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We study in cranked Nilsson plus random phase approximation the electric monopolesE0d, quadrupolesE2d,
and magnetic dipolesM1d responses in fast rotating nuclei undergoing backbending, more specifically156Dy
and 158Er. Special attention is paid at the orbitalM1 excitations known as scissors mode. We find that the
overall strength of the orbitalM1 transitions gets enhanced by more than a factor of 4 above the critical
backbending region. We show that such a strength evolves with the rotational frequency in close correspon-
dence with the nuclear moment of inertia. This link provides the main clue for understanding the physical
origin of such an enhancement, which, if experimentally confirmed, would represent a distinctive feature of
nuclei exhibiting backbending.
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I. INTRODUCTION

Deformation is known to affect deeply the collective
nuclear motion[1]. It is responsible for the splitting of the
electric giant dipole[2,3], quadrupole[4], and octupole[5,6]
resonances, as well as for the coupling between quadrupole
and monopole collective modes[7–9]. Deformation gener-
ates also new magnetic dipole excitations of orbital nature,
known as scissors mode[10–12].

Thanks to heavy-ion accelerators and a new generation of
detectors, it was possible to get access to fast rotating nuclei
and to observe quite new phenomena induced by rapid rota-
tion. Backbending is a well-known spectacular example[13].
Systematic theoretical investigations have clarified to a great
extent how fast rotation affects most of the nuclear proper-
ties, includingb and g modes[14,15], low-lying octupole
excitations and alignment[16–18], and pairing vibrations
[19,20]. All these studies were carried out in cranked random
phase approximation(CRPA) using separable effective inter-
actions. The same approach was adopted for extensive stud-
ies of the electric giant dipole resonance[21,22].

Less explored is the effect of rotation on other collective
excitations. To our knowledge, monopole and quadrupole
resonances were studied only in Ref.[23] within the CRPA,
using the cranked modified harmonic oscillator(HO), and in
Ref. [9] within a phonon-plus-rotor model, using schematic
RPA to generate the phonons.

In the present paper, we intend to complete the analysis of
Refs.[9,23] by including a study of theM1 excitations, with
special attention at those of orbital nature generating the scis-
sors mode. Such a mode is tightly linked to deformation and,
more in general, to quadrupole correlations. Moreover, by its
own nature, it is strongly correlated with nuclear rotation. Its
properties might therefore change considerably with increas-
ing angular frequencies, especially in nuclei whose inertial
parameters are strongly affected by fast rotation. Thus, nuclei
undergoing backbending are expected to display more
clearly the effects of rotation on the magnetic excitations.

Our approach is framed within the CRPA and parallels
closely the model of Ref.[18]. We adopt, in fact, a cranked
Nilsson plus quasiparticle RPA using a two-body potential of
separable form. Its multipole pieces are expressed in terms of
doubly stretched coordinates so as to restore the rotational
symmetry broken by the rotating one-body field. There are,
nevertheless, several differences with respect to the approach
of Ref. [18]. They concern mainly the choice and treatment
of the Hamiltonian as well as the method for computing the
electromagnetic response.

We apply our procedure to two typical nuclei exhibiting
backbending,156Dy and 158Er. The evolution of their mo-
ment of inertia with the rotational frequency was studied
within an approach using the same mean field adopted here
and found to be consistent with the behavior observed ex-
perimentally, including the backbending region[24]. This
strengthens our confidence on the reliability of our predic-
tions on theM1 mode, whose properties, as we shall see,
depend critically on the nuclear moment of inertia.

II. RPA IN THE ROTATING FRAME

A. The Hamiltonian

We start with the Hamiltonian,

HV = H − "VÎ1 = H0 − o
t=n,p

lt Nt − "VI1 + V. s1d

The unperturbed term consists of two pieces,

H0 = o
i

shNilsid + haddsidd. s2d

The first is the Nilsson Hamiltonian

hNil =
p2

2m
+ VHO + vlsl ·s+ vllsl2 − kl2lNd, s3d

where
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VHO = 1
2msv1

2x1
2 + v2

2x2
2 + v3

2x3
2d s4d

is a triaxial HO potential, whose frequencies satisfy the vol-
ume conserving conditionv1v2v3=v0

