
Systematics in the structure of low-lying, nonyrast bandhead configurations
of strongly deformed nuclei

G. Popa,1,* A. Georgieva,2,3 and J. P. Draayer3

1Department of Physics, Rochester Institute of Technology, Rochester, New York 14623, USA
2INRNE, Bulgarian Academy of Science, Sofia, 1784 Bulgaria

3Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA
(Received 20 October 2003; published 7 June 2004)

An empirical investigation of the trends in the properties of the nonyrastKp=2g
+ and Kp=02

+ bandhead
configurations in nuclei that are related to one another through the addition or removal ofa-particle-like
structures, reveals their complex and changing behavior in contrast to the smooth behavior of the yrast states.
A systematic application of the pseudo-SU(3) model for such a sequence of deformed nuclei from the rare earth
region leads to an accurate and unified description of not only yrast, but nonyrast collective bands. The onset
of deformation as manifested through the position of the excited bandheads in the spectra is understood and
interpreted by using a realistic model Hamiltonian in conjunction with a microscopic distribution of the
eigenstates across allowed proton and neutron strong-coupled SU(3) configurations.
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I. INTRODUCTION

Various features of low-lying levels of even-even atomic
nuclei can be used to test collective models of nuclear struc-
ture. The assumptions that go into the development of such
models usually are based first on understanding the structure
of states that belong to the ground-state band(g.s.b.), and
then on properties of the excited bands, including especially
the excitation energies of the bandhead configurations. This
can lead to different interpretations of the same features of
the spectra. An example is the behavior of the bands built on
the lowest excited 0+ and 2+ states in well-deformed nuclei
[1]. The properties of these levels are usually defined and
interpreted within the framework of a geometrical approach
to nuclear structure as bandheads ofb andg bands that arise
out of the quadrupole surface vibrations of a deformed liquid
drop [2,3]. With the development of new experimental tech-
niques and the accumulation of additional data, various new
and more refined models have been introduced in order to
interpret and describe the ever growing volume of results[4].
A close systematic investigation into the properties of many
low-lying, nonyrast states reveals that there are large differ-
ences in the observed data, even for neighboring nuclides.
One can find many examples to support various interpreta-
tions of these configurations, which we will label byKp

=02
+=0b

+ (second excited 0+ state or the bandhead of theb
band) and Kp=2g

+ (which may or may not be the second
excited 2+ state). The seemingly complex and changing be-
havior of the lowest excited nonyrast bands calls for a deeper
understanding of their microscopic structure.

The unified treatment of a large amount of nuclear struc-
ture data is normally based on a systematic consideration of
the properties of the systems being studied. Here we review
systematics in the structure of key levels(bandheads of theg

andb bands relative to that of the ground state) in the low-
energy spectra of a series of heavy deformed nuclei that dif-
fer from one another bya-particle-like structures. Such an
approach has been tested empirically and shown to be con-
venient for a unified description of the low-lying yrast ener-
gies of the even-even nuclei[5,6]. The Kp=02

+ sbd and Kp

=2g
+ sgd bandheads show some rather sharp oscillations, in

contrast with the smooth and periodic behavior of the yrast
bandhead configuration, especially in regions with clearly
observed rotational bands. Consequently, it is a challenging
task to study trends in this behavior and offer an interpreta-
tion that reproduces the observations so one can make reli-
able predictions regarding newly obtained data or the struc-
ture of yet-to-be explored systems.

To interpret and reproduce properties of the low-lying
spectra of deformed even-even nuclei, we apply a proton-
neutron version of the pseudo-SU(3) shell model[7]. This
scheme is particularly useful since it combines a consider-
ation of the microscopic structure of nuclei with simple but
general symmetry principles. Specifically, the pseudo-SU(3)
model has been shown to be appropriate for a description of
the low-lying spectra of the strongly deformed nuclei[8–10].
Another advantage of this approach is that it gives a geo-
metrical interpretation of many-nucleon states through an es-
tablished relationship between the SU(3) invariants and the
shape variablesb andg of the geometrical collective model
[11].

