1,−mskds− d1−m,

Pm
+skd = − f− h̄kA1m

† skd + hkA1,−mskds− d1−m + s̄kB1m
† skd

− skB1,−mskds− d1−mg.

In the above equations the argument “k” stands for the
proton-neutron statesp,nd. Here, the usual notations for the
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dipole two quasiparticle and quasiparticle density operator
have been used:

A1m
† spnd = o

mp,mn

Cmpmnm
IpIn1 apIpmp

† anInmn

† ,

s3.4d
B1m

† spnd = o
mp,mn

Cmp−mnm
IpIn1 apIpmp

† anInmn
s− dIn−mn.

The coefficientss and h are simple expressions of the
reduced matrix elements of the Pauli matrixs andU andV
coefficients:

sk =
2

1̂În

kIpuusuuInlUIp
VIn

, s̄k =
2

1̂În

kIpuusuuInlVIp
UIn

,

s3.5d

hk =
2

1̂În

kIpuusuuInlUIp
UIn

, h̄k =
2

1̂În

kIpuusuuInlVIp
VIn

.

The quasiparticle Hamiltonian is further treated within the
proton-neutron random phase approximationspnQRPAd, i.e.,
one determines the operator

G1m
† = o

k

fXskdA1m
† skd − YskdA1,−mskds− d1−mg, s3.6d

which satisfies the restrictions:

fG1m,G1m8
† g = dm,m8, fHqp,G1m

† g = vG1m
† . s3.7d

These operator equations yield a set of algebraic equa-
tions for theX (usually called forward going) andY (named
backgoing) amplitudes:

S A B
− B − A DSX

Y
D = vSX

Y
D , s3.8d

o
k

fuXskdu2 − uYskdu2g = 1. s3.9d

The pnQRPA matricesA and B have analytical expres-
sions:

Ak,k8 = sEp + Enddpp8dnn8 + 2xssksk8 + s̄ks̄k8d

− 2x1shkhk8 + h̄kh̄k8d,

Bk,k8 = 2xss̄ksk8 + sks̄k8d + 2x1sh̄khk8 + hkh̄k8d.

s3.10d

All quantities involved in the pnQRPA matrices have been
already defined. Note, that the proton and neutron quasipar-
ticle energies are denoted in an abbreviated manner byEp
andEn, respectively.

As can be seen from Eq.(3.1) the ph interaction is repul-
sive while thepp interaction has an attractive character. Due
to this feature, for a critical value ofx1 the lowest root of the
pnQRPA equations may become imaginary. Suppose thatx1
is smaller than its critical value and therefore all RPA solu-
tions (i.e., v) are real numbers and ordered as

v1 ø v2 ø . . . ø vNs
, s3.11d

whereNs stands for the total number of the proton-neutron
pair states whose angular momenta can couple to 1+ and
moreover their quantum numbersn, l are the same. Hereafter
the phonon amplitudesX and Y will be accompanied by a
lower index “i” suggesting that they correspond to the energy
vi.

Since our single particle basis states depend on the defor-
mation parameterd, so do the pnQRPA energies and ampli-
tudes. The pnQRPA ground state(the vacuum state of the
RPA phonon operator) describes an even-even system which
might be alternatively the mother or the daughter nucleus. In
the two cases the gauge and nuclear deformation properties
are different which results in determining distinct pnQRPA
phonon operators acting on different vacua describing the
mother and daughter ground states, respectively. Therefore,
one needs an additional index distinguishing the phonon op-
erators of the mother and daughter nuclei. The single phonon
states are defined by the equations:

u1j ,kl = G j ,k
† u0l j, j = i, f ; k = 1,2, . . .Ns. s3.12d

Here the indicesi and f stand for initial(mother) and final
(daughter) nuclei, respectively. This equation defines two
sets of nonorthogonal states describing the neighboring odd-
odd nucleus. The states of the first set may be fed by a beta
minus decay of the ground state of the mother nucleus while
the states of the second set are populated with a beta plus
transition operator from the ground state of the daughter
nucleus.

If the energy carried by leptons in the intermediate state is
approximated by the sum of the rest energy of the emitted
electron and half theQ value of the double beta decay pro-
cess

DE = mec
2 +

1

2
Qbb, s3.13d

the reciprocal value of the 2nbb half life can be factorized as

sT1/2
2nbbd−1 = FuMGTs0i

+ → 0f
+du2, s3.14d

whereF is an integral on the phase space, independent of the
nuclear structure, whileMGT stands for the Gamow-Teller
transition amplitude and has the expression. Throughout this
paper the Rose[20] convention for the Wigner Eckart theo-
rem is used:

MGT = Î3o
kk8

ik0ibi
+i1kl iik1kuik8l f fk1k8ib f

+i0l f

Ek + DE + E1+
s3.15d

In the above equation, the denominator consists of three
terms: (a) DE, which was already defined,(b) the average
value of thekth pnQRPA energy normalized to the particular
value corresponding tok=1, i.e.,

Ek =
1

2
svi,k + v f,kd −

1

2
svi,1 + v f,1d, s3.16d

and (c) the experimental energy for the lowest 1+ state. The
indices carried by the transition operators indicate that they
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act in the space spanned by the pnQRPA states associated to
the initial sid or final sfd nucleus. Details about the overlap
matrix of the single phonon states in the mother and daughter
nuclei are given in Appendix A.

Before closing this section we would like to say a few
words about what is specific to our formalism. As we men-
tioned before the pnQRPA matrices depend on the deforma-
tion parameter and therefore the RPA energies and states
depend on deformation. Moreover, in the case that the
mother and daughter nuclei are characterized by different
nuclear deformations the RPA output for the two nuclei are
affected differently by deformation. These features make the
pnQRPA formalism buildup with a deformed single particle
basis quite tedious. Besides these difficulties, one should
keep in mind the fact that the usual approaches define the
states from the intermediate odd-odd nucleus not as a state of
angular momentum 1 but states of a definiteK, i.e., K
= ±1,0.Under such circumstances from the pnQRPA states,
the components of good angular momentum are to be pro-
jected out. This operation is usually performed in an approxi-
mative way(by transposing the result obtained in the intrin-
sic frame, to the laboratory frame of reference) which might
be justified only in the strong coupling regime. Unfortu-
nately, the double beta emitters are only moderately de-
formed, which makes the approximation validity, question-
able. Actually this is the reason why the answer to the
question of how much the results obtained with deformed
single particle basis differ from the ones obtained with pro-
jected many-body RPA state, is not yet known.

By contrast, since our single particle states are projected
spherical states, the RPA formalism is fully identical to that
which is usually employed for spherical nuclei. Since in the
vibrational limit, sd→0d, our basis goes to the spherical shell
model basis, one may say that the present formalism pro-
vides a unified description of spherical and deformed nuclei.

