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Temperature dependence of spreading width of giant dipole resonance
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The quasiparticle-phonon nuclear model extended to finite temperature within the framework of thermofield
dynamics is applied to calculate a temperature dependence of the spreadingl'Widtha giant dipole
resonance. Numerical calculations are madef88n and?°%Pb nuclei. It is found thal'! increases witHT.

The reason for this effect is discussed as well as a relation of the present approach to other ones existing in the
literature.
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[. INTRODUCTION ~3.2 MeV. The information about GDR at higher tempera-
tures cannot be extracted reliably from the existing data.
The present paper addresses the problem of a temperature Even a more ambiguous problem is the disentangling of
dependence of the giant dipole resona(@®R) width. Ac-  different contributions td'gpg. Fortunately, due to the ex-
tually, our concern about is only with one part of the total periments with inelastically scatteredparticles which yield
GDR width, the spreading one. a compound system with a small angular momeni{8ithe
GDR was found in a hot rotating nucleus formed in aeffects of rotation and temperature on the GDR width were
collision of two heavy ions as early as 1981. As a result  separated. However, in most cases conclusions can be drawn
of quite sophisticated experiments performed during 20 yearsnly by comparing the final results of theoretical calculations
some integral characteristics of GDR were carefully studiedwith the measuredextractegl experimental values. Some-
In particular, it is well proved that the energy of GDR and times conclusions appear to be controversial. For example,
the exhaustion of the model independent energy weightethe adiabatic coupling modgB] reasonably describes the
sum rule (EWSR are quite stable against temperature in-experimental data on the GDR width }#°Sn and?%%Pb sup-
crease. At the same time one observes a strongly increasip@sing the intrinsic GDR widtH; almost independent of
width of GDR with temperatur€T) of a nucleus. temperature. According to this model, the main effect, which
Several processes contribute to the GDR width at finiteexplains increasing of'gpg, is the thermal nuclear shape
temperature[2—4]. Among them are quantum fluctuations fluctuations. On the other hand, in R¢i.0], a conclusion
which exist already in a cold nucleus: the Landau dampingwas reached that the behavior of the GDR parameters in the
the coupling with surface vibrations, the collisional dampingcompound nucleu®Mo cannot be explained by assumifig
(i.e., the coupling to incoherent two-particle—two-hole exci-be a constant. Moreover, the very recent measurement of the
tationg and the coupling to the single-particle continuum. At GDR width in 12°Sn [11] reveals an overestimation dfpg
T+#0 the thermal fluctuations of a nuclear shape appeaby the adiabatic coupling model at relatively low tempera-
Moreover, since a hot compound nucleus usually carries &ure T=1 MeV.
large angular momentum, the rotation also affects the GDR Different theoretical approaches also predict a quite dif-
width. ferent T dependence for the GDR width. The first calcula-
Extracting the GDR characteristics from the measuyed tions of a thermal behavior of the spreading GDR wilith
spectra is not an absolutely unambiguous procedure. Thesgere performed by Bortignoet al. [12]. At that time, it was
spectra are in fact a weighted sum of theay yield emitted already well known that the coupling of a single-particle
by many nuclei populated in the decay of the initial com-motion with collective surface vibrations is the main mecha-
pound nucleus. The extracted GDR characteristics depend tism of damping of giant resonances in cold nuclei. In Ref.
some extent on assumptions about a shap&lofstrength  [12], a temperature dependence of this coupling was studied
function, and mass and temperature dependence of its paramith the Matsubara thermal Green’s function technique and
eters[5]. Also, the temperatures inferred from experimentalit was found that the width was nearly constant wieim-
excitation energy of a hot compound nucleus are sensitive toreased. The physical ground of these calculations was the
the level density parameter which is not known very accunuclear field theoryNFT) [13] treating a nucleus as a system
rately. In this respect, the impressive example is the fate obf interacting quasiparticles and vibratioRPA phonong
the so-called saturation of the GDR width af In more recent studigd 4], the very weak dependence of
=3.5—-4 MeV. This phenomenon was recognized as a normen T was explained by the cancellation effect between self-
existent one after the appearance of new data and reanalysinergy and vertex contributions. However, several years ago
of the previous onefs,7]. Now it is widely accepted that the in Ref.[15], where the problem was studied within the same
observed GDR widtH gpgr continuously increases up I formalism and under the same physical assumptions as in

0556-2813/2004/68)/06432Q@11)/$22.50 69 064320-1 ©2004 The American Physical Society



STOROZHENKOet al. PHYSICAL REVIEW C 69, 064320(2004)

?efs.[lfz,léljd an increment of the spreading GDR width with H =Hgp+ Hpair + Hon, (1)
was found.

