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We study in cranked Nilsson plus random phase approximation the electric moigpplguadrupol€E2),
and magnetic dipoléM1) responses in fast rotating nuclei undergoing backbending, more specifitély
and 15%r. Special attention is paid at the orbifdll excitations known as scissors mode. We find that the
overall strength of the orbitd1 transitions gets enhanced by more than a factor of 4 above the critical
backbending region. We show that such a strength evolves with the rotational frequency in close correspon-
dence with the nuclear moment of inertia. This link provides the main clue for understanding the physical
origin of such an enhancement, which, if experimentally confirmed, would represent a distinctive feature of
nuclei exhibiting backbending.
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I. INTRODUCTION Our approach is framed within the CRPA and parallels

Deformation is known to affect deeply the collective CloSely the model of Ref18]. We adopt, in fact, a cranked
nuclear motion[1]. It is responsible for the splitting of the Nilsson plus quasiparticle RPA using a two-body potential of
electric giant dipold2,3], quadrupolg4], and octupold5,6] separable form. Its multipole pieces are expressed in terms of
resonances, as well as for the coupling between quadrupofoubly stretched coordinates so as to restore the rotational
and monopole collective modg3—9]. Deformation gener- Symmetry broken by the rotating one-body field. There are,
ates also new magnetic dipole excitations of orbital naturenevertheless, several differences with respect to the approach
known as scissors modé&0-17. of Ref.[18]. They concern mainly the choice and treatment

Thanks to heavy-ion accelerators and a new generation aff the Hamiltonian as well as the method for computing the
detectors, it was possible to get access to fast rotating nuclelectromagnetic response.
and to observe quite new phenomena induced by rapid rota- We apply our procedure to two typical nuclei exhibiting
tion. Backbending is a well-known spectacular exanjfpl.  backbending!*®Dy and *%r. The evolution of their mo-
Systematic theoretical investigations have clarified to a greanent of inertia with the rotational frequency was studied
extent how fast rotation affects most of the nuclear properwithin an approach using the same mean field adopted here
ties, including8 and v modes[14,15, low-lying octupole and found to be consistent with the behavior observed ex-
excitations and alignmenitl6—-18, and pairing vibrations perimentally, including the backbending regi¢24]. This
[19,20. All these studies were carried out in cranked randonstrengthens our confidence on the reliability of our predic-
phase approximatiofCRPA) using separable effective inter- tions on theM1 mode, whose properties, as we shall see,
actions. The same approach was adopted for extensive studepend critically on the nuclear moment of inertia.
ies of the electric giant dipole resonari@i,22.

Less explored is the effect of rotation on other collective Il. RPA IN THE ROTATING FRAME
excitations. To our knowledge, monopole and quadrupole

resonances were studied only in R3] within the CRPA, A. The Hamiltonian

using the cranked modified harmonic oscillatbliO), and in We start with the Hamiltonian,

Ref. [9] within a phonon-plus-rotor model, using schematic .

RPA to generate the phonons. Ho=H-%0l;=Hy— X2 NN, -#QI;+V. (1)
In the present paper, we intend to complete the analysis of =n.p

Refs.[9,23 by including a study of thé11 excitations, with  The unperturbed term consists of two pieces,
special attention at those of orbital nature generating the scis-

sors mode. Such a mode is tightly linked to deformation and, Ho= 2 (hyit (i) + hagdi)). (2)
more in general, to quadrupole correlations. Moreover, by its i
own nature, it is strongly correlated with nuclear rotation. Its — . N
) . . L The first is the Nilsson Hamiltonian
properties might therefore change considerably with increas-
ing angular frequencies, especially in nuclei whose inertial p? s o
parameters are strongly affected by fast rotation. Thus, nuclei hiir = om ™’ Vio * vil - s+ (17 =(19)n), 3
undergoing backbending are expected to display more
clearly the effects of rotation on the magnetic excitations. where
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Vo = %m(wixi + W35 + WX (4)  quadrupole—quadrupole interaction. The outcome of this pro-
cedure is
is a triaxial HO potential, whose frequencies satisfy the vol-
ume conserving conditiom, w,w;=w3. The second piece of _ Mg 2 0 5 0
H, restores the local Galilean invariance broken in the rotat- "©~ 2 Mwof COSYQo| | | ~Mwoh Sin ¥ - |
ing coordinate system and has the fofb3] (12)

