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We study a possible correspondence between the softening of the wobbling mode and the “phase transition”
of the one-dimensionally rotating mean field to a three-dimensionally rotating one by comparing the properties
of the wobbling mode obtained by the one-dimensional cranking model + random phase approximation with
the total Routhian surface obtained by the three-dimensional tilted-axis cranking model. The potential surface
for the observed wobbling mode excited on the triaxial superdeformed states in163Lu is also analyzed.
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I. INTRODUCTION

The concept of the phase transition of the mean field is
useful for describing structure changes in the atomic nucleus
although it is a quantum system composed of finite number
of fermions. A typical example is that a spherical mean field
becomes unstable as the quadrupole vibration excited on top
of it softens with changing particle numbers, then an axially
symmetric mean field substitutes. This can rotate about one
of the axes perpendicular to the symmetry axis. Consecu-
tively, the axial symmetric mean field can become unstable
as theg vibration softens, then a triaxially deformed mean
field substitutes. This can rotate about all the three principal
axes. Usually, however, a rotation about one axis dominates
because the rotation about the axis with the largest moment
of inertia is energetically favorable. When some excitation
energy is supplied, small rotations about other two axes be-
come possible. Consequently this produces a kind of vibra-
tional motion of the rotational axis, that is, the wobbling
motion.

The small amplitude wobbling motion at high spins was
first discussed by Bohr and Mottelson[1] in terms of a mac-
roscopic rotor model. Then it was studied microscopically by
Janssen and Mikhailov[2] and Marshalek[3] in terms of the
random phase approximation(RPA). Since the small ampli-
tude wobbling mode has the same quantum number, parity
p=+ and signaturea=1, as the odd-spin member of theg
vibrational band, Mikhailov and Janssen[4] anticipated that
it would appear as a high-spin continuation of the odd-sping
band. But it has not been clear in which nuclei, at what spins,
and with what shapes it would appear. Using the RPA,
Shimizu and Matsuyanagi[5] studied Er isotopes with small
ugu, Matsuzaki[6] and Shimizu and Matsuzaki[7] studied
182Os with a rather large negativeg but their correspondence
to the experimental data was not very clear. In 2001,
Ødegårdet al. [8] found an excited triaxial superdeformed
band in163Lu and identified it firmly as a wobbling band by
comparing the observed and theoretical interbandE2 transi-
tion rates. These data were investigated in terms of a
particle-rotor model by Hamamoto[9] and in terms of the
RPA by Matsuzakiet al. [10]. In 2002, two-phonon wobbling

excitations were also observed by Jensenet al. [11] and their
excitation energies show some anharmonicity.

The one-dimensionally rotating triaxial mean field may
become unstable as the wobbling mode softens with chang-
ing some parameters. One of the present authors(M.M.)
pointed out its theoretical possibility in Ref.[10]. The possi-
bility of this phase transition was discussed in terms of the
harmonic oscillator model by Cuypers[12] and Heiss and
Nazmitdinov[13] but their conclusions are controversial. A
theoretical framework to describe three-dimensional rota-
tions, possibly with large amplitude, was first devised by
Kerman and Onishi[14] within a time-dependent variational
formalism. Onishi[15] and Horibata and Onishi[16] applied
it to 166Er and 182Os, respectively. See Ref.[17] for recent
applications. The three-dimensional cranking model was first
used by Frisk and Bengtsson[18]. The term, “tilted(axis)
cranking (TAC)” was, to our knowledge, first used by
Frauendorf [19] and it was applied to a kind of two-
dimensional rotation—the so-called shears band, observed,
for example, in theA,200 region[20–22]. Applications to
multiquasiparticle high-K bands were also extensively done;
see Ref.[23], and references therein. When the rotation be-
comes fully three dimensional, a new concept, chirality,
emerges[24,25]. The tilted axis cranking was also applied to
this [26]. At finite temperature, the degree of freedom of spin
orientation was studied macroscopically[27] and micro-
scopically [28]. A relativistic formulation of the three-
dimensional cranking was given by Kanekoet al. [29] as an
extension of the one-dimensional one given by the Munich
group [30]. Madokoroet al. [31] studied the shears band in
84Rb starting from the meson exchange interaction although
the pairing field was neglected.

