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The reason for this effect is discussed as well as a relation of the present approach to other ones existing in the
literature.
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I. INTRODUCTION

The present paper addresses the problem of a temperature
dependence of the giant dipole resonance(GDR) width. Ac-
tually, our concern about is only with one part of the total
GDR width, the spreading one.

GDR was found in a hot rotating nucleus formed in a
collision of two heavy ions as early as 1981[1]. As a result
of quite sophisticated experiments performed during 20 years
some integral characteristics of GDR were carefully studied.
In particular, it is well proved that the energy of GDR and
the exhaustion of the model independent energy weighted
sum rule (EWSR) are quite stable against temperature in-
crease. At the same time one observes a strongly increasing
width of GDR with temperaturesTd of a nucleus.

Several processes contribute to the GDR width at finite
temperature[2–4]. Among them are quantum fluctuations
which exist already in a cold nucleus: the Landau damping,
the coupling with surface vibrations, the collisional damping
(i.e., the coupling to incoherent two-particle–two-hole exci-
tations) and the coupling to the single-particle continuum. At
TÞ0 the thermal fluctuations of a nuclear shape appear.
Moreover, since a hot compound nucleus usually carries a
large angular momentum, the rotation also affects the GDR
width.

Extracting the GDR characteristics from the measuredg
spectra is not an absolutely unambiguous procedure. These
spectra are in fact a weighted sum of theg-ray yield emitted
by many nuclei populated in the decay of the initial com-
pound nucleus. The extracted GDR characteristics depend to
some extent on assumptions about a shape ofE1 strength
function, and mass and temperature dependence of its param-
eters[5]. Also, the temperatures inferred from experimental
excitation energy of a hot compound nucleus are sensitive to
the level density parameter which is not known very accu-
rately. In this respect, the impressive example is the fate of
the so-called saturation of the GDR width atT
ù3.5–4 MeV. This phenomenon was recognized as a non-
existent one after the appearance of new data and reanalysis
of the previous ones[6,7]. Now it is widely accepted that the
observed GDR widthGGDR continuously increases up toT

,3.2 MeV. The information about GDR at higher tempera-
tures cannot be extracted reliably from the existing data.

Even a more ambiguous problem is the disentangling of
different contributions toGGDR. Fortunately, due to the ex-
periments with inelastically scattereda particles which yield
a compound system with a small angular momentum[8] the
effects of rotation and temperature on the GDR width were
separated. However, in most cases conclusions can be drawn
only by comparing the final results of theoretical calculations
with the measured(extracted) experimental values. Some-
times conclusions appear to be controversial. For example,
the adiabatic coupling model[9] reasonably describes the
experimental data on the GDR width in120Sn and208Pb sup-
posing the intrinsic GDR widthGi almost independent of
temperature. According to this model, the main effect, which
explains increasing ofGGDR, is the thermal nuclear shape
fluctuations. On the other hand, in Ref.[10], a conclusion
was reached that the behavior of the GDR parameters in the
compound nucleus86Mo cannot be explained by assumingGi
be a constant. Moreover, the very recent measurement of the
GDR width in 120Sn [11] reveals an overestimation ofGGDR
by the adiabatic coupling model at relatively low tempera-
ture T<1 MeV.

Different theoretical approaches also predict a quite dif-
ferent T dependence for the GDR width. The first calcula-
tions of a thermal behavior of the spreading GDR widthG↓
were performed by Bortignonet al. [12]. At that time, it was
already well known that the coupling of a single-particle
motion with collective surface vibrations is the main mecha-
nism of damping of giant resonances in cold nuclei. In Ref.
[12], a temperature dependence of this coupling was studied
with the Matsubara thermal Green’s function technique and
it was found that the width was nearly constant whenT in-
creased. The physical ground of these calculations was the
nuclear field theory(NFT) [13] treating a nucleus as a system
of interacting quasiparticles and vibrations(RPA phonons).
In more recent studies[14], the very weak dependence ofG↓
on T was explained by the cancellation effect between self-
energy and vertex contributions. However, several years ago
in Ref. [15], where the problem was studied within the same
formalism and under the same physical assumptions as in
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Refs.[12,14], an increment of the spreading GDR width with
T was found.

The latter result is in correspondence with the numerous
calculations of the so-called collisional damping of GDR,
i.e., the coupling of collective dipole states with incoherent
2p–2h excitations[4]. The investigations of the collisional
damping were performed within different approaches
[16–22]. In most cases, calculations predict the increase of
the GDR width with increasing in temperature, although the
calculated width is smaller than the apparent one by a factor
of 2–4 and exhibits a weaker temperature dependence. The
only exception is the prediction of the extended time-
dependent Hartree-Fock approach[20,21] for 208Pb. Accord-
ing to the calculations of[22], the collisional GDR width in
this nucleus is quite stable againstT although in 120Sn it
strongly increases with increasing inT.

Thus, the current situation with the temperature depen-
dence of the GDR spreading width, as one can conclude
from the above brief review, is not clear. That is why we
present the results of calculations within one more approach.
The approach was developed in Refs.[23–25] and is based
on the two main ingredients: the quasiparticle-phonon
nuclear model(QPM) [26–28] and the formalism of ther-
mofield dynamics(TFD) [29,30]. For a long time QPM was
successfully used in theoretical investigations of damping of
various giant resonances in cold nuclei. The physical basis of
QPM is very similar to that of the nuclear field theory, and
both the models have produced quite close results as applied
to nuclear structure calculations atT=0. In Refs.[23–25],
the QPM was extended to finite temperatures by the use of
the TFD formalism. Already at that formal stage interesting
differences with Ref.[12] were noted. The main new scope
of the present paper is the numerical calculations of theT
dependence ofG↓ in the TFD-QPM approach. Moreover,
based on the present results we discuss more carefully than
before a relation of our approach to that of Refs.[12,14,15].