0 3
hadd:_={l’ll|:2mwor'2—ﬁ<Nosc+ 5)}1 where

Vw3

0
Mw3B cosy= K[O]<Qo|:+ }>
+ ysMa[r'?s, = x3(r' - 9)](, (5)

wherex/ =(w;/ wg)Y?; are single-stretched coordinates. mw2B sin y= K[O]<Q2[ 0 }>
The two-body potential has the following structure: +

(13

V=V + Voo + Vi + Wye. (6) The triaxial form given by Eq(4) follows from defining

Vpp is @ monopole pairing, w; = wg exp{— 2500<7— I%")} i=1,2,3, (14
- i
VPP__gn G, P P ™ where the new deformation parameter is defined Ay
' =\167/4568. The Hartree conditions have the form given by
whereP!=3, ala% Voo andVyy are, respectively, separable Eg. (13) only for a HO potential plus a separable
quadrupole—quadrupole and monopole-monopole potential§U@drupole-quadrupole interaction. They change if pairing is
, addedEcZGi]dand, mor?O\r/]er, fail to yield a minimum (;o; the ]
1 ~ | T mean field energy of the rotating system in superdeforme
Voo=- 2 _2 K(T)Z _E (Qﬂ-[ ]) ' nuclei[30]. Due to all these facts, we allow small deviations
=01 r=tp=0.1.2 from Eqgs.(13) and enforce only the stability conditio$0).
T 2 ®) These, in fact, hold also in the presence of paifi2g and
> K(T)(I\~/I[ ]) _ ensure the separation of the pure rotational mode from the
r=+

1
Vum=-—2
MM 2 intrinsic excitations for a cranked harmonic oscillafad].

T=0,1

V,, iS @ spin—spin interaction

B. Quasiparticle RPA in rotating systems

1 T|\? By means of a generalized Bogoliubov transformation, we
Vow==5 2 k(D2 2 (S#L D : ©) express the Hamiltonian given by Ed.) in terms of quasi-
particle creation(aiT) and annihilation(«;) operators. We
Because of its repulsive character, this interaction pushes titaen face the RPA equations of motion, written in the form
spin excitations at higher energies, in the range14,27
4 MeV-12 MeV, well separated from the region of the or- o, ) )
bital excitations below 4 Me\{25,28. [Ho,P,]=ifw X, [Hq,X,]==itP, [X,P,]=i#é,,,

All the one-body fields have good isospirand signature (15)
r. Multipole and spin-multipole fields of good signature are ] ) )
defined in Ref[27]. The tilde indicates that monopole and WhereX,, P, are, respectively, the collective coordinates and
quadrupole fields are expressed in terms of doubly stretche@€ir conjugate momenta. The solution of the above equa-
coordinates¢’ = (w;/ wo)x; [4,28. In this new form, for a pure  tions yields the RPA eigenvaluéso, and eigenfunctions

27201 r=+ 4=0,1

HO Hamiltonian, the quadrupole fields fulfill the stability 1 o P
conditions |v) = Ol|RPA) = ——< — X, = FPV)|RPA>
\V2 f Viw,
(Q)=0, ©=0,1,2 (10) =2 (Yib] - Piby)[RPA), (16)
ij

if nuclear self-consistency
+

T_ T th. = ; ;

2 o0 2, 2,9 wherebyj; = a; a; (b= ;a;) creategdestroys a pair of quasi-
wi(Xp) = w3(Xp) = W3(X3) (1 particles out of the RPA vacuufRPA). Since the Hamil-

is satisfied in addition to the volume conserving constraintfonian can be decomposed into the sum of a positive and a