IV. NUMERICAL RESULTS

The formalism described in the previous sections was ap-
plied to eight nuclei among which four are proved to be
double beta emitters(76Ge, 82Se,150Nd, 238U) [22] and four
suspected, due to the correspondingQbb value, to have this
property.

The spherical shell model parameters are those given in
Ref. [24], i.e.,

"v0 = 41A−1/3, C = − 2"v0k, D = − "v0m. s4.1d

For the proton system, the pair of strength parameterssk ,md
takes the valuess0.08;0.d for 76Ge, 76Se, 82Se, 82Kr,
s0.0637;0.6d for 148,150Nd, 148–154Sm, 154,160Gd, 160Dy,
s0.0577;0.65d for 232Th, 232,238U, 238Pu, while for the neu-
tron systems of the three groups of nuclei mentioned above,
the values are s0.08;0.d, s0.0637,0.42d, s0.0635;
0.325d, respectively.

The projected spherical single particle basis, used in our
calculations, depend on another two parameters, the defor-
mation d and the factork of the transformation Eq.(2.2)
relating the boson operators with the quadrupole collective

coordinate, according to Eq.(2.2). These were fixed as fol-
lows. For the lightest nuclei, Ge, Se, and Kr, involved in the
process of the double beta decay, the two parameters were
taken so that the relative energies of the statesu1f 7

2
7
2l and

u1d5
2

1
2l as well as the lowest root of the pnQRPA equations

with a QQ interaction included, reproduces the relative en-
ergy of V= 7

2 and V= 1
2 Nilsson states, in theN=3 major

shell, and the experimental value for the first collective 2+

state. Thed andk parameters for154Sm and its double beta
partner154Gd were taken equal to those used in a previous
publication [17], to describe theM1 states of the mother
nucleus. As for the remaining nuclei considered in this paper,
the correspondingd and k parameters are the same as in
Refs. [25,26] where one of us(A.A.R.) described phenom-
enologically the spectroscopic properties of the major rota-
tional bands.

The BCS calculations have been performed within a
single particle space restricted so that at least the states from
the proton and neutron major open shells are included. Al-
though the single particle energies depend on deformations
here we keep calling major shell a set of states having the
same quantum numbern, according to Eq.(2.7). This trun-
cation criterion defines an energy interval for single particle
states. Of course, due to the level crossing caused by defor-
mation, also states from the lower proton and upper neutron
major shells, lying in the energy interval defined before, are
included in the single particle space. Since only the proton-
neutron pair of states characterized by the same orbital an-
gular momenta, participate in single beta decay processes,
the single particle spaces for proton and neutron systems are
to be the same. It is well understood that the corresponding
energies for protons and neutrons are however different from
each others for heavy isotopes, due to the mass dependence
of the single particle mean field strength parameters(4.1).

Pairing strengths have been fixed so that the mass differ-
ences of the neighboring even-even nuclei are reproduced.
The results are listed in Table I. Their values may be inter-
polated by a linear function of 1/A both for the mother:

Gp =
12.186

A
+ 0.069 31, Gn =

8.2745

A
+ 0.112 66,

s4.2d

and the daughter nuclei:

Gp =
13.806

A
+ 0.067 65, Gn =

8.1563

A
+ 0.134 55.

s4.3d

Slight deviations from these rules are registered forGp of
76Ge and76Se andGn of 76Ge and238Pu. It is interesting to
note that although the single particle basis is different from
the ones currently used in the literature, the results for the
interaction strength is quite close to the standard ones. For
example, for150Sm the above equations are equivalent to
Gp=22.86/A andGn=25.624/A.

As for the proton-neutron two-body interactions, their
strengths were taken as in Ref.[11] although the single par-
ticle basis used therein, is different from ours:
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x =
5.2

A0.7MeV, x1 =
0.58

A0.7MeV. s4.4d

The A dependence for the ph interaction strength has been
derived by fitting the position of the GT resonance for40Ca,
90Zr, and 208Pb. The strengthx1 has been fixed so that the
beta decay half lives of the nuclei withZø40 are repro-
duced. Certainly, theA dependence forx andx1 depends on
the mass region to which the considered nucleus belongs as
well as on the single particle space. As a matter of fact our
results for76Ge and82Se show that larger values for the ph
interaction strength improve the agreement with experimen-
tal data. Moreover, our comparison suggests that certain cau-
tion should be taken when the mass dependence given by Eq.
(4.4) is considered as in these nucleibex andx1 parameters
cannot be fixed by single beta decay half lives as it is usually
done. Once the parameters defining the model Hamiltonian
are fixed, the pnQRPA equations have been solved for the
mother and daughter nuclei and the output results have been
used in connection with Eq.(3.15) to calculate the GT am-
plitude of the 2nbb process. In the next step, Eq.(3.14)
provides the double beta half life. The phase space factorF
does not depend on the structure of the nuclear states and

therefore we take it as given in Refs.[1,27]. The values for
F, used in the present paper, correspond togA=1.254. Re-
sults for MGT and half livessT1/2d are given in Table II.
There, we also give the strength of the ph and pp interactions
produced by Eq.(4.4). For comparison we also present the
available experimental data[22,31–33] as well as the results
of Ref. [28] for T1/2.

Prior to discussing in extenso the results from Table II, it
is instructive to show the results concerning the single beta
decay properties of the mother and daughter nuclei. Thus, in
Figs. 2–9 the beta minus strength of the mother and the beta
plus strengths of the daughter nuclei, folded with a Gaussian
having the width equal to 1 MeV, are plotted as a function of
energy. For the lightest two nuclei, the experimental data are
also presented[34,35].

For pedagogical reasons, for these two nuclei two differ-
ent ph interaction strengths are alternatively used. In this
way one clearly sees that increasing the strengthx, the tran-
sition strength is moved to the higher state. Thus, although
the peak positions remain the same, since the BCS data are
not changed, the first peak loses height while the second one
is augmented. The agreement with experimental data is rea-
sonably good. In both mother nuclei the center of the GT
resonance is slightly shifted, backward for82Se and forward

TABLE II. The Gamow-Teller amplitude for 2nbb decay, in units of MeV−1 and the corresponding half
life sT1/2d are listed for several ground to ground transitions. The experimental half lives for the transitions
76Ge→ 76Se, 82Se→ 82Kr, 150Nd→ 150Sm, and238U→ 238Pu are also given. In the last column the results
from Ref. [28], are given. The parametersx andgpp are also given.