The latter result is in correspondence with the numerous h
calculations of the so-called collisional damping of GDR, Where
i.e., the coupling of collective dipole states with incoherent
2p—2h excitations[4]. The investigations of the collisional Hep= > (E; = N)CnCims 2)
damping were performed within different approaches jm 7 m=
[16—23. In most cases, calculations predict the increase of
the GDR width with increasing in temperature, although the

calculated width is smaller than the apparent one by a factor G
of 2—4 and exhibits a weaker temperature dependence. The Hpair= ->=> c}rlmlcﬁ—mlcmcjzmz, (3)
only exception is the prediction of the extended time- - 4 Jamy
dependent Hartree-Fock approgé,21] for 2°%Pb. Accord- jomy

ing to the calculations of22], the collisional GDR width in
this nucleus is quite stable agairiBtalthough in2°Sn it
strongly increases with increasing T

Thus, the current situation with the temperature depen-
dence of the GDR spreading width, as one can conclude
from the above brief review, is not clear. That is why we
present the results of calculations within one more approacihe operatoM; ,(7) is the single-particle multipole operator
The approach was developed in Rd33—-25 and is based
on the two main ingredients: the quasiparticle-phonon

1
Hon= =22 2 (k0" +pr ML (DM, (7). (4)
A 7,p=%1

nuclear modelQPM) [26—28 and the formalism of ther- M — i mRMY. (F0)i o G
mofield dynamicgTFD) [29,30. For a long time QPM was w7 %1 (I ROY 770 i2M)6 G,
successfully used in theoretical investigations of damping of i2mp

various giant resonances in cold nuclei. The physical basis of
QPM is very similar to that of the nuclear field theory, andand cf ¢, are the creation and annihilation operators of
both the models have produced quite close results as appligrticle with quantum numbens,|,j,m=j,m and the en-
to nuclear structure calculations &&0. In Refs.[23-23,  ergy E;. The notationjm means the time-reversed state. The
the QPM was extended to finite temperatures by the use ghdex 7 is isotopic one. It takes two values=n,p. The
the TFD formalism. Already at that formal stage interestingsymbol>" means that the summation is taken only over neu-
differences with Ref[12] were noted. The main new scope tron or proton single-particléhole) states and changing the
of the present paper is the numerical calculations of the sign of r means changing« p. The parameter&,,G, are
dependence of*! in the TFD-QPM approach. Moreover, constants of neutron-neutron and proton-proton BCS-pairing
based on the present results we discuss more carefully thageractions andcg”,x(l” are coupling constants of isoscalar
before a relation of our approach to that of R¢f2,14,13.  ang isovector multipole-multipoléwith multipolarity ) in-

The paper is organized as follows. In Sec. I, the exteNteractions, respectively.
sion of the_qua5|part|cle-phonon nuclear model to finite te_m- The first step in treating nuclear dynamics governed by
peratures Is prelgented. Ir1208ec. I, the results of numericghe Hamiltonian(1) at finite temperature is formal doubling
calculations for °Sn and®*Pb nuclei are presented. We of the Hilbert space of a nucleus. To this aim, we introduce a
discuss a physical background of our results and a comparjiciitious (tilde) system which is of exactly the same structure
son with other approaches in Sec. IV. A short conclusion isy5 the initial one. For any operatér acting in the initial

given in Sec. V. Hilbert space there exists its tilde counterpﬁﬂcting in the
space of tilde states. The tilde system is governed by the tilde

Il. QPM AT FINITE TEMPERATURE HamiltonianH which has the same structure ldsonly the
operatorscfm,cjm are substituted by their tilde counterparts
€ i andtjn,.

The thermal Hamiltonian of the QPM is by definition

A. Thermal RPA

First attempts to apply the TFD formalism to nuclear
structure problems were made in Rgf30—-32 and[23-25.
Up to now the TFD formalism is not widely used in the H=H-H. (5)
nuclear structure studies. So it seems appropriate to outline
how QPM can be extended to finite temperatures within the
TFD thus repeating to some extent the results of RefsAn excitation spectrum of a hot nucleus is obtained by di-
[23-25. agonalization ofH. At the same time, the thermal behavior
The QPM Hamiltonian in a cold nucleus consists of phe-of the nucleus is controlled by the thermal vacuum state
nomenological mean fields for protons and neutrons, pairingd(T)), which is the eigenstate @{ with the zero eigenvalue.
interaction of the BCS type and separable multipole particle- To construct the thermal vacuum std@T)) we made
hole interactions with the isoscalar and isovector items two Bogoliubov transformations. The first one is the standard
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(u,v) Bogoliubov transformation from the particle operators

to the quasipatrticle onesj*m and ajm,

+ + _ i-m
ij—Uj(,l’jm+( 1)J v]-a]-_m,

(6)

- _ 1\j—m +
ij—uja]-m+( 1)J VjQj_m-

The same transformatiawith the samaey;,v; coefficientg is

made with the tilde operators thus producing tilde quasipar-

ticle operatorsTx;'m,erm. The second transformation is a uni-
tary thermal Bogoliubov transformatigi29] from ordinary
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1-2n

+1
)«E A)Z+A

4 T

G- > (2j+ (12
T

The expressions for the coefficientsv; and the quasiparti-

cle energyg; are the following:

and tilde quasiparticle operators to thermal quasiparticle opynq for the coefficients;, y; one gets

eratorsg, 8, B, B,
Bim =X @m = Y&,
) @
Bim= Xjajm Y aj+m'
where
2.2
X +yr=

The coefficients of the Bogoliubov rotatio8) and (7) are

u?:}(l_,_EJ__)\T), v?;i(]__Ej__)\"),
! 2 8]' ] 2 SJ'
_ ./
(= V(Ej - \)?+ A2 (13
yj:nj, Xj::l._nj, (14)

wheren; is the Fermi-Dirac thermal occupation number for
the quasiparticle with the energy,

1
n=————.
P 1+ expe/T)

With the coefficientsy;,v;,x;,y; determined by13)~(15)
the part of the thermal Hamiltonian which consists of the

(15

determined simultaneously by minimization of the free en-single-particle and pairing terms and their tilde counterparts

ergy F(” (separately for neutron and proton subsystems

F7 = (0(T)[H{) + H{Z,/0(T)) = TS = A O(M)IN|0(T)),
(8)

whereN™ is the operator of a number of neutrofmsotong
in the nucleus,

()

= E CimCim-
jm
The entropyS” reads

=- E (2) + DDE I ¢ +y7 In 7). (9)

J
Expectation values i8) are taken with respect to the ther-
mal ground stat¢0(T)) which at this stage is supposed to be
the vacuum state for the thermal quasiparticle operators

BiwlO(T)) = Bin|O(T)) = 0. (10

In terms of the operators*, @* the vacuunj0(T)) is nothing
but a coherent, or squeezed, state

|0(T)) = ex E +~+}IO>

where|0) is the direct product of the BCS vacuum and its
tilde counterpart.