The paper is organized as follows. In Sec. II, the exten-
sion of the quasiparticle-phonon nuclear model to finite tem-
peratures is presented. In Sec. III, the results of numerical
calculations for120Sn and 208Pb nuclei are presented. We
discuss a physical background of our results and a compari-
son with other approaches in Sec. IV. A short conclusion is
given in Sec. V.

II. QPM AT FINITE TEMPERATURE

A. Thermal RPA

First attempts to apply the TFD formalism to nuclear
structure problems were made in Refs.[30–32] and[23–25].
Up to now the TFD formalism is not widely used in the
nuclear structure studies. So it seems appropriate to outline
how QPM can be extended to finite temperatures within the
TFD thus repeating to some extent the results of Refs.
[23–25].

The QPM Hamiltonian in a cold nucleus consists of phe-
nomenological mean fields for protons and neutrons, pairing
interaction of the BCS type and separable multipole particle-
hole interactions with the isoscalar and isovector items

H = Hsp+ Hpair + Hph, s1d

where

Hsp= o
jm t

sEj − ltdcjm
+ cjm, s2d

Hpair = − o
t

Gt

4 o
j1m1

j2m2

t

cj1m1

+ cj1m1

+ cj2m2
cj2m2

, s3d

Hph = −
1

2o
lm

o
t,r=±1

sk0
sld + rk1

slddMlm
+ stdMlmsrtd. s4d

The operatorMlm
+ std is the single-particle multipole operator

Mlm
+ std = o

j2m2

j1m1

t

k j1m1uRsrdYlmsrW/rdu j2m2lcj1m1

+ cj2m2

and cjm
+ ,cjm are the creation and annihilation operators of

particle with quantum numbersn, l , j ,m; j ,m and the en-
ergy Ej. The notationjm̄ means the time-reversed state. The
index t is isotopic one. It takes two values,t=n,p. The
symbolot means that the summation is taken only over neu-
tron or proton single-particle(hole) states and changing the
sign of t means changingn↔p. The parametersGn,Gp are
constants of neutron-neutron and proton-proton BCS-pairing
interactions andk0

sld ,k1
sld are coupling constants of isoscalar

and isovector multipole-multipole(with multipolarity l) in-
teractions, respectively.

The first step in treating nuclear dynamics governed by
the Hamiltonian(1) at finite temperature is formal doubling
of the Hilbert space of a nucleus. To this aim, we introduce a
fictitious (tilde) system which is of exactly the same structure
as the initial one. For any operatorA acting in the initial

Hilbert space there exists its tilde counterpartÃ acting in the
space of tilde states. The tilde system is governed by the tilde

HamiltonianH̃ which has the same structure asH, only the
operatorscjm

+ ,cjm are substituted by their tilde counterparts
c̃ jm

+ and c̃jm.
The thermal Hamiltonian of the QPM is by definition

H = H − H̃. s5d

An excitation spectrum of a hot nucleus is obtained by di-
agonalization ofH. At the same time, the thermal behavior
of the nucleus is controlled by the thermal vacuum state
u0sTdl, which is the eigenstate ofH with the zero eigenvalue.

To construct the thermal vacuum stateu0sTdl we made
two Bogoliubov transformations. The first one is the standard
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su,vd Bogoliubov transformation from the particle operators
to the quasiparticle onesa jm

+ anda jm,

cjm
+ = uja jm

+ + s− 1d j−mv ja j−m,

s6d
cjm = uja jm + s− 1d j−mv ja j−m

+ .

The same transformation(with the sameuj ,v j coefficients) is
made with the tilde operators thus producing tilde quasipar-
ticle operatorsã jm

+ ,ã jm. The second transformation is a uni-
tary thermal Bogoliubov transformation[29] from ordinary
and tilde quasiparticle operators to thermal quasiparticle op-

eratorsb ,b+,b̃ ,b̃+,

b jm = xja jm − yjã jm
+ ,

s7d
b̃ jm = xjã jm + yja jm

+ ,

where

xj
2 + yj

2 = 1.

The coefficients of the Bogoliubov rotations(6) and (7) are
determined simultaneously by minimization of the free en-
ergy Fstd (separately for neutron and proton subsystems)

Fstd = k0sTduHsp
std + Hpair

std u0sTdl − TSstd − ltk0sTduN̂stdu0sTdl,

s8d

whereN̂std is the operator of a number of neutrons(protons)
in the nucleus,

N̂std = o
jm

std

cjm
+ cjm.

The entropySstd reads

Sstd = − o
j

t

s2j + 1dfxj
2 ln xj

2 + yj
2 ln yj

2g. s9d

Expectation values in(8) are taken with respect to the ther-
mal ground stateu0sTdl which at this stage is supposed to be
the vacuum state for the thermal quasiparticle operators

b jmu0sTdl = b̃ jmu0sTdl = 0. s10d

In terms of the operatorsa+,ã+ the vacuumu0sTdl is nothing
but a coherent, or squeezed, state

u0sTdl = expFo
jm

yj

xj
a jm

+ ã jm
+ Gu0l,

where u0l is the direct product of the BCS vacuum and its
tilde counterpart.