T1/2 fyrg

Nucleus x gpp MGT Present Exp. Ref.[28]

76Ge→ 76Se 0.35 0.112 0.222 5.931020 9.2−0.4
+0.731020a 2.6131020

0.35 0.112 0.149c 1.3231021 1.1−0.3
+0.631021b

0.25 0.11154 0.270 4.0531020

82Se→ 82Kr 0.35 0.112 0.096 0.96331020 1.1−0.3
+0.831020d 0.84831020

0.16 0.108 0.135 0.4931020 1.0±0.431020e

1.3±0.0531020f

148Nd→ 148Sm 0.157 0.112 0.392 2.32731019 1.1931021

150Nd→ 150Sm 0.156 0.11154 0.350 2.63031017 ù1.831019g 1.6631019

0.156 1.50 0.040 1.9831019

145Sm→ 154Gd 0.153 0.11154 0.327 8.76031020 1.4931022

160Gd→ 160Dy 0.149 0.11154 0.170 2.01331020 2.8131021

232Th→ 232U 0.11486 0.11154 0.123 4.24031021 4.0331021

238U→ 238Pu 0.080 0.112 0.166 2.37531021 s2.0±0.6d31021h 0.91431021

0.11282 0.11154 0.139 3.34031021

0.08 0.0 0.171 2.24931021

aReference[30].
bReference[29].
cFor these two cases the mother and daughter nuclei have different deformations, namelydi =1.6 anddf

=1.9. The parametersx andgpp are listed in the second and third columns.
dReference[33]
eReference[32].
fReference[31].
gReference[36].
hReferences[21–23,37].
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for 76Ge. Due to the fragmentation effect caused by the
nuclear deformation, the theoretical result for the GT reso-
nance has a shorter, otherwise broader peak than the experi-
mental one. In order to see that a broad peak in the folded
beta strength plot means, indeed, a fragmentation of the
strength distributed among several pnQRPA states, we show
the unfolded strength for82Se and232Th isotopes in Figs. 10
and 11, respectively. For example, in the case of82Se, the
folded strength exhibits a first fat peak which has a very
short maximum before and a “shoulder” on the descending
part(see the middle panels of Figs. 3). From Fig. 10 one sees
that to these details correspond pnQRPA states which carry a
strength represented by sticks which dominate the grass
spread around.

The total strength of the GT resonance is about the same
as the corresponding experimental data. However the frag-
mentation is causing a broad resonance which results in hav-
ing a shorter peak. This fact might raise the question whether
the deformation considered in the present paper is too large.
Indeed, the neutron system of82Se is almost spherical since
N (the neutron number) is close to a magic value. Due to this
feature we repeated the calculations with a very small
ds=0.2d which is close to the spherical limit. As seen from
the right panel the height of GT resonance corresponding to
the new deformation is close to the experimental result.
Since we kept the same parameter for the single particle
mean field parameters, e.g., for the parameterk defined in

Eq. (2.2), the theoretical curve is shifted by about 1 MeV
with respect to the experimental data. Of course, the position
of the GT resonance depends also on the pairing strengths.
The parameters mentioned above were kept the same as for
the initial deformation casesd=1.9d, in order to judge, by
comparison, the effect coming from the nuclear deformation.
In conclusion, going from deformed to spherical single par-
ticle basis the GT resonance peak is getting higher and the
width narrower. Actually when the calculated strength distri-
bution is compared with the experimental data one has to
restrict the discussion only to the position of the GT centroid
and the total strength, since there is no experimental infor-
mation about the resonance width. The narrow width seen,
however, in Figs. 2 and 3 is caused by folding a single num-
ber indicating the totalb − strength for the GT resonance
which has the centroid at a given energy, with a Gaussian
having the width equal to 1 MeV.

From the folded beta minus strengths graphs, we see that
for heavier double beta emitters there exists a small peak
lying beyond theGT resonance.

Of course, this feature is mainly caused by the fact that
while for Ge and Se transitions the states contributing to the
GT resonance have an energy separated by a gap from the
upper two qp dipole configurations, in the heavier nuclei
such energy gap does not exist due to both deformation ef-
fect on single particle energies and the fact that the last filled
state is far away from a major shell closure.

In Tables III and IV we list the single particleb − transi-
tions characterized by the fact that the corresponding two
quasiparticle energy is the closest one to a pnQRPA state
contributing to thenth peak with the strength given at its
right side. The pnQRPA energies for the states bringing the
strength listed in Tables III and IV are given in Tables V and
VI, respectively.

FIG. 2. (Color online) Singleb − strength, for76Ge, and single
b + strength for76Se, folded with a Gaussian function having the
width of 1 MeV, are plotted as a function of the energy within the
BCS and pnQRPA approximation, for three values of the particle-
hole interaction strength,x. The left and middle panels correspond
to d=1.9 while the right panel todm=1.6 and dd=1.9. For x
=0.35 andx=0.4, we also give the experimental results from Refs.
[34,35].

FIG. 3. (Color online) The same as in Fig. 2, but for theb − of
82Se and theb+ of 82Kr. Experimental data are from Ref.[34]. The
right panels correspond tod=0.2.
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The single particle transitionsnsnljI d→psnlj8I8d which
coherently contribute to the collective transition 0+→1+, are
characterized by the change of quantum numbersj and I by
at most one unit, i.e.,uD j u=0,1 anduDI u=0,1. ThesD j , D Id
values for the single particle transition which represents the
dominant component of the pnQRPA state which carries the
maximal strength in a GT resonance ares1,1d s76Ged,
s0,1d s82Sed, s0,1d s148Ndd, s0,1d s150Ndd, s1,0d s154Smd,
s1,1d s160Gdd, s1,1d s232Thd, s0,1d s238Ud. From Tables III
and IV, it results that the GT resonances are admixtures of
DI + D j =1 and 2 transitions.

A common feature for all nuclei considered in the present
paper is that the dominant component of the pnQRPA state,
i.e., that component which is excited with the largest prob-
ability by the GT transition operator, involves single particle
states with smallI. Such transitionsnI →pI8 have eitherI or
I8 equal to 1

2 or 3
2. In the cases of154Sm the angular mo-

menta, involved in the transition are equal to each other. The
common value is32. In Figs. 2–9 we also give the folded 2qp
strength. One notes that the pnQRPA correlations push the
strength to the higher energy. One of the main effects, com-
paring it with the 2qp image, is that it concentrates most of
the strength in the GT resonance which is the most collective
pn excitation in the intermediate odd-odd nucleus.

Now, let us focus our attention on theb + strength distri-
bution in the daughter nuclei. These strengths are much
weaker in magnitude than those characterizing theb −

strength in the mother nuclei. Another difference between the
two processes is that for the single beta minus process the
maximum strength is concentrated at relatively high energy,
around the Gamow-Teller resonance, while in the beta plus
decay, most of the strength lies around 5 MeV. Indeed, from
the lower panels of Figs. 2–9, one sees that the first peak, is
the highest one. The exception from this rule is232Th where
the b + strength is quite small and its distribution has a peak
lying around the energy of 10 MeV. Switching on the QRPA
correlations one notices a decrease of the 2qp strength. Ac-
tually the difference in strengths which appear for the peaks
is distributed among the remaining pnQRPA states, the total
amount of strength in the two images being the same. The
two qp configurations which contribute most to the first
peaks shown in Figs. 2–9, are listed in Table VII. They are
the dominant components of pnQRPA states with the ener-
gies given in Table VIII. As in the case of the singleb −

decay of the mother nuclei, here also most of the dominant
transitions take place between states of low angular momenta
sI = 3

2 , 1
2

d. However, due to the small magnitude of the transi-
tion strengths one notices several transitions between states
with angular momenta equal to52, 7

2, and 9
2.