After variation of(8) over the coefficients;,v;,x;,y; we
obtain the BCS equations at finite temperati#®,32,

1w .. (Ej =N )( )
== @j+1|1 -2V 11
2$(J+ )( JE - RT)2+AT) (12)

takes the form

Hrsop= 2 &/(BimBim ~ BimBim) -
jmr

The HamiltonianHrsqp describes a system of independent
thermal quasiparticles with temperature dependent energies
g; (and ; for the tilde thermal quasiparticlgsThe ground
state of this system is the thermal vacuum stat&)) de-
fined by(10).

The term7,, is the interaction of thermal quasiparticles.
After the transformationg6) and(7) the multipole operator
My ,(7) takes the form

2N

MW(

NP
111J2

+ (- ))\ EAg(Jai 2N = w) ]+ Bgljaj 2 M)

The valuef JO‘]) is a reduced single-particle matrix element of

the one-body multipole operatoM; . The operators
AB(Jljz,)\,u) andBg(j1j2; Au) are defined as follows:

(16)

Aﬁ(]l]Za)\M) 2 ]1]2( 1- njl\l n [ﬂllﬁlz])‘f’“

— BB
= 1= N B B
By(isizihw) = ufl] {1 -1y \n;, ([ﬂjlﬂlz]m

+ (B B )

1112\11 n Vl n (l:ﬂllﬁlz])\ﬂ
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~ N () 1 = 1 —
+\/El\/a2[ﬁjlﬁﬁ])‘“)’ N = 1 lfl'ljzujljz 1 njl\l njz
" N (e re)men
where
™) () f1 — M -
PN = [ 1 Faiti V1 =1 =g,
(+) = (=) = _ jgip ~ i '
ujljz = ujlvj2+ szl)jl, leiz = UJ'1UJ'2 Uj,Vj,- il 2/\/77\_' (8j1+ 8]2) + Wy
The operatorAs(j,j;Au) is the Hermitian conjugate of N ) T
Aj(j1i2;Aw). The square brackefs ]y, stand for the cou- N Fa0i, VL~ MV,
pling of single-particle angular momenia,j, to the sum sz zA/ii (811_812)_“’M '

angular momentum.

At the next step we take into account the TRPA correla-
tions due to interaction of thermal quasipartic|gd,30. To
proceed, we introduce the following thermal phonon opera-

tor:

1 . : ~

+ Al + ot Al + ot

Qhui = 2% ¢jlj2[ﬂj118j2])\,u + Zﬁjljz[ﬂjlﬁ—jz]m
12

A TBB -~ (- D48 188 e

J1i2 i1z

+ 20 (BB e+ BB o).

ia2

Further, we assume that these phonons are bosons and rede-
fine the ground state of a hot nucleus. Hereafter it is a i 2 +1l XN ()
vacuum state for the thermal phonon operdtbg(T)), i.e., T
Q\./Wo(T))=0. Thus the functio¥y(T)) is a temperature
dependent wave function of the compound state. With an
assumption on the bosonic nature of the phonon operator
(17) the norm of a thermal one-phonon wave function is

— I1d2 Iz
2
=28 )%=1.

I1o

1 . . - o 4
52 ()% = (¢3)% + (U], = (1) + 207y )°

(18)

™) 1 -n )
A= [ 1 filjzvjliz 1 nJl\/EZ
lul2 2\ (g, =~ &j,) t @y ’

T

™) ) A )
’I;/'IM _ 1 filjzujljz nll ng
o=\ 2/\/‘}7" (811+8j2)+w)\i '
) ,(+)
P = [ 1 f5U0, Vv,
Wz N 2N (st ) m o

where the facton\' is

(17)

T 2 Jdw

Ll):(,l))\l

1 =X ) (kM 4 M)\ 2 ‘
. ( X (wm)(’;o s N 2 i)
XM (wM)(Kg ) - K(1 )) Jdw

“’:‘*’M]

(21)

It is worthwhile to note that in contrast with RPAat0 the
solutions of(19) with negative energies have physical mean-
ing (see also Refl15]). They correspond to the tilde-phonon

statesQ; ;[ o(T))