The purpose of the present paper is to elucidate the work
in Ref. [10] by comparing two types of theoretical calcula-
tions, the one-dimensional cranking model1 RPA and the
three-dimensional(tilted axis) cranking model. The former
gives the “mass parameters” for the motion of the angular
momentum vector, that is, the moments of inertia, while the
latter provides the surfaces on which the angular frequency
vector moves around.

II. MODEL

We start from a one-body Hamiltonian in the rotating
frame*Email address: matsuza@fukuoka-edu.ac.jp
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h8 = h − hcr, s1d

h = hnil − DtsPt
† + Ptd − ltNt, s2d

hnil =
p2

2M
+

1

2
Msvx

2x2 + vy
2y2 + vz

2z2d

+ vlsl ·s+ vllsl2 − kl2lNosc
d. s3d

(hcr is specified below.) In Eq. (2), t=1 and 2 stand for
neutron and proton, respectively, and chemical potentialslt

are determined so as to give correct average particle numbers
kNtl. The oscillator frequencies in Eq.(3) are related to the
quadrupole deformation parameterse2 and g in the usual
way. (We adopt the so-called Lund convention.) They are
treated as parameters as well as pairing gapsDt. The orbital
angular momentuml in Eq. (3) is defined in the singly
stretched coordinatesxk=Îvk/v0xk, with k=1–3 denoting
x–z, and the corresponding momenta.

A. One-dimensional cranking model + random phase
approximation

Equations(1)–(3) with

hcr = "vrotJx s4d

generate the system rotating one dimensionally. Then, since
h8 conserves parityp and signaturea, nuclear states can be
labeled by them. Nuclear states with quasiparticle(QP) ex-
citations are obtained by exchanging the QP energy and
wave functions such as

s− em8 ,Vm,Umd → sem̄8 ,Um̄,V m̄d, s5d

wherem̄ denotes the signature partner ofm. We perform the
RPA to the residual pairing plus doubly stretched
quadrupole-quadrupolesQ9 ·Q9d interaction between QP’s.
Since we are interested in the wobbling motion that has a
definite quantum number,a=1, only two components out of
five of theQ9 ·Q9 interaction are relevant. They are given by

Hint
s−d = −

1

2 o
K=1,2

kK
s−dQK9

s−d†QK9
s−d, s6d

where the doubly stretched quadrupole operators are defined
by

QK9 = QKSxk → xk9 =
vk

v0
xkD , s7d

and those with good signature are

QK
s±d =

1
Î2s1 + dK0d

sQK ± Q−Kd. s8d

The residual pairing interaction does not contribute because
Pt is an operator witha=0. The equation of motion

fh8 + Hint
s−d,Xn

†gRPA = "vnXn
† s9d

for the eigenmode

Xn
† = o

m,n

sa=±1/2d

fcnsmndam
†an

† + wnsmndanamg s10d

leads to a pair of coupled equations for the transition ampli-
tudes

FIG. 1. Triaxiality dependence
of (a) excitation energy of the
wobbling motion, (b) wobbling
angles, and(c) three moments of
inertia associated with it in146Gd,
calculated at "vrot=0.25 MeV
with e2=0.19, Dn=0.8 MeV, and
Dp=0.6 MeV.
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TK,n = kfQK
s−d,Xn

†gl. s11d

Then, by assuminggÞ0, this can be cast[3] into the form

svn
2 − vrot

2 dFvn
2 − vrot

2 fJx − Jy
seffdsvndgfJx − Jz

seffdsvndg

Jy
seffdsvndJz

seffdsvnd G = 0,

s12d

which is independent ofkK
s−ds. This expression proves that

the spurious mode(vn=vrot; not a real intrinsic excitation
but a rotation as a whole) given by the first factor and all

normal modes given by the second are decoupled from each
other. HereJx="kJxl /vrot as usual and the detailed expres-
sions ofJy,z

seffdsvnd are given in Refs.[3,6,7]. Among normal
modes, one obtains

vwob = vrotÎfJx − Jy
seffdsvwobdgfJx − Jz

seffdsvwobdg

Jy
seffdsvwobdJz

seffdsvwobd
,

s13d

by putting vn=vwob. Note that this gives a real excitation
only when the argument of the square root is positive and it