FIG. 4. The same as in Fig. 2, but for theb − of 148Nd and the
b + of 148Sm.

FIG. 5. The same as in Fig. 2, but for theb − of 150Nd and the
b + of 150Sm.
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Inspecting the expression of the double beta transition
amplitude, one notes that the numerator of a chosen term
from the sum, has three factors:(i) one which determines the
strength of theb − transition to a particular stateu1kli, (ii ) one
whose hermitian conjugate matrix element describes theb +

transition to a stateu1k8l f, and (iii ) the overlap of the states
reached by the decay of the initial and final nuclei, respec-
tively. One expects that the maximum contribution to the GT
transition amplitudeMGT is achieved when the two single
beta matrix elements are maximal and moreover the overlaps
of the dipole states in the odd-odd system are maximum.
Therefore, we could ask ourselves whether among the peaks
in the upper panels and those of the lower panels there are
pairs of peaks determined by states of maximal overlap.
From Tables III and VII one could identify many such pairs
of peaks from the beta minus and beta plus strength distri-
butions. For illustration we mention only one example. In
148Nd the maximum contribution to the GT resonance is
brought by the pnQRPA state of energy equal to
12.269 MeV. Indeed, the corresponding strength is 12.437
and moreover this is the leading strength. The dominant am-
plitude for this state corresponds to the single particle tran-
sition ns4g9

2
5
2

d→ps4g7
2

3
2

d. On the other hand the strength
distribution for 148Sm shows a third peak determined by the
pnQRPA state of energy equal to 11.899 MeV. Since the

dominant two quasiparticle component of this collective
state, corresponds to the single particle transitionps4g7

2
3
2

d
→ns4g9

2
5
2

d, as shown in Table VII, one expects that the over-
lap of the pnQRPA states mentioned above is maximally
large.

The single beta decays strengths of a given nucleus satisfy
the N−Z sum rule, known as the Ikeda sum rule[38]. Our
predictions forb − and b + strengths satisfy the Ikeda sum
rule in the heavy isotopes while for76Ge and82Se small
deviations of 3% and 1.7%, respectively, are registered.

Let us analyze now the results for the double beta process,
given in Table II. The dipole-dipole interaction strengths
have been chosen as given by the empirical formula(4.4).
The ratio of thepp and ph interaction strengths determines
the gpp factor. As we already mentioned, thisA dependence
for the interaction strengths depends on the single particle
basis as well as on the truncation of the single particle space
and therefore, its validity for the present formalism is ques-
tionable. As a matter of fact for the lightest nuclei a larger
value for x approaches better the experimental situation
while for 238U a smaller value is more suitable. Definitely,
the safe way of fixing theph and pp interaction strengths
would be to fit the position of GT resonance centroid of the
odd-odd intermediate nucleus and the half-lives of theb +

decay of the unstable nuclei in this mass region, respectively.

FIG. 6. The same as in Fig. 2, but for theb − of 154Sm and the
b + of 154Gd.

FIG. 7. The same as in Fig. 2, but for theb − of 160Gd and the
b + of 160Dy.
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However since for the cases considered here the experimen-
tal data mentioned above are lacking, we adopted the empiri-
cal formula(4.4) just to obtain some reference results to be
compared with the ones obtained with the same interaction
but different single particle basis.

The denominator from the equation definingMGT in-
volves theQbb values and the experimental energy of the
first 1+. These values are given in Table IX. Except for the
case of(76Ge;76Se) all other pairs of(mother;daughter) nu-
clei are characterized by only slightly different nuclear de-
formations. For this reason in our calculations the nuclear
deformations of mother and daughter nuclei have been con-
sidered equal to each other. The results forMGT andT1/2 are
shown in Table II. They are compared with the experimental
available data as well as with the predictions of those of Ref.
[28]. Table II shows good agreement between the predicted
T1/2 for 82Se and238U, and the corresponding experimental
half life given in Refs.[31–33] and Refs.[21,22,33], respec-
tively. Our prediction for the half life of150Nd is 69 times
lower than the corresponding lower experimental limit. As
shown in the second row for this nucleus, this discrepancy
can be recovered by changinggpp to a value equal to 1.50. In
this context we would like to mention that while for the
lightest two nuclei from Table II, theMGT function of gpp
shows a very abrupt decreasing part, for the heavier nuclei

the cancellation point is reached with a curve of a moderate
slope. In the case of150Nd the cancellation value ofgpp is
larger than 1.8 and therefore the adjusted value of 1.5 is still
far away from the critical point where the pnQRPA breaks
down.

The predicted half life of76Ge shown in the first row of
Table II is only slightly smaller than the lower limit of the
corresponding experimental data. For this case, however, the
deformations for mother and daughter given in Ref.[40] are
quite different from each other. This feature challenged us to
consider in our calculations different deformations for76Ge
and76Se. Therefore, we repeated the calculations for the de-
cay of 76Ge with the deformationdm=1.6 for the mother and
dd=1.9 for the daughter nucleus. The pairing strengths for
the new value for the nuclear deformation acquired by the
mother nucleus areGp=0.290 andGn=0.280. The results are
shown in the second row of Table II. From there one remarks
a good agreement with the experimental data forT1/2.

To conclude, considering different deformations for
mother and daughter nuclei decreases the overlap matrix el-
ements involved inMGT. Due to this effect theT1/2 value is
increased. It is an open question whether considering differ-
ent deformations for150Nd and 150Sm would wash out the
big discrepancy with the experimental data shown in the first
row for the decay of150Nd. At first glance one may say that

FIG. 8. The same as in Fig. 2, but for theb − of 232Th and the
b + of 232U.

FIG. 9. The same as in Fig. 2, but for theb − of 238U and theb +

of 238Pu.
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in order to have a positive answer to the question formulated
above, one needs a larger difference between the two defor-
mations than indicated in Refs.[39,40]. Since the half-life is
sensitive to the pairing properties one may suspect that for
this case the proton-neutron pairing might play an important
role.

Comparing the results forT1/2 obtained with our formal-
ism with those obtained in Ref.[28] by a different method
one notices that for four emitters,148Nd,150Nd,154Sm,160Gd,
our predicted half-lives are shorter than in the above quoted
reference while for the remaining nuclei the ordering of the
half-lives is opposite. In some cases the difference between
the two sets of predictions are in the range of two orders of
magnitude. Since the two methods are based on different
approaches for the transition amplitudes, it is an open ques-
tion whether these big discrepancies could get a consistent
justification.