II. EMPIRICAL INVESTIGATION OF THE
Kp=02

+ AND 2g
+ BANDHEADS

Through an empirical investigation of yrast state energies
of all even-even nuclei[5], the authors identified a unified
theoretical description by superimposing a classification
scheme that links species within major valence shell sets.
This classification scheme depends only on two numbers, the
total number of valence bosonsN=Np+Nn and the third pro-
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jection F0= 1
2sNp−Nnd of the F spin. This yields a simulta-

neous classification of the nuclei in terms of the operators
Np= 1

2sNp−Np
1d andNn= 1

2sNn−Nn
1d which are the proton and

neutron valence boson(pairs of nucleons) numbers within a
given shell beyond their respective closed cores(the usual
magic numbers are denoted here byNp

1 andNn
1). The ordering

of the nuclides within this scheme can be obtained by con-
sidering sequences of nuclei with increasing total number of
valence bosonsN and fixed value of the differenceF0.

In this article we investigate the behavior of the 2+ state of
the g.s.b., the first excited 02

+ state and the 2g
+ bandhead con-

figuration, which is not necessary the second 2+ state in the
F0=0 multiplet of the shell, with the number of protons lying
between 50 and 82, and the number of neutrons between 82
and 126. The nuclei that we consider have equal numbers of
valence proton and neutron pairs and therefore differ by an
a-particle-like cluster within anF0 multiplet. As observed
from the experimental data[12], the behavior of these levels
is quite different, not only for different shells but also within
a shell and even within differentF0 multiplets within a given
shell. However, as for the states in the yrast bands, similar
behavior is observed in the neighboringF0 multiplets within
a given shell. The energies of the first excited nonyrast band-
heads oscillate with increasingN with opposite phase. This is
particularly pronounced in the middle of the shell
s10,N,22d, where one finds well-deformed nuclei. To de-
duce common features, we focused our attention on the well-
deformed nuclei from the lanthanide region as these nuclei
present some interesting challenges[13] from a theoretical as
well as from an experimental point of view[14].

The sequence of nuclei chosen to probe the characteristic
behavior of the states that were considered is shown in Fig.
1. We can separate these nuclei into three groups with similar
behavior within each group:(1) at the beginning of the
region→ 152Nd, 156Sm for which Es2g

+d.Es02
+d; (2)

around the middle of the multiplet→ 160Gd, 164Dy, 168Er for
which Es2g

+d,Es02
+d; (3) at the end of the region→ 172Yb,

176Hf for which Es2g
+d.Es02

+d.
The g.s.b.Jp=2+ energies for these nuclei lie on almost a

straight line at,0.07 MeV. In contrast, the energies of 02
+

and 2g
+ states oscillate out of phase as a function ofN. The

trends in the positions of the energies of these states form a
pattern that is almost symmetric with respect to the middle of
the rotational region atN=16 for 164Dy. At this point, the
energy of the first excitedKp=0+ state has its highest value
and the bandhead of theg band has its minimum value. To
either side of 164Dy, for 160Gd and 168Er, we have
Es2g

+d,Es02
+d. However, away from164Dy, to the left(152Nd

and 156Sm) and to the rights172Yb,176Hfd, the two nonyrast
Jp=02

+ and Kp=2g
+ states change their ordering in energy,

Es2g
+d.Es02

+d. Three loops are formed by the lines connect-
ing the energies of these states. The first and third loops are
quite similar. Our aim is to understand and reproduce this
behavior, which has many different model interpretations[1].

To understand this behavior, one must probe more deeply
into the microscopic structure of these nuclei[13]. In the
present work, the properties of the low-lying spectra of de-
formed even-even nuclei are reproduced and explained by
applying a proton-neutron version of the algebraic shell
model with pseudo-SU(3) symmetry[7].

III. PROTON AND NEUTRON VERSION OF THE
PSEUDO-SU(3) MODEL

Elliott [15] used group-theoretical methods to investigate
classification schemes for particles in a three-dimensional
harmonic oscillator potential for which the underlying sym-
metry is SU(3). In the pseudo-SU(3) version of the model the
pseudoshellh̃=h−1 is defined as the original “parent” shell
h without its highestj =h+ 1

2 “intruder” level. In the pseu-
doshell containing only the normal parity states the corre-
sponding pseudo spin-orbit interaction is negligible and
hence the(pseudo-) SU(3) symmetry is restored. This map-
ping from theh to theh̃=h−1 shell yields a symmetry gov-
erned reduction of the model space to a subset of SU(3)
irreps that correspond to the largest(pseudo) intrinsic defor-
mation [10].