Then the thermal RPA equations can be obtained by apply- . ~,

ing either the variational principle or the equation of motion <q’o(T)|[Hanui]|q’0(T)> = <\I’O(T)|[H*Qmi]|q'0(-r)> = O
method. Here we show only the secular equation for energies | ot us comment on the structure of a TRPA phonon. The
w,; of thermal one-phonon statési) and expressions for componentsy and ¢ are the same as in the standard quasi-
amplitudes of a thermal phonon wave function. The SeCUIabarticle RPA (QRPA) (see, e.g., Ref[28]) and are only

equation reads

[Xn(@) + Xp(@) (6 + &) = 4x§) kX (@)X () = 1,
(19 pendence of the forward and backward tilde amplitudes is

where

Jalo

1
X = )
T(w) o\ + 1“2]2( jqio

@), =0, - s,-z)}

(8]'1+ 8]2)2— w2

J1lo
2

(sjl - sjz)z -w

The amplitudes are

T )2[ (U@, = 1) ey, + )

damped by the factofl—n;). The components) and ¢ are
totally due to the tilde part of the Fock space of a heated
nucleus. They vanish in a cold nucleus. Note thatdhée-

just opposite to that of the ordinary amplitudes. It means
that, e.g., whiley is of a pole charactez?x is not and instead
the amplitude?]; is a pole amplitude. The most interesting
amplitudes arey and{. They could be specified as crossover
amplitudes containing both the ordinary and tilde thermal
quasiparticles. Just due to them the poigls—sjz, which do
not exist in QRPA afl=0, appear inN19). These poles can

(20) appear at quite low energies, thus enriching a low-energy

part of the phonon spectrum in comparison with QRPA at

T:)O. The amplitudes) and{ depend on the superfluid factor

v};jz which is enhanced when both the stageandj, are of
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a particle or a hole type. In contrast, the four other ampli-by ;) couple a thermal one-phonon state with more com-

tudes are proportional to the superfluid particle-hole factoplex thermal configurations, e.g., two-phonon ones. Due to
) this mixing the strength of a one-phonon state is fragmented

in nuclei with pairing correlations the amplitudes¢  ©Ver some energy interval. In other words, the t

vanish whenT— 0. However, in magic nuclei the thermal Produces a spreading width of a thermal one-phonon state.
phonon operatof17) consists of only two types of compo- To describe the fragmentation of thermal phonons, we use
nentsy and¢, again the variational method with a trial wave function of the

form

IEIPy

QI/Ai :J_E njljz[ﬁjlﬁjz])\,u + ( 1)}\ p'g]ljz[ﬁjlg];])\—,u'

— N\qi
The expressions fon and{ displayed above are valid in this [¥,(IM)) = E R(I») Qo + g" lell(‘JV)
case as well excepting that the vahﬂe,?2 equals to unity. The Noip

expression20) also becomes simpler X[QF . Q. Tow L[wy(T). (24)
1M1l ARl

1< (f,ljz)z(njl—njz)(E E,)
Xdw) = 2>\+1112J2 (E,-E -

At the end of this section we display the expression forThe equation for energies of statgs}) is
the matrix elemend,; of the EX-transition operator from the
ground state of a hot nucleus to a thermal one-phonon state

Aqi : Aqi o7
i.e., for the transitiofWo(T)) — QF |Wy(T))]. It reads[24 1 UL (IDURLEJI")
2\ jipngip Ongiy T @00, T My
E <] l”M(E)\)”]2> _u]1]2[ \/1 njl\/ (25)
j1i2

Iy Y+ B -
'1’2 N Jl\/—lz lul2 1112 The functionsUﬁ;:;(Ji) are the coupling matrix elements be-

[ P— tween one- and two-phonon states. The expression for
LFAtE njl\/EZ (. * G (22 ULt1(Ji) is the following:
22
where(j|/M(EMN)||j,) is a reduced single-particle matrix el-
ement of theE\ transition operator.

. 1l —— ——
_ UNIL(Ji, 7) = — —=V2N + 1V2N, + 1
B. Interaction of TRPA phonons 22 V2

Now the thermal Hamiltonian reads in terms of the TRPA T I a3
phonons and thermal quasiparticl@®te that the ternBEBﬁ X > { - )JFJM]-'Z ‘2 M /CJMJ'l,J'
and its tilde counterpart are omitted jai2ia Y2l 2 Ja) ¥
H =2 ori( Qi Qi = Qi Q) + (=)Mo )\21"])‘11]'2{).\1 )_‘2 ‘J };C;\szj'zzfl'
A Is J2 I
2 E ET J01\1)2 A= +( )J‘M[‘Ji {J AN N\l :|
= [l + _ - IR I . . SLL ,
"o 22 ) Qi+ Qu) RIS CR
o T (26)
XBg(jaizih = 1) = (=) Qi + Qu-pi)
XBy(jajaik = )+ hch, (23) Wherel"”- —f()‘) /AN and the functiongC}22) and £} 11M2i2

ialalq ialolq
The terms~(Q*+Q)B, etc. (hereafter we denote their sum are

NqiqJdi — [ j1tigthg+d Nqiq, i Nqiq N1 )\1I1 i [ jtiothg )\1I1 Ji
ICJ?,JZ]l 1112 1- nll 1- nJ( 1 Kz 1113(/]1213 d)Jl]S 1213 771113771213 1113 1213 1112 1- nll nl( ) Kz 1113 UBE

\qi i \qi \qi J \qi )\ i I\ i
+ 1'1 1'1 .11 ll 1'1 1'1
¢1113 iaio 7’1113‘”1312 §J113 iy 1112Vn11V1 ni,(-1) (’71311 s T 1311¢1213 %311’71213 biy'Gisi)