In virtue of the stability conditiong10), the interaction will ~N€gative signature terms

not distort further the deformed HO potential, if the latter is Ho=Hqg(r=+)+Hg(r=- 17

generated as a Hartree field. To this purpose, one starts with o= Hof )+ Hal )s (7

an isotropic HO potential of frequenay, and, then, gener- we solve the eigenvalue equatiori$5) for Hg(+) and

ates the deformed part of the potential from ¢hestretchel  Hq(-), separately.
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The symmetry properties of the cranking Hamiltonian Sxm(l)(E):E B(X\, | yrast— | + Al,vr)8(E - hw,)

yield v
[H.N;=nplrpa=0, [H.l1]rpa=0, (18) 29
where(Al=0,+1,...,8\)
[H,l2]rpa=1AQl5,  [H,l3]rpa=—i2Q1,. (19 BOXNL, I — 1+ AlLwr) = |(1 INAI|L+ AL+ Al)g
The last two equations can be combined so as to obtain X(RPA[O,;, M(X\us = AD[RPA), [°.
[Ho(-),TT]= 0T, (20 (20

Here, |RPA),, denotes the RPA vacuuliyrast state at the
where TT=(l,+ilg)/\2(I;) and T=(TM'=(1,=il)/\2(l;)  rotational frequency. The multipole operator in the rotat-
fulfill the commutation relation ing frame is obtained from the corresponding one in the

laboratory according to the prescripti¢d2]

[[,TT]=1. (21)
_ A ™

According to Eqs(18), we have two Goldstone modes, one M) = 2 Dﬂlﬂs(o’E’O)M(X)\“?’)' 27
associated with the violation of the particle number operator, "
the other is a positive signature zero frequency rotational he strength function method allows to avoid the explicit
solution associated with the breaking of spherical symmetrydetermination of RPA eigenvalues and eigenfunctions
Equation(20), on the other hand, yields a negative signature[14,27. We just have to replace thé distribution with a
redundant solution of energy, =Q, which describes a col- Lorentz weight. Thus, upon the use of the Cauchy theorem,
lective rotational mode arising from the symmetries brokerwe obtain forSy, (E) and Sy, o()(E) expressions involving
by the external rotational fiel¢the cranking term only two quasiparticle matrix elements of one-body multi-

Equationg(18) and(20) ensure the separation of the spu- pole operators.
rious or redundant solutions from the intrinsic ones. They The nth moments are obtained simply as
would be automatically satisfied if the single-particle basis "
were generated by means of a self-consistent Hartree— m,(X\) :J E"S,, (E)dE. (28)
Bogoliubov (HB) calculation. As we shall show, they are 0
fulfilled with a good accuracy also in our, not fully self-
consistent, HB treatment.

The strength function for an electriX=E) or magnetic
(X=M) transition of multipolarityx from a state of the yrast
line with angular momenturh is I1l. NUMERICAL CALCULATIONS AND RESULTS

The mp(X\) andm;(X\) moments give, respectively, the en-
ergy unweighted and weighted summed strengths.

S (E) = E BOXLI — 1, 0) 8(E - haw,), (22) A. Determination of the parameters

o The parameters of the Nilsson potential were taken from
Ref. [33]. They were determined from a systematic analysis

wherev labels all the excited states with a givEnIn order  of the experimental single-particle levels of deformed nuclei
to compute the reduced strendBX\,l —1’,v) we should of rare earth and actinide regions. In our calculation, we
be able to expand the intrinsic RPA state into componenticluded all shells up ttN=8 and accounted for thAN=2
with good K quantum numbers, which is practically impos- mixing.
sible in the cranking approach. We compute, therefore, the In principle, the pairing gap should be determined self-
strength in the limits of zero and high angular frequenciesconsistently at each rotational frequency. In order to avoid
For nonrotating axially symmetric nuclei, whose initial stateunwanted singularities for certain values@f we followed
is usually the :O,K’T:OE,'r ground state, the strength function the phenomenological prescripti¢84]:

is given by 1/ 0\2
. AO|1-Z=] |, Q<Q.
Su(E) = X BOX\, Of, — K») S(E - fiw,), (23) A(Q) = 2 ZQC 29
K ! 1/ 0
AT(O)_<_C) ) Q>QC!