After variation of(8) over the coefficientsuj ,v j ,xj ,yj we
obtain the BCS equations at finite temperature[23,32],

Nt =
1

2o
j

t

s2j + 1dS1 −
sEj − ltds1 − 2njd
ÎsEj − ltd2 + Dt

2 D , s11d

4

Gt

= o
j

t

s2j + 1d
1 − 2nj

ÎsEj − ltd2 + Dt
2
, s12d

The expressions for the coefficientsuj ,v j and the quasiparti-
cle energy« j are the following:

uj
2 =

1

2
S1 +

Ej − lt

« j
D, v j

2 =
1

2
S1 −

Ej − lt

« j
D,

« j = ÎsEj − ltd2 + Dt
2, s13d

and for the coefficientsxj ,yj one gets

yj
2 = nj, xj

2 = 1 −nj , s14d

wherenj is the Fermi-Dirac thermal occupation number for
the quasiparticle with the energy« j,

nj =
1

1 + exps« j/Td
. s15d

With the coefficientsuj ,v j ,xj ,yj determined by(13)–(15)
the part of the thermal Hamiltonian which consists of the
single-particle and pairing terms and their tilde counterparts
takes the form

HTSQP= o
jmt

« jsb jm
+ b jm − b̃ jm

+ b̃ jmd.

The HamiltonianHTSQP describes a system of independent
thermal quasiparticles with temperature dependent energies
« j (and -« j for the tilde thermal quasiparticles). The ground
state of this system is the thermal vacuum stateu0sTdl de-
fined by (10).

The termHph is the interaction of thermal quasiparticles.
After the transformations(6) and (7) the multipole operator
Mlm

+ std takes the form

Mlm
+ std =

s− dl−m

Î2l + 1
o
j1j2

t

f j1j2
sld fAb

+s j1j2;lmd

+ s− dl−mAbs j1j2;l − mdg + Bbs j1j2;lmd. s16d

The valuef j1j2

sld is a reduced single-particle matrix element of

the one-body multipole operatorMlm
+ . The operators

Ab
+s j1j2;lmd andBbs j1j2;lmd are defined as follows:

Ab
+s j1j2;lmd =

1

2
uj1j2

s+d sÎ1 − nj1
Î1 − nj2

fb j1
+ b j2

+ glm

− Înj1
Înj2

fb̃ j1
+ b̃ j2

+ glmd
− v j1j2

s−d Î1 − nj1
Înj2

fb j1
+ b̃ j2

+ glm,

Bbs j1j2;lmd = uj1j2
s+d Î1 − nj1

Înj2sfb j1
+ b̃ j2

glm

+ s− dl−mfb j1
b̃ j2

+ gl−md
− v j1j2

s−d Î1 − nj1
Î1 − nj2sfb j1

+ b j2
glm
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+ Înj1
Înj2

fb̃ j1
b̃ j2

+ glmd ,

where

uj1j2
s+d = uj1

v j2
+ uj2

v j1
, v j1j2

s−d = uj1
uj2

− v j2
v j1

.

The operatorAbs j1j2;lmd is the Hermitian conjugate of
Ab

+s j1j2;lmd. The square bracketsf glm stand for the cou-
pling of single-particle angular momentaj1, j2 to the sum
angular momentuml.

At the next step we take into account the TRPA correla-
tions due to interaction of thermal quasiparticles[24,30]. To
proceed, we introduce the following thermal phonon opera-
tor:

Qlmi
+ =

1

2o
j1j2

c j1j2
li fb j1

+ b j2
+ glm + 2h j1j2

li fb j1
+ b̃ j2

+ glm

+ c̃ j1j2
li fb̃ j1

+ b̃ j2
+ glm − s− 1dl−msf j1j2

li fb j2
b j1

gl−m

+ 2z j1j2
li fb̃ j2

b j1
gl−m + f̃li

j1j2fb̃ j2
b̃ j1

gl−md . s17d

Further, we assume that these phonons are bosons and rede-
fine the ground state of a hot nucleus. Hereafter it is a
vacuum state for the thermal phonon operatoruC0sTdl, i.e.,
QlmuC0sTdl=0. Thus the functionuC0sTdl is a temperature
dependent wave function of the compound state. With an
assumption on the bosonic nature of the phonon operator
(17) the norm of a thermal one-phonon wave function is

1

2o
j1j2

sc j1j2
li d2 − sf j1j2

li d2 + sc̃ j1j2
li d2 − sf̃ j1j2

li d2 + 2sh j1j2
li d2

− 2sz j1j2
li d2 = 1. s18d

Then the thermal RPA equations can be obtained by apply-
ing either the variational principle or the equation of motion
method. Here we show only the secular equation for energies
vli of thermal one-phonon statesulil and expressions for
amplitudes of a thermal phonon wave function. The secular
equation reads

fXnsvd + Xpsvdgsk0
sld + k1

sldd − 4k0
sldk1

sldXnsvdXpsvd = 1,

s19d

where

Xtsvd =
1

2l + 1o
j1j2

t

sf j1j2
sld d2F suj1j2

s+d d2s1 − nj1
− nj2

ds« j1
+ « j2

d

s« j1
+ « j2

d2 − v2

−
sv j1j2

s−d d2snj1
− nj2

ds« j1
− « j2

d

s« j1
− « j2

d2 − v2 G . s20d

The amplitudes are

c j1j2
li =Î 1

2Nt
li

f j1j2
sld uj1j2

s+d Î1 − nj1
Î1 − nj2

s« j1
+ « j2

d − vli
,

f j1j2
li =Î 1

2Nt
li

f j1j2
sld uj1j2

s+d Î1 − nj1
Î1 − nj2

s« j1
+ « j2

d + vli
,

h j1j2
li = −Î 1

2Nt
li

f j1j2
sld v j1j2

s−d Î1 − nj1
Înj2

s« j1
− « j2

d − vli
,

z j1j2
li = −Î 1

2Nt
li

f j1j2
sld v j1j2

s−d Î1 − nj1
Înj2

s« j1
− « j2

d + vli
,

c̃ j1j2
li =Î 1

2Nt
li

f j1j2
sld uj1j2

s+d Înj1
Înj2

s« j1
+ « j2

d + vli
,

f̃ j1j2
li =Î 1

2Nt
li

f j1j2
sld uj1j2

s+d Înj1
Înj2

s« j1
+ « j2

d − vli
,

where the factorNt
li is

Nt
li =

2l + 1

2 FU ]

] v
Xt

lisvdU
v=vli

+ S1 − Xt
lisvlidsk0

sld + k1
sldd

X−t
li svlidsk0

sld − k1
sldd

D2U ]

] v
X−t

li svdU
v=vli

G .

s21d

It is worthwhile to note that in contrast with RPA atT=0 the
solutions of(19) with negative energies have physical mean-
ing (see also Ref.[15]). They correspond to the tilde-phonon

statesQ̃lmi
+ uC0sTdl

kC0sTdufH,Qlmi
+ guC0sTdl = − kC0sTdufH,Q̃lmi

+ guC0sTdl = vli .