FIG. 2. Energy surfaces of thefsnh9/2, f7/2d2sph11/2d2g16+ configuration in146Gd as functions of the tilting anglesu ,wd calculated with the
same parameters as Fig. 1,(a) g=60°, (b) g=40°, (c) g=30°, (d) g=20°, and(e) g=0°. The interval of contours is 50 keV. Discontinuities
in the surfaces are due to quasiparticle crossings.
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is nontrivial whether a collective solution appears or not.
Evidently this coincides with the form derived by Bohr and
Mottelson in a rotor model[1] and known in classical me-
chanics[32].

B. Three-dimensional (tilted axis) cranking model

In this model the one-body Hamiltonian is given by Eqs.
(1)–(3) with

hcr = "V · J, s14d

V = vrotscosu,sin u cosw,sin u sin wd. s15d

Pairing correlation is taken into the system by a simple BCS
approximation with fixed gaps as in the case of the one-
dimensional cranking. The expectation valuekJl calculated
at eachsvrot,u ,wd has three nonzero components in general;
the stationary state that minimizes the total Routhian is ob-
tained by requiringkJliV (see Ref.[23] for details). Ob-
tained tilted solutions do not possess the signature symmetry
and therefore describeDI =1 rotational bands. In the present
work, given a set of mean-field parameters,Nt, e2, g, andDt,
a configuration is specified atu=0° (principal axis cranking
about thex axis). Then by changingu andw step by step, the
most overlapped state is chased. This procedure gives an
energy (total Routhian) surface for the angular frequency
vector. Surfaces for QP excited configurations can also be
calculated by adopting a procedure similar to Eq.(5).

III. RESULT AND DISCUSSION

For this first comparative calculation, we choose the
fsnh9/2, f7/2d2sph11/2d2g16+ four quasiparticle configuration in
146Gd among this mass region in which many oblate isomers
have been observed. This state is described bye2=0.19, g
=60°, Dn=0.8 MeV, Dp=0.6 MeV, and "vrot=0.25 MeV.
Calculations are performed in the model space of three major
shells; Nosc=4–6 for neutrons and 3–5 for protons. The
strengths of thel ·s andl2 potentials are taken from Ref.[33].

In the present study we concentrate on the changes in the
system with g. Figure 1(a) reports the excitation energy
"vwob in the rotating frame. That in the laboratory frame in
the case ofg=60° is given by"vwob+"vrot=0.198 MeV
+0.25 MeV. The excitation energy decreases steeply asg
decreases. In order to see its implication, we show in Fig.
1(b) the wobbling angles,

uwob = tan−1
ÎuJy

sPAdsvwobdu2 + uJz
sPAdsvwobdu2

kJxl
, s16d

wwob = tan−1U Jz
sPAdsvwobd

Jy
sPAdsvwobd

U , s17d

with (PA) denoting the principal axis.uwob clearly proves
that the softening of the excitation energy is accompanied by
a growth of the amplitude of the motion.wwob indicates that
the fluctuation to they direction grows. Corresponding to
this, the three moments of inertia behave as in Fig. 1(c).

Qualitatively, this behavior can be understood as an
irrotational-like moments of inertia

Jk
irr ~ sin2Sg +

2

3
pkD , s18d

wherek=1–3 denoting thex–z components, superimposed
by the contribution from the alignment,DJx. Alternatively, it
can also be viewed as that, at largeg, multiple alignments
lead to a rigid-body-like inertia

Jk
rig ~ F1 −Î 5

4p
b cosSg +

2

3
pkDG , s19d

with b being a deformation parameter defined by the mass
distribution.

Now we proceed to three-dimensional calculations; we
calculate energy surfaces as functions of the tilting angle
su ,wd of V. Here we note that thesu ,wd plane is represented
as a rectangle althoughw is meaningful foruÞ0°. Figure
2(a) shows theg=60° (symmetric about thex axis) case.
Until down tog,40°, energy surfaces are qualitatively simi-
lar aside from becoming shallow gradually. But a further
decrease ofg leads to an instability of the motion to theu

FIG. 3. Cross sections atw=0° of the energy surfaces of
146Gd.