where 2\ Q

. 5 where(). is the critical rotational frequency of the first band

B(X\, 0y, — K,) = (RPA[Oy,, M (X\ 13 = K) ] RPA)[*. crossing. We obtained, for both neutrons and protdis,

(24)  =0.32 MeV for*>®Dy and2=0.33 MeV for*>%r. The val-
ues of the pairing gaps at zero rotational frequency were
For fast rotating nuclei, we assume a complete alignment ofleduced from the odd-even mass differences, obtaining
the angular momentum along the rotatiomalaxis, so that Ay(0)=0.857 MeV, Ap(0)=0.879 MeV for Dy and
(I'=1+Al) AN(0)=0.874 MeV,Ap(0)=0.884 MeV for'5%r.
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FIG. 1. (Color onling Equilibrium deformations in3—y plane w 1
. » 8001 1=30
as a function of the angular momentum. |
600 — Al=0
We used as input for our HB calculations the deformation 400-
parameters obtained from the empirical moments of inertia at ]
eachQ [35]. As shown in Fig. 1 and discussed elsewhere 200
[24], triaxiality sets in at the frequency which triggers back- 0-

bending as a result of the vanishing of the gamma excitations
of positive signature in the rotating frame.

The parameters so determined yield results in better
agreement with experiments, compared to the ones obtained
in Ref.[36] for N~ 90, where fixed phenomenological iner-
tial parameters were used for &l frequencies. Moreover,
our equilibrium deformations are short from being the self-
qonsistent solution_s Qf the HB equations. Indeed_, any devia- K, [0]= K, [1] = - 284—77Mev
tion from the equilibrium values of the deformation param- A
etersB and y results into a higher HB energy. Dealing with
transitional nuclei, however, the minimum becomes ver
shallow as the rotational frequency increases. In fact, th
energy minima for the collective rotation around therota-
tional axis and for the noncollective one around xgesym- the M1 s_trengths. . :
metry axis are almost degenerate near the crossing point of By using the above set of parameters, it was possible not

the ground with the gamma band. The energy difference iﬁwnly to separate the spurious and rotational solutions from

about 15 keV near the critical rotational frequency where th dee 'er:‘tgnge rg?ctjﬁjlgxg alzcr)w}o f;;ggugr%tgigxi%e”g?mal
backbending occurs. At the bifurcation point, the competition P At Y 1N p

between collective and noncollective rotations breaks thé'CUIar’ to observe the_ crossing of them?h t_he ground band
axial symmetry and yields nonaxial shapes. On the othel correspondence with the onset of triaxialjgA].
hand, the doubly stretched quadrupole moments are approxi- _ N _ _
mately zero for all values of the equilibrium deformation B. Evolution of transition strengths with rotational frequency
parameters, consistently with the stability conditighg). A We show the results dP®Dy only, since the ones pertain-
small deviation from the equilibrium deformation yields aing to '°%r are very similar. As shown in Fig. 2, tHg0
strong deviation of these moments from zero. We infer fromresponse remains unchanged in its dominant isoscalar peak.
the just discussed tests that our solutions are close to thEhe effects of fast rotation get manifest via the suppression
self-consistent HB ones. of the high energy isovector peak, small in any case, and the
In order to determine the strengkhof the monopole and appearance of a peak atl1—-12 MeV, in correspondence
quadrupole interactions, we used the standard HO formulagith the K=0 branch of the guadrupole resonance. This re-
(N=2) [28] sult indicates that the coupling between monopole &nd
=0 quadrupole modes gets stronger as the rotational fre-
quency increases. Indeed, as triaxiality sets in at high fre-
quencies, the anisotropy increases, thereby enhancing the
mixing between the two channels.
For instance, the isoscalar strength follows from enforcing Fast rotation has some appreciable effects on the quadru-
the Hartree self-consistent conditions. We then changegole transitions. It broadens considerably the isoscalar quad-
slightly the strengths at each rotational frequency, whilerupole giant resonance due to the increasing splitting of the
keeping constant the[ 1]/ «[0] ratio, so as to fulfill the RPA different Al peaks with increasing). It washes out the is-
equations(18)—(20) for the spurious or redundant modes. ovector E2 resonance for the same reason. The low-lying
The constants so determined differ from the HO ones byeaks shown in Fig. 3 are related 1o 8 excitations and to
5-10 % at most. For the spin—spin interaction, we used théhe collective rotational modes described by E2f). Since
generally accepted strengtfi7] these low-lying excitations have been discussed elsewhere