Let us comment on the structure of a TRPA phonon. The
componentsc andf are the same as in the standard quasi-
particle RPA (QRPA) (see, e.g., Ref.[28]) and are only

damped by the factors1−njd. The componentsc̃ and f̃ are
totally due to the tilde part of the Fock space of a heated
nucleus. They vanish in a cold nucleus. Note that thev de-
pendence of the forward and backward tilde amplitudes is
just opposite to that of the ordinary amplitudes. It means

that, e.g., whilec is of a pole characterc̃ is not and instead
the amplitudef̃ is a pole amplitude. The most interesting
amplitudes areh andz. They could be specified as crossover
amplitudes containing both the ordinary and tilde thermal
quasiparticles. Just due to them the poles« j1

−« j2
, which do

not exist in QRPA atT=0, appear in(19). These poles can
appear at quite low energies, thus enriching a low-energy
part of the phonon spectrum in comparison with QRPA at
T=0. The amplitudesh andz depend on the superfluid factor
v j1j2

s−d which is enhanced when both the statesj1 and j2 are of
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a particle or a hole type. In contrast, the four other ampli-
tudes are proportional to the superfluid particle-hole factor
uj1j2

s+d .
In nuclei with pairing correlations the amplitudesh ,z

vanish whenT→0. However, in magic nuclei the thermal
phonon operator(17) consists of only two types of compo-
nentsh andz,

Qlmi
+ = o

j1j2

h j1j2
li fb j1

+ b̃ j2
+ glm + s− 1dl−mz j1j2

li fb j1
b̃ j2

gl−m.

The expressions forh andz displayed above are valid in this
case as well excepting that the valuev j1j2

s−d equals to unity. The
expression(20) also becomes simpler

Xtsvd =
1

2l + 1o
j1j2

t sf j1j2
sld d2snj1

− nj2
dsEj1

− Ej2
d

sEj1
− Ej2

d2 − v2 .

At the end of this section we display the expression for
the matrix elementFli of theEl-transition operator from the
ground state of a hot nucleus to a thermal one-phonon state
[i.e., for the transitionuC0sTdl→Qlmi

+ uC0sTdl]. It reads[24]

Fli = o
j1j2

k j1iMsEldi j2lH1

2
uj1j2

s+d fÎ1 − nj1
Î1 − nj2

sc j1j2
li

+ f j1j2
li d − Înj1

Înj2
sc̃ j1j2

li + f̃ j1j2
li dg

− v j1j2
s−d Î1 − nj1

Înj2
sh j1j2

li + z j1j2
li dJ , s22d

wherek j1iMsEldi j2l is a reduced single-particle matrix el-
ement of theEl transition operator.

B. Interaction of TRPA phonons

Now the thermal Hamiltonian reads in terms of the TRPA
phonons and thermal quasiparticles(note that the termBb

+Bb

and its tilde counterpart are omitted)

H = o
lmi

vlisQlmi
+ Qlmi − Q̃lmi

+ Q̃lmid

−
1

2Î2
o
lmi

o
t

o
j1j2

t f j1j2
sld

ÎNt
li

hss− dl−mQlmi
+ + Ql−mid

3Bbs j1j2;l − md − ss− dl−mQ̃lmi
+ + Q̃l−mid

3B̃bs j1j2;l − md + h.c.j, s23d

The terms,sQ++QdB, etc. (hereafter we denote their sum

by Hqph) couple a thermal one-phonon state with more com-
plex thermal configurations, e.g., two-phonon ones. Due to
this mixing the strength of a one-phonon state is fragmented
over some energy interval. In other words, the termHqph
produces a spreading width of a thermal one-phonon state.
To describe the fragmentation of thermal phonons, we use
again the variational method with a trial wave function of the
form

uCnsJMdl =Ho
i

RisJndQJMi
+ + o

l2i2
l1i1

Pl2i2

l1i1sJnd

3fQl1m1i1
+ Ql2m2i2

+ gJMJuC0sTdl. s24d

The equation for energies of states(24) is

detUsvJi − hJnddii8 −
1

2 o
l1i1l2i2

Ul2i2

l1i1sJidUl2i2

l1i1sJi8d

vl1i1
+ vl2i2

− hJn
U = 0.

s25d

The functionsUl2i2
l1i1sJid are the coupling matrix elements be-

tween one- and two-phonon states. The expression for
Ul2i2

l1i1sJid is the following:

Ul2i2

l1i1sJi,td = −
1
Î2

Î2l1 + 1Î2l2 + 1

3 o
j1j2j3

t Fs− dJG j1j2

l2i2Hl2 l1 J

j3 j2 j1
JK j3j2j1

l1i1Ji

+ s− dl1−l2G j1j2

l1i1Hl1 l2 J

j3 j2 j1
JK j3j2j1

l2i2Ji

+ s− dJ−l1G j1j2
Ji H J l1 l2

j3 j2 j1
JL j3j2j1

l1i1l2i2G ,

s26d

whereG j1j2
li = f j1j2

sld /ÎNli and the functionsK j3j2j1
l2i2Ji andL j3j2j1

l1i1l2i2

are

K j3j2j1

l1i1Ji = v j1j2
s−d Î1 − nj1

Î1 − nj2
s− 1d j1+j3+l1+Jsc j1j3

l1i1c j2j3
Ji + f j1j3

l1i1f j2j3
Ji + h j1j3

l1i1h j2j3
Ji + z j1j3

l1i1z j2j3
Ji d+ uj1j2

s+d Î1 − nj1
Înj2

s− d j1+j2+l1sc j1j3

l1i1h j3j2
Ji

+ f j1j3

l1i1z j3j2
Ji + h j1j3

l1i1c̃ j3j2
Ji + z j1j3

l1i1f̃ j3j2
Ji d− uj1j2

s+d Înj1
Î1 − nj2

s− 1dJsh j3j1

l1i1c j2j3
Ji + z j3j1

l1i1f j2j3
Ji + c̃ j3j1

l1i1h j2j3
Ji + f̃ j3j

l1i1z j2j3
Ji d

− v j1j2
s−d Înj1

Înj2
s− d j2+j3sh j3j1

l1i1h j3j2
Ji + z j3j1

l1i1z j3j2
Ji + c̃ j3j1

l1i1c̃ j3j2
Ji + f̃ j3j1

l1i1f̃Ji
j3j2d,
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L j3j2j1

l1i1l2i2 = v j1j2
s−d Î1 − nj1

Î1 − nj2
s− 1d j1+j3+l1+l2sc j1j3

l1i1f j2j3

l2i2 + f j1j3

l1i1c j2j3

l2i2 + h j1j3

l1i1z j2j3

l2i2 + z j1j3

l1i1h j2j3

l2i2d

+ uj1j2
s+d Î1 − nj1

Înj2
s− d j1+j2+l1sc j1j3

l1i1z j3j2

l2i2 + f j1j3

l1i1h j3j2

l2i2 + h j1j3

l1i1f̃ j3j2

l2i2 + z j1j3

l1i1c̃ j3j2

l2i2d− uj1j2
s+d Înj1

Î1 − nj2
s− dl2sz j3j1

l1i1c j2j1

l2i2

+ h j3j1

l1i1f j2j3

l2i2 + f̃ j3j1

l1i1h j2j3

l2i2 + c̃ j3j1

l1i1z j2j3

l2i2d− v j1j2
s−d Înj1

Înj2
s− 1d j2+j3sh j3j1

l1i1z j3j2

l2i2 + z j3j1

l1i1h j3j2

l2i2 + c̃ j3j1

l1i1f̃ j3j2

l2i2 + f̃ j3j1

l1i1c̃ j3j2

l2i2d.

Let us note that in case the pairing correlations vanish, ex-
pression(26) completely agrees with that from Ref.[15] [see
Eqs.(4.1)–(4.2) in the paper].

To calculate theE1-strength function in hot nuclei taking
into account a fragmentation of thermal one-phonon dipole
states, we explore the well-known strength function method
[27,28]. Avoiding to solve Eq.(25); we directly calculate the
function

bsEl,hd = o
n

1

2p

D

sh − hlnd2 +
D2

4

uFsJndu2, s27d

where the coefficientsFsJnd are amplitudes ofEl transitions
from the ground state of a hot nucleus(a compound state) to
states described by the wave functions(24). These ampli-
tudes are superpositions of the matrix elementsFJi (22) with
the weight factorsRisJnd from (25),

FsJnd = o
i

RisJndFJi,

andD is a smearing parameter.

III. NUMERICAL RESULTS

We calculate energy centroids, variances and the exhaus-
tion of the energy weighted sum rule(EWSR) of E1 strength
distributions for 0øTø3 MeV in 120Sn and208Pb nuclei.
All model parameters(mean field potentials, pairing con-
stants, coupling constants of separable interactions, etc.) are
fixed in accordance with the standard QPM procedure
[26,28], i.e., by the use of experimental data on the energies
of low-lying vibrational states and giant resonances atT=0.
As a mean field the phenomenological Woods-Saxon poten-
tial is explored. The single-particle basis consists of all
bound states and several quasibound states with relatively
small escape width.

Pairing correlations that exist only in the neutron system
of 120Sn are treated in the thermal BCS approximation. Since
we do not make a particle number projection, a neutron en-
ergy gap in this nucleus vanishes atT=Tc<1 MeV.

Only multipole-multipole particle-hole interactions with
1ølø7 are included in the Hamiltonian(4). A radial form
factor of the separable multipole interaction has the form
Rsrd=dU/dr, where U is the central part of the Woods-
Saxon potential. The coupling constant of the isoscalar
dipole-dipole interaction is adjusted at every value ofT to
make the energy of the spurious 1− state zero in the TRPA
calculations. The chemical potentialsln,p are also adjusted at

everyT value to keep the right average values ofN,Z.

Energy centroidsĒ and variancess of E1 strength func-
tions (E1 SF) are calculated with the following formulas:

Ē =
m1

m0
, sth =Îm2

m0
− Sm1

m0
D2

,

where mk is the kth energy moment of the corresponding
function.