Finally we addressed the question of how the GT transi-
tion amplitude depends ongpp and whether this dependence
is influenced by the nuclear deformations. The results of our
investigation are presented in Figs. 12 and 13. The input
parameters of single particle states and pairing interactions
are those of76Ge. From Fig. 12 one sees that for small values
of gppsø0.5d, MGT depends monotonically ond while for
gppù0.5 this property is lost. The repulsive character of the
pp interaction causes the cancellation ofMGT for a gpp
around 3. As seen from Fig. 12 the cancellation point de-
pends on deformation. Also the curves look of Fig. 12 is not
changed, the value ofgpp whereMGT is canceled is quenched
by the factor by which the strengthx is increased when one
passes from Figs. 12 and 13. In this context we recall that for
spherical nuclei, the cancellation, corresponding to the value
of x which reproduces the position of the GT resonance,

takes place forgpp<1. For this value the relation between
the matrix elements of theph andpp two body interactions
is given by the Pandya transformation. From Fig. 13 it re-
sults that the cancellation points depend, as we already said,
on deformation. It is an open question whether the deforma-
tion dependence of the GT resonance is such that the cancel-
lation point ofMGT is always brought to about 1.

V. SUMMARY AND CONCLUSIONS

The main results described in the previous sections can be
summarized as follows. The two neutrino double beta decay
transition amplitudes and half lives for eight isotopes have
been calculated within a pnQRPA approach based on a pro-
jected spherical single particle basis.

The single particle energies are approximated by averag-
ing a particle-core Hamiltonian on the projected basis. Due
to the fact that the core volume conservation is properly
taken into account, the resulting energies depend on defor-
mation in a similar manner as Nilsson levels. This feature
suggests that the results for two neutrino double beta decay
rate provided by a pnQRPA formalism with such a basis will
be essentially different than those obtained in Ref.[9] where

FIG. 10. The singleb −, for 82Se, and singleb +, for 82Kr, are
plotted as a function of the energy within the pnQRPA approach,
for two values of the particle-hole interaction strength,x.

FIG. 11. The singleb −, for 232Th, and singleb +, for 232U, are
plotted as function of the energy within the pnQRPA approach, for
x=0.11.

TWO NEUTRINO DOUBLE-b DECAY IN DEFORMED NUCLEI ... PHYSICAL REVIEW C69, 064321(2004)

064321-13



single particle energies depend linearly on deformation.
First we studied theb − andb + strength distributions for

mother and daughter nuclei, respectively. Both types of
strengths are fragmented due to the nuclear deformation. The
position as well as the width of the GT resonance depend on
nuclear mass. Moreover, while the GT resonance lies in the
upper part of the pnQRPA energy spectrum(the meaning of
this statement is that beyond the GT resonance there is only
a little strength left to be distributed) the highest peak in the
folded strength distribution plot for theb + decay appears
always for low energies. This feature suggests that the GT
resonance is mainly influenced by theph while the peak in
the b + strength distribution, by thepp channels of the

dipole-dipole two-body interaction. It seems that there is a
correspondence between the pnQRPA states of mother and
daughter nuclei contributing most to the folded strength dis-
tributions. The associated states, due to the correspondence
mentioned above, have maximal overlap and therefore give
the main contribution to theMGT value. From Figs. 2–9 one
remarks that the GT resonance strength depend on the atomic
mass. The largerA, the larger the height of the resonance.
Moreover the energy of the resonance center is also an in-
creasing function ofA. For two emitters,82Se and154Sm, the
GT resonance has a doublet structure. This reminds us of the
doublet structure of the dipole giant charge preserving reso-
nances due to the coupling to the quadrupole degrees of free-

TABLE III. The strengths carried by the pnQRPA states contributing to the first, second, and third(if any)
peaks from the upper panels of Figs. 2–9. On the left-hand side of these numbers are given the 2qp configu-
rations closest in energy to the corresponding pnQRPA states. Actually this is the dominant configuration of
the chosenpn phonon state.