3. The second piece of
H0 restores the local Galilean invariance broken in the rotat-
ing coordinate system and has the form[18]

hadd= −
V

Îv2v3
HyllF2mv0r 82 − "SNosc+

3

2
DGl18

+ ylsmv0fr 82s1 − x18sr 8 ·sdgJ , s5d

wherexi8=svi /v0d1/2xi are single-stretched coordinates.
The two-body potential has the following structure:

V = VPP + VQQ + VMM + Wss. s6d

VPP is a monopole pairing,

VPP = − o
t=p,n

Gt Pt
† Pt, s7d

wherePt
†=ok ak

†a
k̄

†
. VQQ andVMM are, respectively, separable

quadrupole–quadrupole and monopole–monopole potentials,

VQQ = −
1

2 o
T=0,1

ksTdo
r=±

o
m=0,1,2

SQ̃mFT

r
GD2

,

s8d

VMM = −
1

2 o
T=0,1

ksTdSM̃F T

r = +
GD2

.

Vss is a spin–spin interaction

Vss = −
1

2 o
T=0,1

kssTdo
r=±

o
m=0,1

SsmFT

r
GD2

. s9d

Because of its repulsive character, this interaction pushes the
spin excitations at higher energies, in the range
4 MeV–12 MeV, well separated from the region of the or-
bital excitations below 4 MeV[25,26].

All the one-body fields have good isospinT and signature
r. Multipole and spin-multipole fields of good signature are
defined in Ref.[27]. The tilde indicates that monopole and
quadrupole fields are expressed in terms of doubly stretched
coordinatesxi9=svi /v0dxi [4,28]. In this new form, for a pure
HO Hamiltonian, the quadrupole fields fulfill the stability
conditions

kQ̃ml = 0, m = 0,1,2 s10d

if nuclear self-consistency

v1
2kx1

2l = v2
2kx2

2l = v3
2kx3

2l s11d

is satisfied in addition to the volume conserving constraint.
In virtue of the stability conditions(10), the interaction will
not distort further the deformed HO potential, if the latter is
generated as a Hartree field. To this purpose, one starts with
an isotropic HO potential of frequencyv0 and, then, gener-
ates the deformed part of the potential from the(unstretched)

quadrupole–quadrupole interaction. The outcome of this pro-
cedure is

VHO =
mv0

2r2

2
− mv0

2b cosgQ0F 0

+
G − mv0

2b sin gQ2F 0

+
G ,

s12d

where

mv0
2b cosg = kf0gKQ0F 0

+
GL ,

s13d

mv0
2b sin g = kf0gKQ2F 0

+
GL .

The triaxial form given by Eq.(4) follows from defining

vi = v0 expF−
2

3
d cosSg − i

2p

3
DG, i = 1,2,3, s14d

where the new deformation parameter is defined byb
=Î16p /45d. The Hartree conditions have the form given by
Eq. (13) only for a HO potential plus a separable
quadrupole–quadrupole interaction. They change if pairing is
added[29] and, moreover, fail to yield a minimum for the
mean field energy of the rotating system in superdeformed
nuclei [30]. Due to all these facts, we allow small deviations
from Eqs.(13) and enforce only the stability conditions(10).
These, in fact, hold also in the presence of pairing[24] and
ensure the separation of the pure rotational mode from the
intrinsic excitations for a cranked harmonic oscillator[31].

B. Quasiparticle RPA in rotating systems

By means of a generalized Bogoliubov transformation, we
express the Hamiltonian given by Eq.(1) in terms of quasi-
particle creationsai

†d and annihilationsaid operators. We
then face the RPA equations of motion, written in the form
[14,27]

fHV,Png = i"vn
2Xn, fHV,Xng = − i"Pn, fXn,Pn8g = i"dnn8,

s15d

whereXn, Pn are, respectively, the collective coordinates and
their conjugate momenta. The solution of the above equa-
tions yields the RPA eigenvalues"vn and eigenfunctions

unl = On
†uRPAl =

1
Î2
SÎvn

"
Xn −

i
Î"vn

P̂nDuRPAl

= o
i j

sci j
n bij

† − Fi j
n bijduRPAl, s16d

wherebij
† =ai

†a j
†sbij =aia jd creates(destroys) a pair of quasi-

particles out of the RPA vacuumuRPAl. Since the Hamil-
tonian can be decomposed into the sum of a positive and a
negative signature terms