FIG. 4. Experimental excitation energies of the two- and one-
phonon wobbling states relative to the yrast triaxial superdeformed
states in163Lu. Data are taken from Ref.[11].
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direction withw=0°, that is, the direction of they axis. To-
gether with the property that the surface is stable with respect
to the direction of thez axis, the situation corresponds excel-
lently to Fig. 1. The behavior ofwwob in Fig. 1(b) can be
interpreted as follows: when the system can fluctuate to the
direction of they axis without any energy cost, it does not
fluctuate to thez axis.

To look at the energy surface more closely we gather their
cross sections atw=0° (the x-y plane) in Fig. 3. This figure
clearly shows that a tilted axis minimum appears at around
g=30° although it is shallow. The correspondence to Fig. 1
in which the instability occurs atg=32° is excellent. Note
that the reason why the wobbling angle seen from Fig. 3 is
larger thanuwob in Fig. 1(b) is that this is drawn forV.

IV. POTENTIAL SURFACE FOR THE WOBBLING MODE
IN 163Lu

The analyses above are purely theoretical. Then, is there
any experimental signature of the softening of the wobbling
motion? We think the answer is yes. Figure 4 shows the
experimental[11] excitation energies(in the rotating frame)
of the TSD3 (two-phonon wobbling) and the TSD2(one-
phonon wobbling) relative to the TSD1(yrast 1QP TSD) in
163Lu, where TSD is the abbreviation for triaxial superdefor-
mation. DEtwo phonon8 ,23DEone phonon8 indicates a signature
of softening of the energy surface. We obtained"vwob
=0.185 MeV, uwob=14.2°, and wwob=7.6° for the one-
phonon wobbling state in the RPA(see also Refs.[10,34] for
the RPA calculation). The small value ofwwob looks to indi-
cate a softening to they direction. Calculated energy surface
is shown in Fig. 5. Calculations were done in the model
space of five major shells,Nosc=3–7 for neutrons and 2–6
for protons, withe2=0.43, g=20°, Dn=Dp=0.3 MeV, and

"vrot=0.5 MeV where the calculated"vwob approaches the
experimental one. This figure shows again the surface soft-
ens to the direction of they axis.

In Refs. [10,34], it was shown that the alignment of the
pi13/2 quasiparticle was essential for the appearance of the
wobbling motion. In order to see this fact from the viewpoint
of the potential surface, we calculated the 0QP(nonyrast
TSD at high spins) configuration in162Yb. Figure 6 clearly
shows that a tilted axis minimum in thex-y plane is realized
when the wobbling motion does not occur due to the lack of
pi13/2 QP’s that makeJx larger thanJy

seffd [10,34]. This result
proves that the low-V high-j orbital favors the principal axis
rotation on which the wobbling motion occurs.

For a deeper understanding of the two-phonon states, the
application of more sophisticated many body theories such
as the self-consistent collective coordinate(SCC) method
[35] is desirable.

V. SUMMARY

To summarize, we have proved that a tilted axis rotation
emerges when the wobbling mode becomes unstable as the
triaxiality parameter changes in an oblate configuration in
146Gd. Its instability is caused by the growth of the fluctua-
tion of the motion of the angular momentum or frequency
vector to the direction of they axis. Having performed this
theoretical calculation, we have argued that the signature of
the softening of the wobbling motion can be seen in the
observed spectra of the triaxial superdeformation in163Lu
and shown that a tilted axis minimum would appear if it were
not for thepi13/2 quasiparticle.
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FIG. 5. Energy surface of the triaxial superdeformed one-
quasiparticle configuration in163Lu as a function of the tilting angle
su ,wd calculated at"vrot=0.5 MeV with e2=0.43,g=20°, andDn

=Dp=0.3 MeV. The interval of contours is 100 keV.

FIG. 6. The same as Fig. 5 but for the zero-quasiparticle con-
figuration in 162Yb.
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