Nucleus First peak Second peak Third peak

Transition Strength Transition Strength Transition Strength

76Ge ns4d5
2

3
2

d→ps4d5
2

1
2

d 1.084 ns4d3
2

1
2

d→ps4d5
2

3
2

d 1.740 ns3f 7
2

5
2

d→ps3f 5
2

5
2

d 1.718

ns3f 7
2

1
2

d→ps3f 5
2

3
2

d 3.371
82Se ns3f 5

2
5
2

d→ps3f 7
2

3
2

d 1.554 ns3p3
2

3
2

d→ps3p3
2

1
2

d 4.501 ns3p3
2

1
2

d→ps3p3
2

3
2

d 1.686

ns3f 7
2

3
2

d→ps3f 5
2

3
2

d 3.310
148Nd ns4g7

2
7
2

d→ps4g9
2

5
2

d 1.077 ns4g7
2

3
2

d→ps4g9
2

5
2

d 1.453

ns4g7
2

5
2

d→ps4g9
2

7
2

d 1.141 ns4g9
2

5
2

d→ps4g7
2

3
2

d 12.437

ns4g9
2

5
2

d→ps4g7
2

7
2

d 1.015
150Nd ns4g7

2
7
2

d→ps4g9
2

5
2

d 1.901 ns5h11
2

3
2

d→ps5h9
2

3
2

d 1.246 ns4d5
2

1
2

d→ps4d3
2

3
2

d 5.386

ns4g7
2

5
2

d→ps4g9
2

3
2

d 1.178 ns4g9
2

3
2

d→ps4g7
2

3
2

d 2.370

ns4g9
2

5
2

d→ps4g7
2

3
2

d 1.087

ns4g9
2

3
2

d→ps4g9
2

5
2

d 7.647
154Sm ns5f 7

2
3
2

d→ps5f 7
2

5
2

d 1.220 ns4g7
2

1
2

d→ps4g7
2

3
2

d 4.214 ns4g9
2

5
2

d→ps4g7
2

5
2

d 1.537

ns6i 13
2

7
2

d→ps6i 13
2

9
2

d 1.031 ns4d3
2

1
2

d→ps4d3
2

3
2

d 2.088 ns4d5
2

3
2

d→ps4d3
2

3
2

d 4.380

ns4g7
2

3
2

d→ps4g7
2

1
2

d 3.362
160Gd ns6i 13

2
5
2

d→ps6i 11
2

3
2

d 2.222 ns4d5
2

3
2

d→ps4d5
2

1
2

d 2.551 ns4d5
2

3
2

d→ps4d3
2

3
2

d 1.028

ns4g9
2

7
2

d→ps4g9
2

9
2

d 1.622 ns5h11
2

1
2

d→ps5h9
2

3
2

d 1.362 ns4d3
2

1
2

d→ps4d3
2

3
2

d 1.204

ns6i 13
2

1
2

d→ps6i 11
2

3
2

d 9.922
232Th ns5h9

2
7
2

d→ps5h9
2

9
2

d 1.810 ns4d3
2

3
2

d→ps4d3
2

1
2

d 1.900 ns5p3
2

1
2

d→ps5p3
2

3
2

d 2.548

ns5f 5
2

1
2

d→ps5f 5
2

3
2

d 1.569 ns5h9
2

3
2

d→ps5h11
2

5
2

d 9.913

ns5h11
2

3
2

d→ps5h9
2

5
2

d 7.157

ns5h11
2

5
2

d→ps5h9
2

3
2

d 2.190

ns6i 13
2

5
2

d→ps6i 11
2

7
2

d 2.392

ns5h11
2

7
2

d→ps5f 11
2

5
2

d 8.709
238U ns6g9

2
3
2

d→ps6g7
2

1
2

d 2.253 ns6i 13
2

3
2

d→ps6i 13
2

1
2

d 4.259 ns5p3
2

1
2

d→ps5p3
2

1
2

d 1.397

ns6i 13
2

1
2

d→ps6i 13
2

1
2

d 1.079 ns6i 13
2

3
2

d→ps6i 11
2

5
2

d 2.868

ns5f 5
2

1
2

d→ps5f 5
2

3
2

d 1.888 ns5h9
2

3
2

d→ps5h9
2

1
2

d 1.112

ns5h9
2

1
2

d→ps5h9
2

3
2

d 6.201

ns5h9
2

1
2

d→ps5h9
2

1
2

d 2.912

ns4d5
2

5
2

d→ps4d5
2

3
2

d 2.019

ns6g9
2

1
2

d→ps6g7
2

3
2

d 3.662

ns5f 7
2

1
2

d→ps5f 5
2

3
2

d 1.222
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dom. Actually in this case also the doublet structure is a
deformation effect and by this an effect caused by the quad-
rupole coordinates of the core.

The MGT andT1/2 values were first calculated by consid-
ering equal deformations for mother and daughter nuclei.
The A dependence of theph and pp proton-neutron dipole
interaction is taken as in Ref.[11]. The agreement with ex-
perimental data concerning theT1/2 value of82Se and238U is
very good. The result for76Ge is slightly smaller than the
experimental data. The discrepancy was removed by consid-

ering the deformation for76Ge different from that of76Se.
Indeed, this is the only case where according to Refs.[30,40]
the deformations for the two nuclei involved in the double
beta decay are quite different. To bring the theoretical value
of T1/2 for 150Nd in agreement with the experimental data one
needs a larger deformation difference than given in literature
[39,40]. Moreover, the pairing strength should deviate very
much from what the difference of neighboring even-even
isotopes masses requires. Due to this feature for this case we
reproduced the experimental half life by changinggpp from

TABLE IV. Continuation of Table III.

Nucleus First peak Second peak Third peak

Transition Strength Transition Strength Transition Strength

232Th ns5h9
2

7
2

d→ps5h9
2

9
2

d 1.810 ns4d3
2

3
2

d→ps4d3
2

1
2

d 1.900 ns5p3
2

1
2

d→ps5p3
2

3
2

d 2.548

ns5f 5
2

1
2

d→ps5f 5
2

3
2

d 1.569 ns5h9
2

3
2

d→ps5h11
2

5
2

d 9.913

ns5h11
2

3
2

d→ps5h9
2

5
2

d 7.157

ns5h11
2

5
2

d→ps5h9
2

3
2

d 2.190

ns6i 13
2

5
2

d→ps6i 11
2

7
2

d 2.392

ns5h11
2

7
2

d→ps5f 11
2

5
2

d 8.709
238U ns6g9

2
3
2

d→ps6g7
2

1
2

d 2.253 ns6i 13
2

3
2

d→ps6i 13
2

1
2

d 4.259 ns5p3
2

1
2

d→ps5p3
2

1
2

d 1.397

ns6i 13
2

1
2

d→ps6i 13
2

1
2

d 1.079 ns6i 13
2

3
2

d→ps6i 11
2

5
2

d 2.868

ns5f 5
2

1
2

d→ps5f 5
2

3
2

d 1.888 ns5h9
2

3
2

d→ps5h9
2

1
2

d 1.112

ns5h9
2

1
2

d→ps5h9
2

3
2

d 6.201

ns5h9
2

1
2

d→ps5h9
2

1
2

d 2.912

ns4d5
2

5
2

d→ps4d5
2

3
2

d 2.019

ns6g9
2

1
2

d→ps6g7
2

3
2

d 3.662

ns5f 7
2

1
2

d→ps5f 5
2

3
2

d 1.222

TABLE V. The energies of the pnQRPA states which give the largest strength contributions to the peaks
in Figs. 2–9, upper panels. The carried strengths are also given.

Nucleus First peak Second peak Third peak

pnQRPA energy Strength pnQRPA energy Strength pnQRPA energy Strength

76Ge 7.033 1.084 10.850 1.740 12.602 1.718

11.605 3.371
82Se 6.939 1.554 10.920 4.501 11.701 1.686

12.291 3.310
148Nd 9.397 1.077 12.028 1.453

10.047 1.141 12.269 12.437

12.429 1.015
150Nd 8.600 1.901 11.263 1.246 12.939 5.386

11.531 1.178 13.217 2.370

12.281 1.087

12.597 7.647
154Sm 10.475 1.220 11.986 4.214 13.189 1.537

11.047 1.031 12.696 2.088 13.303 4.380

11.434 3.362
160Gd 10.748 2.222 12.457 2.551 15.334 1.028

11.163 1.622 12.857 1.362 15.850 1.204

13.369 9.927
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0.11154 to 1.5. Note that the critical value ofgpp for this
isotope is 1.8. It is noteworthy that for isotopes,76Ge,82Se,
238U, where the calculated half lives agree with the corre-
sponding experimental data the values used forgpp are small
which results in having a small effect coming from thepp

interaction on this observable. As shown in Table II for238U,
cancellinggpp does not alter the agreement with the experi-
mental data. Then the question arises whether thepp inter-
action is really needed at all in order to describe quantita-
tively the double beta decay process. Is the large sensitivity

TABLE VI. Continuation of Table V.

Nucleus First peak Second peak Third peak

pnQRPA energy Strength pnQRPA energy Strength pnQRPA energy Strength

232Th 12.895 1.810 15.622 1.900 19.559 2.548

13.578 1.569 15.952 9.913

16.367 7.157

16.593 2.190

16.731 2.392

16.942 8.709
238U 13.641 2.253 16.079 4.259 21.137 1.397

14.792 1.079 16.306 2.868

15.219 1.888 16.452 1.112

16.559 6.201

16.613 2.912

16.831 2.019

17.391 3.662

18.232 1.222

TABLE VII. The same as in Table III but for the lower panels of Figs. 2–9.