HV = HVsr = + d + HVsr = − d, s17d

we solve the eigenvalue equations(15) for HVs+d and
HVs−d, separately.
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The symmetry properties of the cranking Hamiltonian
yield

fH,Nt =n,pgRPA = 0, fH,I1gRPA = 0, s18d

fH,I2gRPA = i"VI3, fH,I3gRPA = − i"VI2. s19d

The last two equations can be combined so as to obtain

fHVs− d,G†g = VG†, s20d

where G†=sI2+ iI 3d /Î2kI1l and G=sG†d†=sI2− iI 3d /Î2kI1l
fulfill the commutation relation

fG,G†g = 1. s21d

According to Eqs.(18), we have two Goldstone modes, one
associated with the violation of the particle number operator,
the other is a positive signature zero frequency rotational
solution associated with the breaking of spherical symmetry.
Equation(20), on the other hand, yields a negative signature
redundant solution of energyvl=V, which describes a col-
lective rotational mode arising from the symmetries broken
by the external rotational field(the cranking term).

Equations(18) and(20) ensure the separation of the spu-
rious or redundant solutions from the intrinsic ones. They
would be automatically satisfied if the single-particle basis
were generated by means of a self-consistent Hartree–
Bogoliubov (HB) calculation. As we shall show, they are
fulfilled with a good accuracy also in our, not fully self-
consistent, HB treatment.

The strength function for an electricsX=Ed or magnetic
sX=Md transition of multipolarityl from a state of the yrast
line with angular momentumI is

SXlsEd = o
nI8

BsXl,I → I8,nddsE − "vnd, s22d

wheren labels all the excited states with a givenI8. In order
to compute the reduced strengthBsXl ,I → I8 ,nd we should
be able to expand the intrinsic RPA state into components
with goodK quantum numbers, which is practically impos-
sible in the cranking approach. We compute, therefore, the
strength in the limits of zero and high angular frequencies.
For nonrotating axially symmetric nuclei, whose initial state
is usually theI =0,Kp=0gr

+ ground state, the strength function
is given by

SXlsEd = o
nK

BsXl,0gr
+ → KnddsE − "vnd, s23d

where

BsXl,0gr
+ → Knd = ukRPAufOKn,MsXlm3 = KdguRPAlu2.

s24d

For fast rotating nuclei, we assume a complete alignment of
the angular momentum along the rotationalx1 axis, so that
sI8= I +DId

SXl,VsIdsEd = o
nDI

BsXl,I yrast→ I + DI,nrddsE − "vnd,

s25d

wheresDI =0, ±1, . . . , ±ld

BsXl,I → I + DI,nrd = usI IlDI uI + DI I + DIdV

3kRPAufOnr,MsXlm1 = DIdguRPAlVuu2.

s26d

Here, uRPAlV denotes the RPA vacuum(yrast state) at the
rotational frequencyV. The multipole operator in the rotat-
ing frame is obtained from the corresponding one in the
laboratory according to the prescription[32]

MsXlm1d = o
m3

Dm1m3

l S0,
p

2
,0DMsXlm3d. s27d

The strength function method allows to avoid the explicit
determination of RPA eigenvalues and eigenfunctions
[14,27]. We just have to replace thed distribution with a
Lorentz weight. Thus, upon the use of the Cauchy theorem,
we obtain forSXlsEd and SXl,VsIdsEd expressions involving
only two quasiparticle matrix elements of one-body multi-
pole operators.

The nth moments are obtained simply as

mnsXld =E
0

`

EnSXlsEddE. s28d

Them0sXld andm1sXld moments give, respectively, the en-
ergy unweighted and weighted summed strengths.

III. NUMERICAL CALCULATIONS AND RESULTS

A. Determination of the parameters

The parameters of the Nilsson potential were taken from
Ref. [33]. They were determined from a systematic analysis
of the experimental single-particle levels of deformed nuclei
of rare earth and actinide regions. In our calculation, we
included all shells up toN=8 and accounted for theDN=2
mixing.