IDE
iotia( M1 )\1Il i I NIEWAL + “INi17; 1312
JlJZ N, \VNj,(=) (’71311’71312 iaisSiaiz ¥ YigiVisi, * P o)
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Mithdia = /(5) 1 - 1 =n: (= 1D)irHsh e grirghaia 4 phigpala 4 Misphoia o Adla Noio
5131211 Vi, VI~V n,(=1) (‘/’1113 e YDA T M, 1213+51113771213)

) 1 =n I (= )ittizh(grinaa 4 ghaighals 4 Miighala 4 Mindala) () o [ (— g AMighale

+UJ112 1 nll ng( ) (¢1113513J2+¢J11377]3]2+77J1]3¢J312+ lllnger) ullJz nJl\l ng( ) (glglllszll

Miz ghala 4 ghais phala 4 Phals a2y ) g g (= q)iatis( Ml etz 4 phaiahala 4 daiighala 4 ghain ol

+77]3]1¢]2]3+¢I3J17712]3+IJII3J1{J2J3) Ulllz\nll ng( 1) (77]3J1§J3J2+§l31177]3J2+¢J311 l3lz+¢l3lll//13lz)'

Let us note that in case the pairing correlations vanish, exevery T value to keep the right average values\aZ.

pression(26) completely agrees with that from R¢15] [see Energy centroid€ and variances of E1 strength func-

Egs.(4.1)<4.2) in the papey. o ~_ tions(E1 SP are calculated with the following formulas:
To calculate theel-strength function in hot nuclei taking

into account a fragmentation of thermal one-phonon dipole - m o mp (my 2

states, we explore the well-known strength function method E= rr_lo Oth= rr_lo B R
[27,28. Avoiding to solve Eq(25); we directly calculate the
function where m, is the kth energy moment of the corresponding
function.

b(EX, 7) = > 1 A . D)2, (27) _The model energy weighted dipqle sum rule is calc_ulated

L 2m 2 with the formula for a system of independent Bogoliubov

(7= 7)™+ 2 quasiparticles aT #0,

where the coefficient®(Jv) are amplitudes oE\ transitions EWSR=>, > (f")(e; +& ) )21-n_ -n )
A~ Mo R AR ETP} Il 2
from the ground state of a hot nucleiacompound stajeo NIEIP
states described by the wave functioi2gl). These ampli- e e VOV 1
tudes are superpositions of the matrix elem@njs(22) with (811 8lz)(vmz) (nll ng)]' (28)
the weight factors(Jv) from (29), When a pairing gap vanishese., in magic nuclei or at
> .
D(Iv) = E R(IV)Dy, T>T,) Eq. (28) takes the form
' EWSR=2 X () g, -E ), -n),

J1lo

andA is a smearing parameter. T 1Zl2
which coincides with that from Ref33].
lIl. NUMERICAL RESULTS The results of our calculations within the TRPA are the

same as in many previous studiesee, e.g.[20,33-39).

We calculate energy centroids, variances and the exhaugvhen temperature increases, only some minor redistribution
tion of the energy weighted sum rlEWSR) of E1 strength  of the E1 strength between different one-phonon states
distributions for 0<T<3 MeV in 12%Sn and?®®b nuclei. takes place. Nevertheless,itfSn the GDR energy centroid
All model parametergmean field potentials, pairing con- decreases by 1.5 MeV whehincreases from 0 to 3 MeV,

stants, coupling constants of separable interactions, &t. | hereas ir%8Ph the value of is practically independent of
fixed in accordance with the standard QPM procedurgemperature(Fig. 1). The GDR variance calculated within
[26,2§, i.e., by the use of experimental data on the energie§ppa characterizes the Landau width of the resonance. It

of low-lying vibrational states and giant resonance3a0. weakly decreases witli in 129Sn(Ag~0.7 MeV) and does
As a mean field the phenomenological Woods-Saxon poter; change irf%Pb.

tial is explored. The single-particle basis consists of all The values of EWSR28) at different T are shown in
bound states and several quasibound states with relatlve|yigs_ 2 and 3 for'?%Sn and2%Pb, respectively. They are

smaII.e.scape W'dt.h' . . compared with the corresponding model independent values
Pairing correlations that exist only in the neutron syste
of 1205n are treated in the thermal BCS approximation. Since ™’
we do not make a particle number projection, a neutron en- 9 e2h2NZ NZ )
ergy gap in this nucleus vanishesTat T,~1 MeV. ST T A 14-8X92 fm* MeV.
Only multipole-multipole particle-hole interactions with
1<\<7 are included in the Hamiltoniaf). A radial form A difference between the calculated EWSR values and the
factor of the separable multipole interaction has the formmodel independent ones in the range <3 MeV appears
R(r)=dU/dr, where U is the central part of the Woods- to be less than 10%. An excess of EWSR o8gin *2%Sn at
Saxon potential. The coupling constant of the isoscalaif <T. should be attributed to the effect of the BCS pairing.
dipole-dipole interaction is adjusted at every valueTofo =~ When the pairing correlations vanish, a value of EWSR be-
make the energy of the spurious 4tate zero in the TRPA comes less tha8, like it is in 2°%b in the whole temperature
calculations. The chemical potentials, are also adjusted at range. Thus, as it follows from Figs. 2 and 3, the model
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FIG. 1. Temperature dependence of the centroidslostrength FIG. 3. The model EWSR iA%PD at differentl” (dashed ling
functions in2°Sn (solid line) and 2°%b (dashed ling Solid horizontal line, the value of the model independent energy

weighted sum rules;.
EWSR is practically independent of temperaturéd#b as _ .
well as in12%Sn atT>T,. This remains valid for the TRPA assgmptlons a mixing of_one- and two-phonon state_zs does
calculations of the model dependent EWSR., after sum- ot influence an exhaustion of EWSR and a centroid of a
mation of theE1 strengths of all the TRPA rogts or_1e—phonon strength distribution calculated in a sufficiently