The proton-neutron version of the pseudo-SU(3)-shell
model is a microscopic theory that respects the Pauli prin-
ciple, in contrast with a classification scheme where pairs of
protons and neutrons are taken to behave as bosons, such as
in the interacting vector boson model[16]. The proton and
neutron occupanciesns (s=p andn, respectively) are deter-
mined by filling Nilsson single-particle levels from below
[17] with pairs of particles in each level at a fixed value for
the deformationsb,0.3d. The changes in predicted occu-
pancies as a function of deformation are rather rare over the
normal range of deformationb,0.25 to b,0.35. Further,
we consider only nucleons in normal parity orbitsns

+ to be
spectroscopically active with those in the unique parity or-
bitals ns

− relegated to a renormalization role, an assumption
that is consistent with what has been done in the past and one
that is known to work well for low-lying configurations[18].
As nuclei in anF0=0 multiplet have an equal number of
valence protons and neutrons, the classification numberN is
equal to the number of valence particles of each kind. It is
important to notice, however, that the protons and neutrons
fill two different shellsh̃p=3 andh̃n=4, respectively, so we
have different leading SU(3) irreps for protons and neutrons

FIG. 1. The experimental and theoretical energies of the ground
band Kp=0+ and Jp=2+ states and the nonyrastKp=02

+ and Kp

=2g
+ states of deformed nuclei withF0=0. The experimental values

[12] are indicated with bars and the calculated numbers with
shapes.
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with largest C2=sl+mdsl+m+3d−lm values. The
quadrupole-quadrupoleQQ interaction, as part of the SU(3)
second order invariant operator[C̃2=sQ̃Q̃−3L̃2d with Q̃

=Q̃p+Q̃n andL̃= L̃p+ L̃n], gives preference to the “stretched”
coupled representationsl ,md=slp+ln ,mp+mnd, but in order
to describe the rich and complex structure of the spectrum
we need to include at least five to six additional proton and
neutron pseudo-SU(3) irreps and these are also selected ac-
cording to theirC2 values, with the largest being the most
important. This gives rise to a large space of product repre-
sentations, so they are further truncated in the same way
(largestC2 values) to a total of about 20 coupled irreps of
SU(3). In Table I we give, for the nuclei considered here, the
partition of the valence protons and neutrons into normals +d
and uniques −d parity orbits along with the leading SU(3)
irreps only(more are included in the calculations) for nucle-
ons in the normal parity orbits. Since we consider only even-
even nuclei, only configurations with pseudospin equal to
zero are taken into account[8,10].

The development of a computer code that can be used to
calculate reduced matrix elements of physical operators be-
tween different SU(3) irreps [19] makes possible to include
collective interactions that break the SU(3) symmetry. The
importance of pairing modes in the middle of the deformed
region has been pointed out in studies of theKp=0+ states
[20], hence these terms are included in our model Hamil-
tonian. The Hamiltonian that is appropriate for the descrip-
tion of the nuclei being considered includes spherical single-
particle terms for both protons and neutronsHSP

s ; proton and
neutron pairing terms HP

s; an isoscalar quadrupole-
quadrupole interactionQQ; and four smaller “rotorlike”
terms that preserve the pseudo-SU(3) symmetry:

H = HSP
p + HSP

n − GpHP
p − GnHP

n − 1
2xQ ·Q + aJ2 + bKJ

2

+ a3C3 + asC2, s1d

whereC2 andC3 are the second and third order invariants of
SU(3), which are related to the axial and triaxial deformation
of the nucleus. The calculations assumed standard values for
the proton and neutron single-particle energies and fixed val-
ues[21] for pairingsGp=21/A,Gn=17/Ad, as well as for the
quadrupole-quadrupole interaction strengthsx=35A−5/3d.
The other interaction strengths were varied to give a best fit

to the second 0+ (b bandhead), first 2+ and 2g
+ states[21].

The term proportional toKJ
2 breaks the SU(3) degeneracy of

the differentK bands[22], the J2 term represents a small
correction to fine tune the moment of inertia, and the last
term C2, is introduced to distinguish between SU(3) irreps
with l andm both even from the others with one or both odd
[23]. The fitting was done in the following way: the interac-
tion strengths ofC3, a3 and C2, as were varied to fit the
energy of the second 0+ state. The interaction strengthb of
KJ

2 was varied to fit the energy of the 2g
+ bandhead, which is

not necessary the second 2+ state. The interaction strengtha
of the J2 was varied—but only slightly—to give a best fit to

TABLE I. Occupation numbers for members of theF0=0 multiplet. These numbers are used to determine
the SU(3) basis states. The leading proton, neutron and coupled SU(3) quantum numbers are given in the last
three columns.