In principle, the pairing gap should be determined self-
consistently at each rotational frequency. In order to avoid
unwanted singularities for certain values ofV, we followed
the phenomenological prescription[34]:

DtsVd =5Dts0dF1 −
1

2
S V

Vc
D2G , V , Vc,

Dts0d
1

2
SVc

V
D2

, V . Vc,

s29d

whereVc is the critical rotational frequency of the first band
crossing. We obtained, for both neutrons and protons,Vc
=0.32 MeV for156Dy andVc=0.33 MeV for158Er. The val-
ues of the pairing gaps at zero rotational frequency were
deduced from the odd–even mass differences, obtaining
DNs0d=0.857 MeV, DPs0d=0.879 MeV for 156Dy and
DNs0d=0.874 MeV,DPs0d=0.884 MeV for158Er.
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We used as input for our HB calculations the deformation
parameters obtained from the empirical moments of inertia at
eachV [35]. As shown in Fig. 1 and discussed elsewhere
[24], triaxiality sets in at the frequency which triggers back-
bending as a result of the vanishing of the gamma excitations
of positive signature in the rotating frame.

The parameters so determined yield results in better
agreement with experiments, compared to the ones obtained
in Ref. [36] for N,90, where fixed phenomenological iner-
tial parameters were used for allV frequencies. Moreover,
our equilibrium deformations are short from being the self-
consistent solutions of the HB equations. Indeed, any devia-
tion from the equilibrium values of the deformation param-
etersb andg results into a higher HB energy. Dealing with
transitional nuclei, however, the minimum becomes very
shallow as the rotational frequency increases. In fact, the
energy minima for the collective rotation around thex1 rota-
tional axis and for the noncollective one around thex3 sym-
metry axis are almost degenerate near the crossing point of
the ground with the gamma band. The energy difference is
about 15 keV near the critical rotational frequency where the
backbending occurs. At the bifurcation point, the competition
between collective and noncollective rotations breaks the
axial symmetry and yields nonaxial shapes. On the other
hand, the doubly stretched quadrupole moments are approxi-
mately zero for all values of the equilibrium deformation
parameters, consistently with the stability conditions(10). A
small deviation from the equilibrium deformation yields a
strong deviation of these moments from zero. We infer from
the just discussed tests that our solutions are close to the
self-consistent HB ones.

In order to determine the strengthk of the monopole and
quadrupole interactions, we used the standard HO formulas
sl=2d [28]

klf0g =
4p

2l + 1

mv0
2

Akr2l−2l
, klf1g = −

pV1

Akr2ll
. s30d

For instance, the isoscalar strength follows from enforcing
the Hartree self-consistent conditions. We then changed
slightly the strengths at each rotational frequency, while
keeping constant thekf1g /kf0g ratio, so as to fulfill the RPA
equations(18)–(20) for the spurious or redundant modes.
The constants so determined differ from the HO ones by
5–10 % at most. For the spin–spin interaction, we used the
generally accepted strengths[37]

ksf0g = ksf1g = − 28
4p

A
MeV

for all rotational frequencies. Finally, we adopted bare
charges to compute theE0 andE2 strengths and a quenching
factor gs=0.7 for the spin gyromagnetic ratios to compute
the M1 strengths.

By using the above set of parameters, it was possible not
only to separate the spurious and rotational solutions from
the intrinsic modes, but also to reproduce the experimental
dependence of the lowestb and g bands onV and, in par-
ticular, to observe the crossing of theg with the ground band
in correspondence with the onset of triaxiality[24].

B. Evolution of transition strengths with rotational frequency

We show the results of156Dy only, since the ones pertain-
ing to 158Er are very similar. As shown in Fig. 2, theE0
response remains unchanged in its dominant isoscalar peak.
The effects of fast rotation get manifest via the suppression
of the high energy isovector peak, small in any case, and the
appearance of a peak at,11–12 MeV, in correspondence
with the K=0 branch of the quadrupole resonance. This re-
sult indicates that the coupling between monopole andK
=0 quadrupole modes gets stronger as the rotational fre-
quency increases. Indeed, as triaxiality sets in at high fre-
quencies, the anisotropy increases, thereby enhancing the
mixing between the two channels.

Fast rotation has some appreciable effects on the quadru-
pole transitions. It broadens considerably the isoscalar quad-
rupole giant resonance due to the increasing splitting of the
different DI peaks with increasingV. It washes out the is-
ovector E2 resonance for the same reason. The low-lying
peaks shown in Fig. 3 are related tog, b excitations and to
the collective rotational modes described by Eq.(20). Since
these low-lying excitations have been discussed elsewhere

FIG. 1. (Color online) Equilibrium deformations inb–g plane
as a function of the angular momentum.

FIG. 2. E0 strength function at zero and high rotational frequen-
cies in 156Dy.
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[24], we will focus our study upon the excitations located at
higher energies.