Nucleus First peak Second peak Third peak

Transition Strength Transition Strength Transition Strength

76Se ps3f 7
2

7
2

d→ns3f 5
2

5
2

d 0.313 ps3f 7
2

5
2

d→ns3f 5
2

5
2

d 0.116 ps3f 5
2

5
2

d→ns3f 7
2

3
2

d 0.013

ps3f 7
2

5
2

d→ns3f 5
2

3
2

d 0.027

ps3f 7
2

3
2

d→ns3f 5
2

5
2

d 0.021
82Kr ps3f 7

2
7
2

d→ns3f 5
2

5
2

d 0.135 ps3p3
2

3
2

d→ns3p1
2

1
2

d 0.118 ps3f 7
2

3
2

d→ns3f 5
2

5
2

d 0.019
148Sm ps5h11

2
3
2

d→ns5h9
2

1
2

d 0.139 ps4d5
2

1
2

d→ns4d3
2

1
2

d 0.037 ps4g9
2

7
2

d→ns4g7
2

5
2

d 0.011

ps5h11
2

3
2

d→ns5h9
2

3
2

d 0.151 ps4g9
2

9
2

d→ns4g7
2

7
2

d 0.017 ps4g7
2

3
2

d→ns4g9
2

5
2

d 0.012

ps5h11
2

3
2

d→ns5h9
2

3
2

d 0.165
150Sm ps5h11

2
3
2

d→ns5h9
2

1
2

d 0.227 ps5h9
2

1
2

d→ns5h9
2

3
2

d 0.012

ps5h11
2

1
2

d→ns5h9
2

3
2

d 0.134 ps4d5
2

1
2

d→ns4d3
2

1
2

d 0.018

ps5h11
2

3
2

d→ns5h9
2

3
2

d 0.103
154Gd ps4d5

2
3
2

d→ns4d3
2

3
2

d 0.081 ps5h11
2

3
2

d→ns5h9
2

3
2

d 0.061 ps5h11
2

3
2

d→ns5h9
2

1
2

d 0.039

ps5h11
2

5
2

d→ns5h9
2

5
2

d 0.140 ps5h11
2

1
2

d→ns5h9
2

3
2

d 0.046 ps4d5
2

1
2

d→ns4d3
2

3
2

d 0.019

ps4g9
2

7
2

d→ns4g7
2

7
2

d 0.016
160Dy ps4d5

2
3
2

d→ns4d3
2

3
2

d 0.050 ps5h9
2

1
2

d→ns5h9
2

3
2

d 0.067 ps6i 13
2

1
2

d→ns6i 11
2

3
2

d 0.063

ps5h11
2

5
2

d→ns5h9
2

5
2

d 0.076 ps4g9
2

9
2

d→ns5h7
2

7
2

d 0.113 ps4d5
2

1
2

d→ns4d3
2

3
2

d 0.051

ps5h9
2

3
2

d→ns6i 9
2

5
2

d 0.365 ps6i 13
2

3
2

d→ns6i 11
2

1
2

d 0.059 ps5h11
2

3
2

d→ns5h9
2

3
2

d 0.054

ps5h11
2

5
2

d→ns5h9
2

3
2

d 0.073
232U ps6i 11

2
7
2

d→ns6i 13
2

5
2

d 0.011 ps6i 13
2

5
2

d→ns6i 11
2

5
2

d 0.031 ps6i 13
2

5
2

d→ns6i 11
2

3
2

d 0.008

ps6i 13
2

5
2

d→ns6i 11
2

5
2

d 0.013

ps6i 13
2

5
2

d→ns6i 11
2

3
2

d 0.011
238Pu ps6i 11

2
7
2

d→ns6i 13
2

7
2

d 0.008 ps6i 13
2

1
2

d→ns6i 11
2

1
2

d 0.010 ps6i 11
2

7
2

d→ns6i 13
2

5
2

d 0.005

ps5f 5
2

3
2

d→ns5f 5
2

5
2

d 0.009
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of the singleb+ matrix elements, pointed out by Cha in Ref.
[41], a real effect or just an artifact caused by the instability
of the pnQRPA ground state[8]? As shown in Table II for
76Ge, taking different deformations for mother and daughter
nuclei brings an important effect onT1/2 but not a dramatic
change as claimed in Ref.[42]. The difference between the
two descriptions consists of the fact that here the overlap
matrix elements of the states in the mother and daughter
nuclei are estimated in a manner consistent with the
pnQRPA approach, while in the quoted reference the phonon
operators are dissociated and the overlaps are calculated
within the BCS and particle representations. Of course, in the
latter case it is not possible to get a real hierarchy of the
effects involved.

As we stressed in Ref.[19], going beyond pnQRPA ap-
proach, some forbidden processes might become possible. As

an example, we studied the double beta transition on excited
collective states. In the near future we shall investigate
whether increasing the deformation for the daughter nuclei
would substantially increase the reduced decay probability
for such processes.

APPENDIX A

In order to calculate the overlap matrix which enter the
MGT expression, we have to express the phonon operator for

TABLE VIII. The same as in Table V, but for the lower panels of Figs. 2–9.

Nucleus First peak Second peak Third peak

pnQRPA energy Strength pnQRPA energy Strength pnQRPA energy Strength

76Se 2.684 0.313 4.904 0.116 13.028 0.013

6.169 0.027

6.627 0.021
82Kr 2.158 0.135 5.313 0.118 8.172 0.019
148Sm 2.196 0.139 6.209 0.037 10.029 0.011

2.301 0.151 7.408 0.017 11.899 0.012

2.427 0.165
150Sm 3.051 0.227 6.420 0.012

3.102 0.134 7.369 0.018

3.419 0.103
154Gd 2.071 0.081 3.169 0.061 3.928 0.039

2.491 0.140 3.600 0.046 4.170 0.019

4.401 0.016
160Dy 4.587 0.05 5.616 0.067 6.209 0.063

4.756 0.076 5.742 0.113 7.469 0.051

5.392 0.365 5.830 0.059 7.559 0.054

5.968 0.072
232U 3.107 0.011 9.531 0.031 16.069 0.008

4.917 0.013

6.656 0.011
238Pu 3.378 0.008 11.751 0.010 17.689 0.005

3.415 0.009

TABLE IX. The Qbb-values for mother nuclei are given in units
of MeV. In the lowest row, the experimental energy for the first 1+

states in the intermediate nuclei are given in units of keV.

Nucleus 76Ge 82Se 148Nd 150Nd 154Sm 160Gd 232Th 238U

QbbfMeVg 2.04 3.01 1.93 3.37 1.25 1.73 0.85 1.15

Nucleus 76As 82Br 148Pm 150Pm 154Eu 160Tb 232Pa 238Np

E1+fkeVg 44 75 137 137* 72 139 1000a 244

aFor 150Pm and232Pa there are not available data. Therefore we take
the ad hoc values characterized by an asterisk. Actually changing
E1+ within 1 MeV does not modify the order of magnitude ofT1/2.