0 5 10 15 20 25 30 35
E [MeV]

FIG. 2. EO strength function at zero and high rotational frequen-
cies in Dy,

yfor all rotational frequencies. Finally, we adopted bare
harges to compute tHed andE2 strengths and a quenching
actor g;=0.7 for the spin gyromagnetic ratios to compute

4ar mwé
2\ + 1A(r22)’

7TV1

W. (30

x\[0] = K[1]=-
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[24], we will focus our study upon the excitations located at  FIG. 4. (Color onling Orbital, spin, and totaM1 strength func-

higher energies. tions at zero(left-hand panels and high rotational frequencies
The momentm,(E2) exhausts more than 98% of the os- (right-hand panelsin 1Dy.

cillator E2 energy-weighted sum rulEWSR)

15 72 peaks. The low-lying orbital strength increases by more than
my(E2) = ——AF% a factor of 6 due to fast rotatio@lrable ). One may also
2m2 observe that thé\l =0 transitions, absent at zero frequency
(Al=K=0), give a small but nonzero contribution which in-
creases with). This is due to a new branch of the scissors
At zero rotational frequency, the strength of the magnetid“Ode .Wh'Ch arises with the onset of tnama_hMQ 41, In-
deed, in the transition from the axial to the triaxial shape, the

dipole transitions is concentrated in three distinct regions o
consistently with the theoretical expectations and the experitnOOIe splits into two branches of energy aMd strength

mental findingg12]. The low-energy interval, ranging from 1
2 to 4 MeV, is characterized by orbital excitatiofssissors o PN
mode [10,11). The high-energy one, located around E, = cos 7{1 =D V,_tan 7] Ese
24 MeV, consists also of orbital excitatiorthigh energy (31)
scissors modg38]). The intermediate region, ranging from 4 1 1
to 12 MeV, is due to spin excitatiori89]. Bi(M1) = —cos y|:1 - (- 1'—=tan 7:| B, (M1), i=1,2
As shown in Fig. 4, the distribution of the strength 2 V3
changes considerably &3 increases, to the point that the .
dominant peak shifts from 7—8 MeV down to 3 MeV. Only WhereEs;andBs{(M1) are the energy and the strength in the
in the h|gh energy region, the Changes' though appreciab'@yxial case. These two branches describe the rotational oscil-
are not dramatic. Here, thd1 strength gets more spread and lations around they andx, axes. A newK=0 branch also
increases slightly in magnitud@able . arises due to the rotational oscillation around xgaxis. Its
For a deeper insight, we analyze separately the contriblenergy and strength are given by
tion of orbital and spin excitations up to 10 MeV. As shown
in Fig. 5, the rotation broadens the spin strength at the ex-
penses of the main peaks which get severely reduced. The
fragmentation keeps the spin transitions confined mainly
within the range 4—12 Me\(Table . 2
The low-lying orbital strength becomes larger and larger B3(M1) 1 = —=sin yB(M1).
as () increases. Af)=0, the orbital peaks are small com- V3
pared to the spin transitions which are dominant in Mhe
spectrum. Atl =304, instead, the orbital spectrum covers a The increasing role of the orbital motion with the increase of
wider energy range. Furthermore, it gets magnified, espethe rotational frequency can be also inferred from the plot of
cially in the low-energy sector, where we obtain quite highthe running sums shown in Fig. 6.

for all values of(). The same result holds for tHg mode.
Thus, theEO andE2 EWSR are not affected by rotation.

2 .
Es;= Esm vEse
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TABLE I. Orbital, spin, and totaM1 strengths integrated over different energy ranges at zero and high
(2=0.4221 MeV rotational frequencies.