The momentm1sE2d exhausts more than 98% of the os-
cillator E2 energy-weighted sum rule(EWSR)

m1sE2d =
15

2p

"2

2m
AR0

2

for all values ofV. The same result holds for theE0 mode.
Thus, theE0 andE2 EWSR are not affected by rotation.

At zero rotational frequency, the strength of the magnetic
dipole transitions is concentrated in three distinct regions,
consistently with the theoretical expectations and the experi-
mental findings[12]. The low-energy interval, ranging from
2 to 4 MeV, is characterized by orbital excitations(scissors
mode [10,11]). The high-energy one, located around
24 MeV, consists also of orbital excitations(high energy
scissors mode[38]). The intermediate region, ranging from 4
to 12 MeV, is due to spin excitations[39].

As shown in Fig. 4, the distribution of the strength
changes considerably asV increases, to the point that the
dominant peak shifts from 7–8 MeV down to 3 MeV. Only
in the high energy region, the changes, though appreciable,
are not dramatic. Here, theM1 strength gets more spread and
increases slightly in magnitude(Table I).

For a deeper insight, we analyze separately the contribu-
tion of orbital and spin excitations up to 10 MeV. As shown
in Fig. 5, the rotation broadens the spin strength at the ex-
penses of the main peaks which get severely reduced. The
fragmentation keeps the spin transitions confined mainly
within the range 4–12 MeV(Table I).

The low-lying orbital strength becomes larger and larger
as V increases. AtV=0, the orbital peaks are small com-
pared to the spin transitions which are dominant in theM1
spectrum. AtI =30", instead, the orbital spectrum covers a
wider energy range. Furthermore, it gets magnified, espe-
cially in the low-energy sector, where we obtain quite high

peaks. The low-lying orbital strength increases by more than
a factor of 6 due to fast rotation(Table I). One may also
observe that theDI =0 transitions, absent at zero frequency
sDI =K=0d, give a small but nonzero contribution which in-
creases withV. This is due to a new branch of the scissors
mode which arises with the onset of triaxiality[40,41]. In-
deed, in the transition from the axial to the triaxial shape, the
mode splits into two branches of energy andM1 strength

Ei = cosgF1 − s− 1di 1
Î3

tan gGEsc,

s31d

BisM1d =
1

2
cosgF1 − s− 1di 1

Î3
tan gGBscsM1d, i = 1,2

whereEsc andBscsM1d are the energy and the strength in the
axial case. These two branches describe the rotational oscil-
lations around thex1 and x2 axes. A newK=0 branch also
arises due to the rotational oscillation around thex3 axis. Its
energy and strength are given by

E3 =
2
Î3

sin gEsc,

s32d

B3sM1d ↑ =
2
Î3

sin gBscsM1d.

The increasing role of the orbital motion with the increase of
the rotational frequency can be also inferred from the plot of
the running sums shown in Fig. 6.

FIG. 3. (Color online) E2 strength function at zero and high
rotational frequencies in156Dy.

FIG. 4. (Color online) Orbital, spin, and totalM1 strength func-
tions at zero(left-hand panels) and high rotational frequencies
(right-hand panels) in 156Dy.
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The orbital strength, small at zero frequency in the whole
energy range, becomes by far larger than the spin strength in
the low-energy sector at high frequencies.

We can identify one of the mechanisms responsible for
such a large enhancement by comparing(Fig. 7) the V be-
havior of the orbital and totalm1sM1d moments with the
corresponding evolution of the kinematical moment of iner-
tia I= I /V, computed using the cranking method of Ref.
[30].

The strikingly similar behavior of the orbitalm1sM1d and
the moment of inertia shows that the two quantities are
closely correlated at all rotational frequencies. Indeed, at
zero frequency, one has theM1 EWSR[42,43],

m1
sscdsM1d = o

n

EnBn
sscdsM1d .

9

16p
sks0d − ks1ddkQs0dl2,

s33d

whereQs0d=Qp+Qn is the isoscalar quadrupole field. Using
the HO formulas(30) for the coupling constants and the
standard expression for the quadrupole moment[1], we get
for the right-hand side

m1
sscdsM1d =

3

8p
s1 − bdIrigv0

2d 2, s34d

whereb=ks1d /ks0d and

Irig = 2
3mAkr2l. s35d

This expression shows explicitly the close link between the
orbital M1 EWSR and the moment of inertia, at zero rota-
tional frequency. We get a deeper insight by inspecting more
closely the energy unweighted and weighted sums. For both
low- and high-energy modes, theM1 summed strength has
the general form[12]

m0
s±dsM1d = o

n±

Bn±

s±dsM1d .
3

16p
Isc

s±dĒs±d, s36d

whereĒs±d andIsc
s±d denote the energy centroids and the mass

parameters of the high-lyings+d and low-lying s−d scissors
modes.