In calculations taking into account the interaction of ther-Wide energy range. It means that the TRPA results for
mal phonons, the one-phonon part of a trial wave functiorEWSR andE discussed above and displayed in Figs. 1-3
(24) includes 21 dipole phonons with the larg&E1) val- remain valid for the calculations taking into account the cou-
ues at giverT in *2°Sn and 14 dipole states AM%b. These pling of one- and two-phonon configurations. We should note
dipole TRPA-phonons exhaust more than 80% of the modethat in calculations taking into account a collisional damping
EWSR. The two-phonon part ¢24) consists of all possible Within the quantal framework of the extended time-
thermal two-phonon 71 states from the energy range dependent Hartree-Fock thed@2], a sizable difference was
0-30 MeV constructed by combining normal parity phononsfound in thermal behavior of GDR energy centroids'ifPb
of different energies with angular momentach <7. Some  and'?°Sn. Whereas if°Pb E is more or less stable against
additional limitations to the two-phonon space will be dis-temperature it sizably decreases with increasinig 12°Sn.
cussed in Sec. IV. The smearing parametean the Lorent-  |n our studies there is no noticeable difference betw/8&b
zian weight function is taken to be equal to 1 MeV. and?%Sn in this respect.

The phonon-phonon interactioRq, (23) and the trial In Fig. 4, we display a total photoabsorption cross-section
wave function(24) imply that only the cubic anharmonic in 29pp calculated with ouE1 SF's atT=0 and 1 MeV. The
terms of the interaction are taken into account and thexperimental data fof=0 taken from Ref[37] are also
phonon-phonon coupling does not affect the thermal groundhown. The latter is done to demonstrate that the model used
state which is still treated as the thermal phonon vacuunyith chosen parameters describes experimental data satisfac-
|Wo(T)). As it has been proved in Ref36], under the two torily.

It is seen in Fig. 4 that the phonon-phonon interaction

800 - o
pushes a part of thEl strength to lower excitation energy.

600 s0]  “Pbiyabs) A 1
= I
[}
=
| e E‘ 400
“© 400 T %
% 8
%] =
= © 200
15}

200

0 = -
y T T T T 1 5 10
0 1 2 3 E, [MeV]

T (MeV
e FIG. 4. The total photoabsorption cross sectiorf4#Pb calcu-
FIG. 2. The model EWSR if?%Sn at differentT (dashed ling lated with the theoreticeEl strength functions ar=0 (solid line)
Solid horizontal line, the value of the model independent energyand T=1 MeV (dashed ling Experimental datdfull circles with
weighted sum rules,. error bar$ are taken from Ref{37]).
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144 both quantities is not justified. Thus, displaying @f, and

experimental GDR widtH’s,, on the same figures has only
12 ﬁ demonstrative sense.
- The most distinctive feature of the theoretical curves is
104 #‘ the increase in the GDR spreading width with temperature.
ﬁ 7 Moreover, the temperature dependencd’gf, and oy, ap-
pears to be quite similar. One can see in Figs. 5 and 6 that
I'exp= oy, at T=0. Assuming this relation conserved with in-
crease inl one can conclude that the spreading width forms
a large part of the total GDR widthg,,
As it was already mentioned in the Introduction, in Ref.
: ‘ : [22] a strong difference in thermal behavior of the collisional
0 1 2 3 GDR widths in?%%Pb and*?°Sn was found. Like it is for the
T (MeV) GDR centroids in the same nucl@ee abovepresent calcu-

lations do not demonstrate such a difference.
FIG. 5. Temperature dependence of the variance of the theoret-

ical E1 strength functiorry, and the experimental GDR widtfe,,

in 1295n. Full diamonds, the revised experimental data from Ref. IV. DISCUSSION
[6]; full circle, the data from Ref.11]; open diamond, the data from . .
Ref. [38] (see also Ref39]). To understand why in our approach the valliéncreases

with temperature, we analyzed the matrix elements of a

honon-ph ling 11y f ff
Since the centroid oE1 SF changes only weakly with tem- phonon-phonon coup mU"Z'z( ) and found a strong effect