FIG. 12. (Color online) The Gamow-Teller amplitudeMGT for
the transition 2nbb is represented as a function ofgpp, for a par-
ticular value of the particle-hole interaction strength,x=0.1.
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the mother nucleus in terms of the phonon operator of the
daughter nucleus, following the boson expansion procedure
[19]:

G1m
† si,kd = o

k8

fWi
fsk,k8dG1m

† s f,k8d

+ Zi
fsk,k8dG1,−ms f,k8ds− d1−mg, sA1d

where the amplitudesW and Z can be easily calculated as
follows:

Wi
fsk,k8d = ik0ufG1ms f,k8d,G1m

† si,kdgu0l f ,

Zi
fsk,k8d = ik0ufG1m

† sf,kd,G1,−m
† si,k8ds− d1−mgu0l f . sA2d

It is clear that once these amplitudes are calculated, the over-
lap matrix elements are readily obtained:

ik1ku1k8l = Wi
fsk,k8dik0u0l f , sA3d

provided that the overlap of the two vacua is known. In what
follows we shall describe the necessary steps to derive the
expressions of the two factors from the right-hand side of the
above expression. By a direct calculation one finds

Wi
fsk,k8dp = fXksi ;pndXk8sf ;p8n8d − Yksi ;pndYk8sf ;p8n8dgi

3k0ufA1msi ;pnd,A1m8
† sf ;p8n8dgu0l f

+ fXksi ;pndYk8sf ;p8n8d − Yksi ;pndXk8sf ;p8n8dgi

3k0ufs− d1−mA1−m
† si ;pnd,A1m8

† sf ;p8n8dgu0l f .

sA4d

The symbol “p” stands for the complex conjugation opera-
tion. The matrix elements of the commutators of the two
quasiparticle operators are expressed further in terms of the
anticommutator of the single particle operators which is cal-
culated as explained in Ref.[14]:

hcaIMsid,ca8I8M8
† sfdj

= Nnlj
I sidNn8l8 j8

I8 sfdo
J

sCI0I
1JId2fNJ

sgdsddg−1fNJ
sgdsd8dg−1

3OJ
scdsi, fddII8d j j 8dMM8 ; Oif

aIdII8d j j 8daa8dMM8.

sA5d

HereNJ
sgd denotes the norm of the core projected state:

wJM
sgd sdd = NJ

sgdsddPM0
J edsb20

† −b20du0lb; sA6d

where u0lb denotes the vacuum state for the quadrupole
bosons. The overlap matrix for the initialsid and final sfd
core states is denoted byOJ

scdsi , fd, and has the expression

OJ
scdsi, fd ; kwJMsdduwJMsd8dl

= NJ
sgdsddNJ

sgdsd8de−d2+d82/2s2L + 1dIJ
s0dsÎdd8d,

sA7d

where the factorIJ
s0dis defined by Eq.(2.11). The initial

nucleus deformation is denoted byd while d8 stands for the
deformation parameter characterizing the final nucleus. Note
that in the limitd8→d we have

OJ
scdsi, fd → 1, Oif

aI → 1. sA8d

With these details, one further obtains

ik0ufA1msi ;pnd,A1m8
† sf ;p8n8dgu0l f

= dIpIp8
dInIn8

dmm8sUp
mUp

d + Vp
mVp

ddsUn
mUn

d

+ Vn
mVn

ddOif
apIpOif

anIn, sA9d

and

ik0ufs− d1−mA1,−m
† si ;pnd,A1m8

† sf ;p8n8dgu0l f

= dIpIp8
dInIn8

dmm8sUp
mVp

d − Vp
mUp

ddsUn
mVn

d − Vn
mUn

ddOif
apIpOif

anIn.

sA10d

Thus, the final expressions for the amplitudesW andZ are

Wi
fsk,k8d = o

pn

ffXksi ;pndXk8sf ;pnd − Yksi ;pndYk8sf ;pndg

3sUp
i Up

f + Vp
i Vp

f dsUn
i Un

f + Vn
i Vn

f d

+ fXksi ;pndYk8sf ;pnd − Yksi ;pndXk8sf ;pndgsUp
i Vp

f

− Vp
i Up

f dsUn
i Vn

f − Vn
i Un

f dgOif
apIpOif

anIn

Zi
fsk,k8d = o

pn

hfXksi ;pndXk8sf ;pnd − Yksi ;pndYk8sf ;pndg

3sUp
i Vp

f − Vp
i Up

f dsUn
i Vn

f − Vn
i Un

f d

+ fXksi ;pndYk8sf ;pnd − Yksi ;pndXk8sf ;pndgsUp
i Up

f

+ Vp
i Vp

f dsUn
i Un

f + Vn
i Vn

f jOif
apIpOif

anIn. sA11d

As for the ground states overlap, the result is

FIG. 13. (Color online) The same as in Fig. 12 but for
x=0.3.
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ik0u0l f < ikBCSuBCSl f = p
p

fUp
i Up

f + Vp
i Vp

f sOif
apIpd2g

3p
n

fUn
i Un

f + Vn
i Vn

f sOif
anInd2g. sA12d

If the mother and daughter nuclei are characterized by the
same nuclear deformation, the corresponding overlap matrix
elements are obtained from the above formulas by replacing
d8 by d. A good approximation of the resulting equation is
given by the expression

ik1ku1k8l f = o
pn

fXksi,pndXk8sf,pnd − Yksi,pndYksf,pndg.

sA13d

The drawback of the procedure described above is that both
factors of Eq.(A3) are evaluated within the framework of the
BCS approximation while the matrix elements describing the
single b± transitions are calculated within the pnQRPA ap-
proach. Moreover, due to the overlap factorsOif

aI, even the
border of BCS frame is crossed toward the particle represen-

tation. This inconsistency of the levels of approximations
makes the method doubtful, since it is not possible to define
an hierarchy of various effects[42]. For example, one could
take care of a negligible contribution otherwise ignoring an
important one. However, extending the spirit of the RPA
approach to the case of different deformations for the initial
and final nuclei one obtains

Wi
fsk,k8d = o

pn

fXksi ;pndXk8sf ;pnd − Yksi ;pndYk8sf ;pndg,

ik0u0l f = 1. sA14d

In this way the overlap matrix and the matrix elements char-
acterizing the initial and final nuclei are treated in a unitary
fashion. The numerical calculations presented in this paper
correspond to the overlap matrix determined by Eq.(A14).
We postpone for a forthcoming paper, the description of the
b± matrix elements within a higher pnQRPA approach con-
sistent with the procedure presented in this Appendix for
calculating the overlap matrix elements.
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