At high energy, protons and neutrons behave as normal
irrotational fluids, so that energy and mass parameter are
given by

TABLE I. Orbital, spin, and totalM1 strengths integrated over different energy ranges at zero and high
sV=0.4221 MeVd rotational frequencies.

1 MeV,E,4 MeV 4 MeV,E,12 MeV E.12 MeV

I =0 I =30 I =0 I =30 I =0 I =30

oBlsM1dfmn
2g 1.36 8.87 1.43 5.39 2.75 4.35

oBssM1dfmn
2g 1.92 3.08 14.97 14.47 0.48 0.68

oBsM1dfmn
2g 2.95 12.21 9.82 10.06 3.57 4.58

FIG. 5. (Color online) Orbital, spin, and totalM1 reduced
strength distributions at zero(left-hand panels) and high rotational
frequencies(right-hand panels) in 156Dy.

FIG. 6. Running sum of the orbital(dashed line), spin (dashed–
dotted line), and total(solid line) M1 strength in156Dy.
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Ēs+d ~ 2v0, Isc
s+d = Iirr = Irigd 2, s37d

and, therefore, yield

m0
s+dsM1d = o

n+

Bn+

s+dsM1d ~ Irigd 2,

s38d
m1

s+dsM1d . Ēs+do
n+

Bn+

s+d ~ Irigd 2.

Thus, bothM1 weighted and unweighted summed strengths
are quadratic in the deformation parameter. This result re-
mains substantially unchanged in fast rotating nuclei.

For the low-energy mode, instead, we must distinguish
between zero and high rotational frequencies. At zero fre-
quency, protons and neutrons behave as superfluids, so that
[44,45]

Ēs−d ~ 2Eqp . 2D, Isc
s−d = Isf ~ Irigd 2, s39d

whereEqp denotes the quasiparticle energy andIsf the super-
fluid moment of inertia. We then have

m0
s−dsM1d = o

n−

Bn−

s−dsM1d ~ Irigd 2,

s40d
m1

s−dsM1d . Ēs−do
n−

Bn−

s−dsM1d ~ Irigd 2.

These relations show thatm1sM1d is consistent with the
EWSR (33) and, quite remarkably, the summed strength
m0sM1d follows the quadratic deformation law found experi-
mentally [46,47].

At high rotational frequency, instead, the pairing correla-
tions are quenched, so that protons and neutrons behave ba-
sically as rigid rotors. We have therefore

Ēs−d ~ dv0, Isc
s−d . Irig. s41d

These yield

m0
s−dsM1d = o

n−

Bn−

s−d ~ Irigd,

s42d
m1

s−dsM1d . Ēs−do
n−

Bn−

s−d ~ Irigd 2.

According to the above formulas, the superfluid to normal
phase transition affects the deformation law. While, in fact,
the energy-weighted sum remains quadratic in the deforma-
tion, the behavior of the unweighted summed strength withd
changes from quadratic to linear.

We, therefore, conclude that the scissorsM1 strength is
closely correlated with the nuclear moment of inertia not
only at low but also at high angular frequencies. More spe-
cifically, we can distinguish two different regimes, one below
the backbending critical frequency and the other above. Be-
low backbending, while the quasiparticle energy moves
downward due to the weakening of pairing, theM1 strength
increases withV due to the increasing axial deformation and
the smooth enhancement of the moment of inertia. Above the
backbending critical value, when the nucleus undergoes a
transition from a superfluid to an almost rigid phase, as a
result of the alignment of few quasiparticles with high angu-
lar momenta, theM1 strength jumps to a plateau, due to a
sudden increase of the moment of inertia, while the deforma-
tion parameterd remains practically constant.