The model energy weighted dipole sum rule is calculated
with the formula for a system of independent Bogoliubov
quasiparticles atTÞ0,

EWSR =o
t

o
j1ù j2

sf j1j2
s1d d2fs« j1

+ « j2
dsuj1j2

s+d d2s1 − nj1
− nj2

d

− s« j1
− « j2

dsv j1j2
s−d d2snj1

− nj2
dg. s28d

When a pairing gap vanishes(i.e., in magic nuclei or at
T.Tc) Eq. (28) takes the form

EWSR =o
t

o
j1ù j2

sf j1j2
s1d d2sEj1

− Ej2
dsnj1

− nj2
d,

which coincides with that from Ref.[33].
The results of our calculations within the TRPA are the

same as in many previous studies(see, e.g.,[20,33–35]).
When temperature increases, only some minor redistribution
of the E1 strength between different one-phonon 1− states
takes place. Nevertheless, in120Sn the GDR energy centroid
decreases by 1.5 MeV whenT increases from 0 to 3 MeV,

whereas in208Pb the value ofĒ is practically independent of
temperature(Fig. 1). The GDR variance calculated within
TRPA characterizes the Landau width of the resonance. It
weakly decreases withT in 120SnsDs<0.7 MeVd and does
not change in208Pb.

The values of EWSR(28) at different T are shown in
Figs. 2 and 3 for120Sn and208Pb, respectively. They are
compared with the corresponding model independent values
S1,

S1 =
9

8p

e2"2

m

NZ

A
= 14.8

NZ

A
e2 fm2 MeV.

A difference between the calculated EWSR values and the
model independent ones in the range 0,T,3 MeV appears
to be less than 10%. An excess of EWSR overS1 in 120Sn at
T,Tc should be attributed to the effect of the BCS pairing.
When the pairing correlations vanish, a value of EWSR be-
comes less thanS1 like it is in 208Pb in the whole temperature
range. Thus, as it follows from Figs. 2 and 3, the model
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EWSR is practically independent of temperature in208Pb as
well as in 120Sn atT.Tc. This remains valid for the TRPA
calculations of the model dependent EWSR(i.e., after sum-
mation of theE1 strengths of all the TRPA roots).

In calculations taking into account the interaction of ther-
mal phonons, the one-phonon part of a trial wave function
(24) includes 21 dipole phonons with the largestBsE1d val-
ues at givenT in 120Sn and 14 dipole states in208Pb. These
dipole TRPA-phonons exhaust more than 80% of the model
EWSR. The two-phonon part of(24) consists of all possible
thermal two-phonon 1− states from the energy range
0–30 MeV constructed by combining normal parity phonons
of different energies with angular momenta 1,l,7. Some
additional limitations to the two-phonon space will be dis-
cussed in Sec. IV. The smearing parameterD in the Lorent-
zian weight function is taken to be equal to 1 MeV.

The phonon-phonon interactionHqph (23) and the trial
wave function(24) imply that only the cubic anharmonic
terms of the interaction are taken into account and the
phonon-phonon coupling does not affect the thermal ground
state which is still treated as the thermal phonon vacuum
uC0sTdl. As it has been proved in Ref.[36], under the two

assumptions a mixing of one- and two-phonon states does
not influence an exhaustion of EWSR and a centroid of a
one-phonon strength distribution calculated in a sufficiently
wide energy range. It means that the TRPA results for

EWSR andĒ discussed above and displayed in Figs. 1–3
remain valid for the calculations taking into account the cou-
pling of one- and two-phonon configurations. We should note
that in calculations taking into account a collisional damping
within the quantal framework of the extended time-
dependent Hartree-Fock theory[22], a sizable difference was
found in thermal behavior of GDR energy centroids in208Pb

and 120Sn. Whereas in208Pb Ē is more or less stable against
temperature it sizably decreases with increasingT in 120Sn.
In our studies there is no noticeable difference between208Pb
and 120Sn in this respect.

In Fig. 4, we display a total photoabsorption cross-section
in 208Pb calculated with ourE1 SF’s atT=0 and 1 MeV. The
experimental data forT=0 taken from Ref.[37] are also
shown. The latter is done to demonstrate that the model used
with chosen parameters describes experimental data satisfac-
torily.

It is seen in Fig. 4 that the phonon-phonon interaction
pushes a part of theE1 strength to lower excitation energy.

FIG. 1. Temperature dependence of the centroids ofE1 strength
functions in120Sn (solid line) and 208Pb (dashed line).

FIG. 2. The model EWSR in120Sn at differentT (dashed line).
Solid horizontal line, the value of the model independent energy
weighted sum ruleS1.

FIG. 3. The model EWSR in208Pb at differentT (dashed line).
Solid horizontal line, the value of the model independent energy
weighted sum ruleS1.

FIG. 4. The total photoabsorption cross section in208Pb calcu-
lated with the theoreticalE1 strength functions atT=0 (solid line)
and T=1 MeV (dashed line). Experimental data(full circles with
error bars) are taken from Ref.[37]).
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Since the centroid ofE1 SF changes only weakly with tem-
perature, the main peak of theE1 SF is shifted to higher
energies in comparison with the TRPA position.

In Figs. 5 and 6, a temperature dependence of the variance
sth of the calculatedE1 SF in both the nuclei studied and the
corresponding experimental data on the GDR widthGexp are
displayed. These figures should be commented before discus-
sion of the results. In many of the papers, both theoretical or
experimental, the width of GDR is defined quantitatively as a
“full width at the half of the maximum”(FWHM) of the
main bump of the calculated or measuredE1 strength func-
tion. The FWHM seems to be an appropriate measure of the
width if the strength function has a smooth shape. However,
in our calculations theE1 SFs divide into several peaks and
the FWHM cannot be determined in an appropriate way.
That is why we use the variance as a quantitative measure of
the GDR spreading width. However, in spite of FWHM and
a variance characterize the same feature of aE1 SF (a frag-
mentation ofE1 strength) a direct numerical comparison of

both quantities is not justified. Thus, displaying ofsth and
experimental GDR widthGexp on the same figures has only
demonstrative sense.