1 MeV<E<4 MeV 4 MeV<E<12 MeV E>12 MeV

1=0 1=30 =0 1=30 =0 1=30
EB(Ml)[,uﬁ] 1.36 8.87 1.43 5.39 2.75 4.35
2B, (M 1)[,u,ﬁ:| 1.92 3.08 14.97 14.47 0.48 0.68
EB(Ml)[,u,ﬁ] 2.95 12.21 9.82 10.06 3.57 4.58

The orbital strength, small at zero frequency in the whole
energy range, becomes by far larger than the spin strength in
the low-energy sector at high frequencies.

We can identify one of the mechanisms responsible fo _
such a large enhancement by comparik@. 7) the Q be- (Nhereb—x(l)/K(O) and
havior of the orbital and totafm;(M1) moments with the

3
ms9(M1) = an(1- b)Jiqwg62, (34)

~ 2 2
corresponding evolution of the kinematical moment of iner- Jrig = 3MAT ). (35
tia 7=1/Q, computed using the cranking method of Ref.
[30]. This expression shows explicitly the close link between the

The strikingly similar behavior of the orbitah,(M1) and ~ orbital M1 EWSR and the moment of inertia, at zero rota-
the moment of inertia shows that the two quantities ardional frequency. We get a deeper insight by inspecting more
closely correlated at all rotational frequencies. Indeed, aglosely the energy unweighted and weighted sums. For both

zero frequency, one has thél EWSR[42,43, low- and high-energy modes, tiid1 summed strength has
the general fornj12]

9
mEo(M1) = 2 EB0(M1) = - —(x(0) - k(1)XQ0)?, 3
n 4 m(M1) = BY(M1) = —3WE®,  (36)
(33) n, ° 167

whereQ(0)=Q,+Q, is the isoscalar quadrupole field. Using yhereE®) andJ%) denote the energy centroids and the mass
the HO formulas(30) for the coupling constants and the parameters of the high-lying+) and low-lying (-) scissors
standard expression for the quadrupole monjéhtwe get  odes.

for the right-hand side At high energy, protons and neutrons behave as normal
irrotational fluids, so that energy and mass parameter are

— 09 given by

5] — K=0

— 06 — total _

E 03] 281 1z0 - - - -orbital

s - 244 = —-—spin

m o0 _AUA.....M._ 20 Q=0MeV —total

TTTTTTTTrrrrrerT Trrrrrerrrererereg 16_'

— 0.9 - 12]

N

= 061 - ~ e 8

—_— 3. 4

s .&.&MA‘ c

0° 0.0 - : S =

@ UL I L I I UL L I L I L L gg 1=30

— 097 1=0 1=30 o

foO6 | Q=0MeV 0=0.4221 MeV

= 0.3 -

= 0.0

o =Y e b

1234567891012345678910
E[MeV] 0 10 20 30 40 50
E [MeV]

FIG. 5. (Color onling Orbital, spin, and totalM1 reduced
strength distributions at zengeft-hand panelsand high rotational FIG. 6. Running sum of the orbitatlashed ling spin(dashed—
frequenciegright-hand panelsin 15Dy, dotted ling, and total(solid line) M1 strength int>®Dy.
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At high rotational frequency, instead, the pairing correla-
tions are quenched, so that protons and neutrons behave ba-
sically as rigid rotors. We have therefore

EC) o Swp, T35 = Jyig.- (41)

These yield
m5 (M1) = > B o 3,48,
n_
B (42)
mi (M1) = EDY BY « 7,462

n_

According to the above formulas, the superfluid to normal
phase transition affects the deformation law. While, in fact,
the energy-weighted sum remains quadratic in the deforma-
tion, the behavior of the unweighted summed strength with
' ' ' ' ' changes from quadratic to linear.
00 01 0.2 0.3 0.4 We, therefore, conclude that the scisstbtd strength is
Q [MeV] closely correlated with the nuclear moment of inertia not
only at low but also at high angular frequencies. More spe-
FIG. 7. Total(top pane), orbital (middle panel my(M1) mo-  Cifically, we can distinguish two different regimes, one below
ments and the kinematical moment of inextimttom panelversus ~ the backbending critical frequency and the other above. Be-
Q in %%Dy. The dashed line in the middle panel displays K& low backbending, while the quasiparticle energy moves
EWSR at zero frequency computed from E&3) (taken from  downward due to the weakening of pairing, td strength
Ref. [43]). increases witlf) due to the increasing axial deformation and
the smooth enhancement of the moment of inertia. Above the
backbending critical value, when the nucleus undergoes a