Also the onset of triaxiality raisesm1sM1d at high rota-
tional frequency, to a modest extent. Indeed, from Eqs.(31)
and (32) we getsi =1,2,3d

o
i

Ei
s−dBi

s−dsM1d ↑ = S1 +
5

18
sin2 gDm1

s−dsM1d. s43d

For g=500, m1
s−dsM1d increases by a factor of 1.16. A further

contribution comes from the changes in the shell structure
induced by fast rotation. This, indeed, enhances the number
of configurations taking part to the motion over the whole
energy range. The new configurations generate new transi-
tions on the one hand, and, on the other hand, enhance the
amplitudes of collective as well as noncollective transitions.

IV. CONCLUSIONS

Our analysis shows that fast rotation strengthens the cou-
pling between quadrupole and monopole modes, broadens
appreciably the isoscalar quadrupole giant resonance and
washes out the isovector monopole and quadrupole peaks.
These effects are found to be more appreciable than the ones
predicted in Ref.[23]. On the other hand, the two approaches
differ in several details. We accounted for theDN=2 cou-
pling in generating the Nilsson states and included the Gal-
ilean invariance restoring piece according to the prescription

FIG. 7. Total (top panel), orbital (middle panel) m1sM1d mo-
ments and the kinematical moment of inertia(bottom panel) versus
V in 156Dy. The dashed line in the middle panel displays theM1
EWSR at zero frequency computed from Eq.(33) (taken from
Ref. [43]).
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of Ref. [18]. Moreover, we enforced the HB stability condi-
tions, provided by Eq.(10), that yield deformation param-
eters very close to the self-consistent values. Finally, we
fixed the strength parameters of the interaction so as to en-
sure the separation of the spurious modes from the intrinsic
excitations at each rotational frequency.

The most meaningful and intriguing result of our calcula-
tion concerns the orbital, scissors-like,M1 excitations. The
enhancement of the overallM1 strength at high rotational
frequencies emphasizes the dominant role of the scissors
mode over spin excitations in fast rotating nuclei and repre-
sents an additional signature for superfluid to normal phase

transitions in deformed nuclei. If confirmed experimentally,
this feature would provide new information on the collective
properties of deformed nuclei.

ACKNOWLEDGMENTS

This work was partly supported by the Czech grant
agency under Contract No. 202/02/0939, the Italian Minis-
tero dell’Istruzione, Universitá and Ricerca(MIUR) and by
Grant No. BFM2002-03241 from DGI(Spain). R.G.N. grate-
fully acknowledges support from the Ramón y Cajal pro-
gram (Spain).

[1] A. Bohr and B. R. Mottelson,Nuclear Structure(Benjamin,
New York, 1975), Vol. II.

[2] M. Danos, Nucl. Phys.5, 23 (1958).
[3] K. Okamoto, Phys. Rev.110, 143 (1958).
[4] T. Kishimoto, J. M. Moss, D. H. Youngblood, J. D. Bronson,

C. M. Rozsa, D. R. Brown, and A. D. Bacher, Phys. Rev. Lett.
35, 552 (1975).

[5] T. Nakatsukasa, K. Matsuyanagi, and S. Mizutori, Prog. Theor.
Phys. 87, 607 (1992).

[6] R. Nazmitdinov and S. Åberg, Phys. Lett. B289, 238 (1992).
[7] T. Suzuki and D. J. Rowe, Nucl. Phys.A289, 461 (1978).
[8] D. Zawischa, J. Speth, and D. Pal, Nucl. Phys.A311, 445

(1978).
[9] S. Aberg, Nucl. Phys.A473, 1 (1987).

[10] N. Lo Iudice and F. Palumbo, Phys. Rev. Lett.41, 1532
(1978).

[11] D. Bohle, A. Richter, W. Steffen, A. E. L. Dieperink, N. Lo
Iudice, F. Palumbo, and O. Scholten, Phys. Lett.137B, 27
(1984).

[12] For an exhaustive list of references see N. Lo Iudice, Riv.
Nuovo Cimento9, 1 (2000).

[13] P. Ring and P. Schuck,The Nuclear Many-Body Problem
(Springer-Verlag, New York, 1980).

[14] J. Kvasil and R. G. Nazmitdinov, Fiz. Elem. Chastits At. Yadra
17, 613 (1986) [Sov. J. Part. Nucl.17, 265 (1986)].

[15] Y. R. Shimizu and M. Matsuzaki, Nucl. Phys.A558, 559
(1995).

[16] L. M. Robledo, J. L. Egido, and P. Ring, Nucl. Phys.A449,
201 (1986).

[17] R. G. Nazmitdinov, Yad. Fiz.46, 732 (1987) [Sov. J. Nucl.
Phys. 46, 412 (1987)].