The most distinctive feature of the theoretical curves is
the increase in the GDR spreading width with temperature.
Moreover, the temperature dependence ofGexp and sth ap-
pears to be quite similar. One can see in Figs. 5 and 6 that
Gexp<sth at T=0. Assuming this relation conserved with in-
crease inT one can conclude that the spreading width forms
a large part of the total GDR widthGexp.

As it was already mentioned in the Introduction, in Ref.
[22] a strong difference in thermal behavior of the collisional
GDR widths in208Pb and120Sn was found. Like it is for the
GDR centroids in the same nuclei(see above) present calcu-
lations do not demonstrate such a difference.

IV. DISCUSSION

To understand why in our approach the valueG↓ increases
with temperature, we analyzed the matrix elements of a
phonon-phonon couplingUl2i2

l1i1s1i
−d and found a strong effect

of a few very low-lying thermal phonons appearing in the
phonon spectrum only atTÞ0 due to the nonvanishing ther-
mal occupation factors. These states correspond to low-lying
poles of thes« j1

−« j2
d type. Moreover, one amplitudeh j1j2

dominates the phonon wave function, i.e., these phonons are
noncollective and of thep-p or h-h type. Basing on the
expression for the TRPA amplitudes in Sec. II A the follow-
ing expression for the amplitudeh j1j2

of such a phonon can
be derived:

h j1j2
li ,Î T

« j1
− « j2

<Î T

vli
.

If one of the phononsul1i1l or ul2i2l in the matrix element
Ul2i2

l1i1s1i
−d (26) is of the aforementioned type, the valueU

appears to be also proportional toÎT/v and s,oU2

,T/v. Thus, a temperature dependence ofG↓ arises. Cer-
tainly, this is only a qualitative estimation and we do not
insist that the variances has to be proportional toT in our
approach. As it is seen from the secular equation(25) and the
expression(27) there is a strong interference between contri-
butions of different TRPA dipole phonons to the resultingE1
strength function(27) which changes noticeably the tempera-
ture dependence ofs. The appearance of a small valuev in
a denominator explains a strong influence of these noncol-
lective phonons on thes value.

Thus, we conclude that the main reason for the increment
of G↓ with T is the interaction of GDR with the noncollective
p-p (or h-h) thermal phonons of the special type. On the
whole this conclusion agrees with the results of Ref.[15]
although in that paper a special role of the low-lyingp-p
sh-hd phonons was not definitely pointed out. It seems that
in Ref. [12] the noncollective thermal RPA excitations have
been ignored(the same statement can be found in Ref.[15]).
It follows from our consideration that if the thermal phonon
space includes only those phonons which are of thep-h type
at T=0 G↓ will be quite stable againstT.

FIG. 5. Temperature dependence of the variance of the theoret-
ical E1 strength functionsth and the experimental GDR widthGexp

in 120Sn. Full diamonds, the revised experimental data from Ref.
[6]; full circle, the data from Ref.[11]; open diamond, the data from
Ref. [38] (see also Ref.[39]).

FIG. 6. Temperature dependence of the variance of the theoret-
ical E1 strength functionsth and the experimental GDR widthGexp

in 208Pb. Full diamonds, the revised experimental data from Ref.
[6]; open diamond, the data from Ref.[38] (see also Ref.[39]).
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Some questions concerning a dependence of our numeri-
cal results on parameters still remain. An appearance of low-
lying p-p sh-hd states is dependent on the parameters of the
mean field. In this respect, the use of a phenomenological
Saxon-Woods potential gives the upper limit for the role of
these low-lying p-p sh-hd states because the density of
single-particle states near the Fermi level is the largest one in
this potential. The influence of these phonons ons will be
weaker in calculations with a mean field obtained by the
Hartree-Fock method.

There is one more ingredient directly affecting the calcu-
lated value ofs. The whole space of two-phonon states is
overcomplete because thermal phonons are considered as
bosons and no special projection of two- or four-fermion
states into the bosonic ones is made. We partially reduce this
over completeness by the special limitation in constructing
the two-phonon part of the trial wave function(24). Namely,
only two-phonon configurations combining two collective or
one collective–one noncollective phonons are included in the
wave function. However, there is no clear cut separation be-
tween collective and noncollective states, especially because
the “true” collective states like low-lying quadrupole and
octupole phonons dissolve with increasing temperature.
Therefore, in practice one needs a quantitative measure of
“collectivity of a phonon.” We introduce this measure on the
basis of the phonon structure. For example, a phonon is con-
sidered as a collective one if the largest two-fermion compo-
nent in its wave function(17) exhausts less thanB% of the
total norm. Evidently,B is a technical parameter. The larger
is B the larger is the thermal two-phonon space or the num-
ber of two-phonon configurations taken into account in the
calculations. Enlargement of the two-phonon space means
strengthening of fragmentation or damping and increasing in
the variance of a distribution.

To estimate a possible effect of the two-phonon basis, we
make the calculations with two different spaces of two-
phonon states. In Fig. 7, we display the results of calcula-
tions of ssTd in Pb for B=50% and 60%. The variance de-
creases sizably with decreasingB. Moreover, a rate of the
increase ins with T also becomes slower at a smaller value
of B. Nevertheless, a general trend of the thermal behavior of
the spreading GDR width is saved.

Note, the effect of the size of the two-phonon subspace is
much weaker atT=0 (this can be seen already in Fig. 7). In
Ref. [27], a consistent procedure taking into account the
Pauli principle corrections in the two-phonon components
was developed. The procedure is based on the exact(from
the point of view of their fermionic structure) commutator of
phonon operators. Its influence on the strength functions of
multipole giant resonances in cold nuclei was studied in Ref.
[40]. The corresponding corrections were found to be small
because atT=0 the main contribution to the spreading width
of giant resonances is given by the coupling with the lowest
collective quadrupole and octupole phonons and correspond-
ing two-phonon configurations are weakly affected by the
Pauli principle. However, with increasingT the low-lying
collective vibrations dissolve and their contribution to the
damping of giant resonances diminishes. At the same time,
the role of the Pauli principle acting between large number of
weakly collective and noncollective states treated as bosons
becomes more and more important. The results presented in
Fig. 7 reflect this process.