E® A~ — g2 9 ; .
E™ o 20, Jge' = i = Trigd”, (37 transition from a superfluid to an almost rigid phase, as a
and, therefore, yield result of the alignment of few quasiparticles with high angu-
’ ' lar momenta, theM1 strength jumps to a plateau, due to a
mi"(M1) = >, B (M1) o T1ig62, sudden increase of the moment of inertia, while the deforma-
n, tion paramete remains practically constant.
(38) Also the onset of triaxiality raisesy(M1) at high rota-
(+) =) *) o~ o2 tional frequency, to a modest extent. Indeed, from Eg%)
m (M1 =E %B’h * Jrigd” and(32) we get(i=1,2,3

Thus, bothM1 weighted and unweighted summed strengths )p(-) _ S ) (-)
are quadratic in the deformation parameter. This result re- zl: BBMLT = <1+ 18S|n2 y|m(M1). - (43)
mains substantially unchanged in fast rotating nuclei.

For the low-energy mode, instead, we must distinguishFor y=5C°, m,”(M1) increases by a factor of 1.16. A further
between zero and high rotational frequencies. At zero frecontribution comes from the changes in the shell structure
guency, protons and neutrons behave as superfluids, so thatluced by fast rotation. This, indeed, enhances the number
[44,45 of configurations taking part to the motion over the whole

_ energy range. The new configurations generate new transi-
EC o 2By, =24, I =T 3,182, (39)  tions on the one hand, and, on the other hand, enhance the

sc
] ] amplitudes of collective as well as noncollective transitions.
whereE, denotes the quasiparticle energy dngthe super-

fluid moment of inertia. We then have
IV. CONCLUSIONS
mg (M1) = > B (M1) o 3,62, _ _
n_ Our analysis shows that fast rotation strengthens the cou-
(40) pling b_etgxlleer;] qL_JadruploIe andd monlopol_e modes, broaden;
-) =) ) ~ a2 appreciably the isoscalar quadrupole giant resonance an
my'(M1) = EDX Bn (M1) = Jigd washes out the isovector monopole and quadrupole peaks.
These effects are found to be more appreciable than the ones
These relations show thaty(M1) is consistent with the predicted in Ref[23]. On the other hand, the two approaches
EWSR (33) and, quite remarkably, the summed strengthdiffer in several details. We accounted for th&=2 cou-
me(M1) follows the quadratic deformation law found experi- pling in generating the Nilsson states and included the Gal-
mentally[46,47. ilean invariance restoring piece according to the prescription

n_
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of Ref. [18]. Moreover, we enforced the HB stability condi- transitions in deformed nuclei. If confirmed experimentally,
tions, provided by Eq(10), that yield deformation param- this feature would provide new information on the collective
eters very close to the self-consistent values. Finally, weproperties of deformed nuclei.

fixed the strength parameters of the interaction so as to en-
sure the separation of the spurious modes from the intrinsic
excitations at each rotational frequency.

The most meaningful and intriguing result of our calcula- This work was partly supported by the Czech grant
tion concerns the orbital, scissors-likéd,1 excitations. The agency under Contract No. 202/02/0939, the Italian Minis-
enhancement of the overdil1l strength at high rotational tero dell'lstruzione, Universitd and Ricer¢®llUR) and by
frequencies emphasizes the dominant role of the scissoGrant No. BFM2002-03241 from DGBpain. R.G.N. grate-
mode over spin excitations in fast rotating nuclei and reprefully acknowledges support from the Ramén y Cajal pro-
sents an additional signature for superfluid to normal phasgram(Spair).
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