[18] T. Nakatsukasa, K. Matsuyanagi, S. Mizutori, and Y. R.
Shimizu, Phys. Rev. C53, 2213(1996).

[19] Y. R. Shimizu, J. D. Garrett, R. A. Broglia, M. Gallardo, and
E. Vigezzi, Rev. Mod. Phys.61, 131 (1989).

[20] D. Almehed, D. F. Dönau, S. Frauendorf, and R. G. Nazmit-
dinov, Phys. Scr.T88, 62 (2000); D. Almehed, S. Frauendorf,
and F. Dönau, Phys. Rev. C63, 044311(2001).

[21] K. A. Snover, Annu. Rev. Nucl. Part. Sci.36, 545 (1986) and
references therein.

[22] J. J. Gaardhøje, Annu. Rev. Nucl. Part. Sci.42, 483(1992) and
references therein.

[23] Y. R. Shimizu and K. Matsuyanagi, Prog. Theor. Phys.72,
1017 (1984); 75, 1167(1986).

[24] See, for instance, J. Kvasil and R. G. Nazmitdinov, Phys. Rev.
C 69, 031304(2004); J. Kvasil, R. G. Nazmitdinov, and A. S.
Sitdikov, Yad. Fiz.(to be published).

[25] C. De Coster and K. Heyde, Phys. Rev. Lett.63, 2797(1989).
[26] C. De Coster and K. Heyde, Nucl. Phys.A524, 441 (1991).
[27] J. Kvasil, N. Lo Iudice, V. O. Nesterenko, and M. Kopal, Phys.

Rev. C 58, 209 (1998).
[28] H. Sakamoto and T. Kishimoto, Nucl. Phys.A501, 205

(1989).
[29] N. Lo Iudice, Nucl. Phys.A605, 61 (1996).
[30] D. Almehed, F. Dönau, and R. G. Nazmitdinov, J. Phys. G29,

2193 (2003).
[31] R. G. Nazmitdinov, D. Almehed, and F. Dönau, Phys. Rev. C

65, 041307(R) (2002).
[32] E. R. Marshalek, Nucl. Phys.A266, 317 (1976).
[33] A. K. Jain, R. K. Sheline, P. C. Sood, and K. Jain, Rev. Mod.

Phys. 62, 393 (1990).
[34] R. Wyss, W. Satula, W. Nazarewicz, and A. Johnson, Nucl.

Phys. A511, 324 (1990).
[35] R. Ch. Safarov and A. S. Sitdikov, Izv. Akad. Nauk, Ser. Fiz.

63, 162 (1999) and references therein.
[36] S. Frauendorf and F. R. May, Phys. Lett.125B, 245 (1983).
[37] B. Castel and I. Hamamoto, Phys. Lett.65B, 27 (1976).
[38] N. Lo Iudice and A. Richter, Phys. Lett. B228, 291 (1989).
[39] A. Richter, Nucl. Phys.A553, 417c(1993).
[40] F. Palumbo and A. Richter, Phys. Lett.158B, 101 (1985).
[41] N. Lo Iudice, E. Lipparini, S. Stringari, F. Palumbo, and A.

Richter, Phys. Lett.161B, 18 (1985).
[42] L. Zamick and D. C. Zheng, Phys. Rev. C44, 2522(1991).
[43] N. Lo Iudice, Phys. Rev. C57, 1246(1998).
[44] N. Lo Iudice and A. Richter, Phys. Lett. B304, 193 (1993).
[45] N. Pietralla, P. von Brentano, R.-D. Herzberg, U. Kneissl, N.

Lo Iudice, H. Maser, H. H. Pitz, and A. Zilges, Phys. Rev. C
58, 184 (1998).

[46] W. Ziegler, C. Rangacharyulu, A. Richter, and C. Spieler,
Phys. Rev. Lett.65, 2515(1990).

[47] J. Margraf, R. D. Heil, U. Kneissl, U. Meier, H. H. Pitz, H.
Friedrichs, S. Lindenstruth, B. Schlitt, C. Wesselborg, P. von
Brentano, R.-D. Herzberg, and A. Zilges, Phys. Rev. C47,
1474 (1993).

KVASIL, LO IUDICE, NAZMITDINOV, PORRINO, AND KNAPP PHYSICAL REVIEW C69, 064308(2004)

064308-8