perature, the main peak of tHel SF is shifted to higher oLa few very low-lying thermal phonons appe_ari_ng in the
energies in comparison with the TRPA position. phonon spectrum only &t# 0 due to the nonvanishing ther-_
In Figs. 5 and 6, a temperature dependence of the varian@éal occupation factors. These states corresponq to low-lying
oy, of the calculatedEl SF in both the nuclei studied and the poIe_s of the(e;, —¢;,) type. Moreoyer, one amplitudey ;,
corresponding experimental data on the GDR wibigh, are domlnates_ the phonon wave function, i.e., thes_e phonons are
displayed. These figures should be commented before discu@oncollective and of thep-p or h-h type. Basing on the
sion of the results. In many of the papers, both theoretical of XPression for the TRPA amphtudes in Sec. I A the follow-
experimental, the width of GDR is defined quantitatively as a9 €xpression for the amplitudg, ;, of such a phonon can
“full width at the half of the maximum’(FWHM) of the  be derived:
main bump of the calculated or measuiet strength func-
tion. The FWHM seems to be an appropriate measure of the N T /T
width if the strength function has a smooth shape. However, NP &~ & - Wy
in our calculations th&1 SFs divide into several peaks and v
the FWHM cannot be determined in an appropriate wWayif gne of the phonon$hsi;) or |\,i,) in the matrix element
That is why we use the variance as a quantitative measure Qj;:l:l(li_) (26) is of the aforementioned type, the valuk
) ) i . 5o ed t
e COR sprading it Houete, i spie of P 20 appers G0 be aso proporioal 17 and o307
mentation ofE1l strength a direct numerical comparison of ~.T/w' Thu_s, a temperatgre_depenlden(_:el“é)farlses. Cer-
tainly, this is only a qualitative estimation and we do not
insist that the variance has to be proportional td in our
approach. As it is seen from the secular equati®) and the
expression27) there is a strong interference between contri-
butions of different TRPA dipole phonons to the resultil
strength functiorf27) which changes noticeably the tempera-
ture dependence af. The appearance of a small valwen
H a denominator explains a strong influence of these noncol-
=gl % lective phonons on the value.
] * Thus, we conclude that the main reason for the increment
] of I'' with T is the interaction of GDR with the noncollective
4 p-p (or h-h) thermal phonons of the special type. On the
] whole this conclusion agrees with the results of Réb]
o 1 2 3 although in that paper a spgcial rol_e of the low-lyipgp
T (MeV) (h-h) phonons was not definitely pointed out. It seems that
in Ref. [12] the noncollective thermal RPA excitations have
FIG. 6. Temperature dependence of the variance of the theoreR€en ignoredthe same statement can be found in R&$|).
ical E1 strength functionry, and the experimental GDR widiP,, It follows from our consideration that if the thermal phonon
in 2%%h. Full diamonds, the revised experimental data from Refspace includes only those phonons which are oftitetype
[6]; open diamond, the data from R¢88] (see also Ref[39]). at T=0I'" will be quite stable againsk.

10

oo’ O (MeV)
o]
1
——
'_’_‘—0—4
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Note, the effect of the size of the two-phonon subspace is
much weaker aT =0 (this can be seen already in Fig. Th
Ref. [27], a consistent procedure taking into account the
Pauli principle corrections in the two-phonon components
was developed. The procedure is based on the dgkach
the point of view of their fermionic structuyeommutator of
phonon operators. Its influence on the strength functions of
multipole giant resonances in cold nuclei was studied in Ref.
[40]. The corresponding corrections were found to be small
because at =0 the main contribution to the spreading width
of giant resonances is given by the coupling with the lowest
collective quadrupole and octupole phonons and correspond-
o 1 a7, ing two-phonon configurations are weakly affected by the

T (MeV) Pauli principle. However, with increasing the low-lying

collective vibrations dissolve and their contribution to the
FIG. 7. Temperature dependencesgfin 2°%b calculated with ~ damping of giant resonances diminishes. At the same time,

different two-phonon model spaces: dashed liB&50%; solid  the role of the Pauli principle acting between large number of
line, B=60% (see the text for comprehensive explanatjons weakly collective and noncollective states treated as bosons

becomes more and more important. The results presented in
Some questions concerning a dependence of our numeifg. 7 reflect this process.

cal results on parameters still remain. An appearance of low- The important role of noncollective thermal phonons
lying p-p (h-h) states is dependent on the parameters of theaises a problem of the validity of a schematic multipole-
mean field. In this respect, the use of a phenomenologicahyltipole interaction in the present study. Indeed, calcula-
Saxon-Woods potential gives the upper limit for the role oftjons of the collisional dampinfl9,22 have clearly demon-
these low-lyingp-p (h-h) states because the density of gyrated a strong influence of the effective nucleon-nucleon
single-particle states near the Fermi level is the largest one iferaction on both the absolute value of the GDR width at
this potential. The influence of these phononscomill be 1. g and the slope of its temperature dependence. However,
weaker in calculations with a mean field obtained by the,e 4o not claim to describe the GDR width quantitatively.

Ha1r_trr]ee-Eock method.' dient directly affecting th | Our aim is to elucidate the role of thermal effects in the GDR
ere 1S one moreé ingredient directly affecting the calcu- i, ehavior in view of conflicting results of Rdfl2] and
lated value ofo. The whole space of two-phonon states is

overcomplete because thermal phonons are considered ggfl't.[lal' .Intbotht.the Papers tlhe Zame schematic multipole-
bosons and no special projection of two- or four-fermion™U!UPOI€ INt€raction was explored.