The important role of noncollective thermal phonons
raises a problem of the validity of a schematic multipole-
multipole interaction in the present study. Indeed, calcula-
tions of the collisional damping[19,22] have clearly demon-
strated a strong influence of the effective nucleon-nucleon
interaction on both the absolute value of the GDR width at
TÞ0 and the slope of its temperature dependence. However,
we do not claim to describe the GDR width quantitatively.
Our aim is to elucidate the role of thermal effects in the GDR
width behavior in view of conflicting results of Ref.[12] and
Ref. [15]. In both the papers the same schematic multipole-
multipole interaction was explored.

There is one more interesting and at the first glance prin-
cipal difference between our approach and that of Refs.
[12,14,15]. The difference has already been pointed out in
Ref. [25] and now we would like to discuss it in more detail.
In Refs. [12,15], the GDR width depends on thermal occu-
pation numbers of two types—the Fermi-Dirac numbers for
particle and holes and the Bose-Einstein occupation numbers
for TRPA phonons. Bose occupation factors appear in a
theory when the temperature-dependent Green’s function of
the single TRPA phonon treated as heated boson is intro-
duced.

In the present paper, one cannot find the thermal bosonic
occupation numbers, and it seems there is no room for them
within the explored approach. We start with the model
Hamiltonian written in terms of nucleonic(i.e., fermionic)
variables. The thermal occupation numbers appear in the
game when we make the thermal Bogoliubov rotation(7)
and thus produce the thermal Fock space. All further ma-
nipulations explore these “heated” fermions and their com-
binations. Thus, the appearance of bosonic occupation num-
bers is quite questionable. Our thermal Hamiltonian in its
final form (23) is the Hamiltonian of interacting phonons
built from “heated” quasiparticles but the phonon system it-
self is not heated in the sense that there is no thermal smear-
ing of phonons over their energy levels. This corresponds to
a transparent phenomenological picture: when one heats a
nucleus putting there a good piece of energy, a nucleonic
motion is changed and due to this the properties of a nuclear

FIG. 7. Temperature dependence ofsth in 208Pb calculated with
different two-phonon model spaces: dashed line,B=50%; solid
line, B=60% (see the text for comprehensive explanations).
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surface are changed. As a consequence of the latter the prop-
erties of surface vibrations are changed. However, one can-
not heat nuclear surface vibrations themselves.

In Ref. [15], the authors start just with the Hamiltonian of
the interacting TRPA phonons implying, as an obvious fact,
that the phonon system has the same temperatureT as the
underlying fermions forming the thermal phonons. In our
opinion this is an additional assumption which has to be
justified. Similarly, in Ref.[14] from the beginning a nucleus
is treated as a system of phonons and quasiparticles. But
since phonons and quasiparticles are considered as some
“initial” ingredients, the structure of phonons must be as it is
in a cold nucleus and cannot be changed by heating the sys-
tem. Thus, they cannot satisfy the thermal RPA equation.

The point is that quasiparticles and phonons are not inde-
pendent variables in a nucleus. The phonon is a coherent
superposition of bifermionic excitations. So, starting with the
model Hamiltonian given in terms of nucleonic degrees of
freedom one has to make a mapping of pure fermionic states
to a subspace consisting of ideal “quasiparticle” and
“bosonic” elementary modes.

In this regard, Hatsuda[30] discussed already two ways to
consider a hot nucleus. The first is to make a mapping of the
initial Hamiltonian and the initial pure fermionic Fock space
of a cold system(nucleus) and only after this to thermalize a
system in question. For the approach presented here it means
that degrees of freedom should be doubled for the
quasiparticle-phonon image of the Hamiltonian(1)–(4). Then
one gets the thermal Hamiltonian with both the types of ther-
mal occupation numbers and, consequently, also the GDR
width should depend on them. However, Hatsuda[30] has
also shown taking the Lipkin model as an example that “ther-
malizing” of the bosonic image of the initial fermionic
Hamiltonian one cannot derive in the leading order the
TRPA equations for these bosons.

The second way is just the way of the present paper:
while heating we treat a nucleus as a system of fermions and
only after this we project or transform the original nucleonic

degrees of freedom to more convenient ones(bosonic or
bosonic + fermionic).

We would like to stress that the problem how to treat a
thermalized nucleus in terms of quasiparticles and phonons
is not so trivial as it may seem at the first glance. It is in
intimate correspondence with a proper choice of physically
important degrees of freedom and their consistent mapping
which has to comply with the particle statistic requirements.
Some aspects of the problem were discussed also in Ref.
[41].

The effect of the thermal phonon occupation numbers on
the T dependence ofG↓ is not very significant, we guess. At
least this is not the crucial point for increasingG↓ with tem-
perature.

V. CONCLUSIONS

A temperature dependence of the fragmentation of a giant
dipole resonance has been studied within the quasiparticle
-phonon model extended to finite temperature within the
thermofield dynamics. According to the results of numerical
calculations, the variance of theE1 strength function in-
creases withT in the temperature range 0,Tø3 MeV. In
our opinion, this is the main result of the paper. Exploring
very close physical ideas except for the other formalism we
get qualitatively the same results as in Ref.[15] concerning
the role of noncollective thermal excitations in thermal evo-
lution of the GDR width.

We also draw attention to the problem of a proper choice
of relevant nuclear degrees of freedom to describe a damping
of giant resonances in a hot nucleus. To our knowledge, this
aspect of a giant resonance theory was overlooked before.
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