states into the bosonic ones is made. We partially reduce thig | Nere is one more interesting and at the first glance prin-
over completeness by the special limitation in constructing!P@l difference between our approach and that of Refs.
the two-phonon part of the trial wave functio®4). Namely,  12,14,13. The difference has already been pointed out in
only two-phonon configurations combining two collective or Ref.[25] and now we would _I|ke to discuss it in more detail.
one collective—one noncollective phonons are included in thén Refs.[12,15, the GDR width depends on thermal occu-
wave function. However, there is no clear cut separation bePation numbers of two types—the Fermi-Dirac numbers for
tween collective and noncollective states, especially becauggarticle and holes and the Bose-Einstein occupation numbers
the “true” collective states like low-lying quadrupole and for TRPA phonons. Bose occupation factors appear in a
octupole phonons dissolve with increasing temperaturetheory when the temperature-dependent Green'’s function of
Therefore, in practice one needs a quantitative measure dfe single TRPA phonon treated as heated boson is intro-
“collectivity of a phonon.” We introduce this measure on theduced.
basis of the phonon structure. For example, a phonon is con- In the present paper, one cannot find the thermal bosonic
sidered as a collective one if the largest two-fermion compoeccupation numbers, and it seems there is no room for them
nent in its wave functiorf17) exhausts less thald% of the  within the explored approach. We start with the model
total norm. EvidentlyB is a technical parameter. The larger Hamiltonian written in terms of nucleoni@.e., fermioniq
is B the larger is the thermal two-phonon space or the numvariables. The thermal occupation numbers appear in the
ber of two-phonon configurations taken into account in thegame when we make the thermal Bogoliubov rotat{@n
calculations. Enlargement of the two-phonon space mearend thus produce the thermal Fock space. All further ma-
strengthening of fragmentation or damping and increasing imipulations explore these “heated” fermions and their com-
the variance of a distribution. binations. Thus, the appearance of bosonic occupation num-
To estimate a possible effect of the two-phonon basis, wéers is quite questionable. Our thermal Hamiltonian in its
make the calculations with two different spaces of two-final form (23) is the Hamiltonian of interacting phonons
phonon states. In Fig. 7, we display the results of calculabuilt from “heated” quasiparticles but the phonon system it-
tions of o(T) in Pb forB=50% and 60%. The variance de- self is not heated in the sense that there is no thermal smear-
creases sizably with decreasiig Moreover, a rate of the ing of phonons over their energy levels. This corresponds to
increase ino with T also becomes slower at a smaller valuea transparent phenomenological picture: when one heats a
of B. Nevertheless, a general trend of the thermal behavior afiucleus putting there a good piece of energy, a nucleonic
the spreading GDR width is saved. motion is changed and due to this the properties of a nuclear
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surface are changed. As a consequence of the latter the propegrees of freedom to more convenient oressonic or
erties of surface vibrations are changed. However, one carfposonic + fermionig
not heat nuclear surface vibrations themselves. We would like to stress that the problem how to treat a
In Ref.[15], the authors start just with the Hamiltonian of thermalized nucleus in terms of quasiparticles and phonons
the interacting TRPA phonons implying, as an obvious factis not so trivial as it may seem at the first glance. It is in
that the phonon system has the same temperatias the intimate correspondence with a proper choice of physically
underlying fermions forming the thermal phonons. In ourimportant degrees of freedom and their consistent mapping
opinion this is an additional assumption which has to beVhich has to comply with the particle statistic requirements.
justified. Similarly, in Ref[14] from the beginning a nucleus Some aspects of the problem were discussed also in Ref.
is treated as a system of phonons and quasiparticles. BIf1l-
since phonons and quasiparticles are considered as some The effect of the thermal phonon occupation numbers on
“initial” ingredients, the structure of phonons must be as it isthe T dependence df! is not very significant, we guess. At
in a cold nucleus and cannot be changed by heating the sykast this is not the crucial point for increasihg with tem-
tem. Thus, they cannot satisfy the thermal RPA equation. Perature.
The point is that quasiparticles and phonons are not inde-
pendent variables in a nucleus. The phonon is a coherent V. CONCLUSIONS
superpositiqn of_biferr_nioni_c excitations. So, sta_lrting with the A temperature dependence of the fragmentation of a giant
model Hamiltonian given in terms of nucleonic degrees ofd

. 9 ipole resonance has been studied within the quasiparticle
freedom one has to make a mapping of pure fermionic State—?)honon model extended to finite temperature within the

o a subspace consisting of ideal “quasiparticle andthermofield dynamics. According to the results of numerical

bolsotrr:[c eIemdenlgarty rrgjodgsd. d already t ¢ calculations, the variance of thEl strength function in-
n this regard, Hatsudg80] discussed already two ways to creases withT in the temperature range<OT<3 MeV. In

_cqtrjslld:r a.lrt'Ot _nucleuds;[r']rh_ez ftl_rslt Is to ]Enakg a_mlazlpp:(ng of th%ur opinion, this is the main result of the paper. Exploring
initial mamiftonian and the nitial pure 1ermionic ock Space o, ci5se physical ideas except for the other formalism we
of a cold systengnucleus and only after this to thermalize a et qualitatively the same results as in R@5] concerning

system in question. For the approach presented here it me role of noncollective thermal excitations in thermal evo-
that degrees of freedom should be doubled for thqution of the GDR width

quasiparticle-phonon image of the Hamiltoni@m<4). Then
one gets the thermal Hamiltonian with both the types of ther-
mal occupation numbers and, consequently, also the GD f giant resonances in a hot nucleus. To our knowledge, this

width should depend on them. However, Hats(idg] has ;
also shown taking the Lipkin model as an example that “ther—a spect of a giant resonance theory was overlooked before.

malizing” of the bosonic image of the initial fermionic
Hamiltonian one cannot derive in the leading order the
TRPA equations for these bosons. One of us(A.N.S)) gratefully acknowledges warm hospi-

The second way is just the way of the present papenality of ENEA, Bologna, where a part of this work has been
while heating we treat a nucleus as a system of fermions andone. A.l.V. acknowledges a useful discussion with Dr. S.
only after this we project or transform the original nucleonic Kamerdzhiev.

We also draw attention to the problem of a proper choice
f relevant nuclear degrees of freedom to describe a damping
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