Nucleus N nn nn
+ nn

− np np
+ np

− sl ,md slp ,mpd sln ,mnd

152Nd 10 10 6 4 10 6 4 (30,0) (12,0) (18,0)
156Sm 12 12 6 6 12 6 6 (30,0) (12,0) (18,0)
160Gd 14 14 8 6 14 8 6 (28,8) (10,4) (18,4)
164Dy 16 16 10 6 16 10 6 (30,8) (10,4) (20,4)
168Er 18 18 10 8 18 10 8 (30,8) (10,4) (20,4)
172Yb 20 20 12 8 20 12 8 (36,0) (12,0) (24,0)
176Hf 22 22 14 8 22 14 8 (8,30) (0,12) (8,18)

FIG. 2. (Color online) SU(3) content[%] of wave functions of
the collective ground,Kp=02

+, and Kp=2+ states in148Nd (upper
left), 156Sm (upper right), 160Gd (middle left), 164Dy (middle), 168Er
(middle right), 172Yb (lower left), and176Hf (lower right). The dif-
ferent patterns label the SU(3) irreps given in Table II.
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the moment of inertia of the g.s.b.. Within this framework,
the splitting and mixing of the pseudo-SU(3) irreps is gener-
ated by the proton and neutron single particle termssHSP

p/nd
and the pairing interactions. As will be seen in the following
analysis, this mixing plays an important role in the reproduc-
tion of the behavior of the low-lying collective states in the
deformed nuclei.

IV. RESULTS AND DISCUSSION

A microscopic interpretation of the relative position of a
collective band, as well as that of the levels within the band,
follows from an evaluation of the primary SU(3) content of
the collective state. A connection between the microscopic
quantum numberssl ,md and the collective shape variables
sb ,gd is well known [11]. Our results show that if the lead-

ing configuration supports triaxiality(mÞ0, with the triaxi-
ality reaching a maximum whenm<l), the ground andg
bands belong to the same SU(3) irrep; if the leading SU(3)
configuration is prolatesm=0d, theKp=02

+ andKp=2g
+ have

similar SU(3) structures. The levels within a given band have
very similar content. Results are presented in Fig. 2 and
Table II. All of the SU(3) product configurations that contrib-
ute more than 2% to the total are identified. An analysis of
the wave functions follows.

In the first region, the bands considered for the nuclei
152Nd and 156Sm, have a very similar SU(3) content. The
ground states are spread over almost all of the SU(3) irreps
considered in the calculations with a maximum, but less than
40%, in the most symmetric leadings12,0d ^ s18,0d
→ s30,0d configuration(see Table II). The Kp=02

+ and g
bandheads are strongly mixed, with about 89% from theg
band in the coupleds12,0d ^ s12,6d→ s24,6d configuration

TABLE II. SU(3) content[%] of the ground state andKp=2+ andKp=02
+ states in the seven nuclei shown

in Fig. 2. All the basis states that contribute more than 2% are identified.

Nucleus State slp ,mpd ^ sln ,mnd→ slmd 0g.s. 2g
+ 02

+

152Nd a s12,0d ^ s18,0d→ s30,0d 38.0 2.2

b s12,0d ^ s12,6d→ s24,6d 6.1 88.6 75.9

c s12,0d ^ s14,2d→ s26,2d 33.7 8.1 15.5

d s8,2d ^ s18,0d→ s26,2d 16.2
156Sm a s12,0d ^ s18,0d→ s30,0d 37.0 2.3

b s12,0d ^ s14,2d→ s26,2d 34.2 8.6 15.5

c s8,2d ^ s18,0d→ s26,2d 16.3

d s12,0d ^ s12,6d→ s24,6d 6.5 89.1 75.6
160Gd a s10,4d ^ s18,4d→ s28,8d 62.7 85.5 11.1

b s10,4d ^ s18,4d→ s30,4d 63.7

c s10,4d ^ s20,0d→ s30,4d 11.0 4.4 5.6

d s12,0d ^ s18,4d→ s30,4d 17.5 9.3 5.6

e s10,4d ^ s18,4d→ s32,0d 2.4 7.9

f s12,0d ^ s20,0d→ s32,0d 5.6 6.0
164Dy a s10,4d ^ s20,4d→ s30,8d 55.3 78.8

b s10,4d ^ s20,4d→ s32,4d 8.4 4.3

c s10,4d ^ s22,0d→ s32,4d 12.9 4.4

d s12,0d ^ s20,4d→ s32,4d 16.2 11.6

e s10,4d ^ s20,4d→ s34,0d 3.3

f s12,0d ^ s22,0d→ s34,0d 3.9

g s10,4d ^ s14,10d→ s24,14d 100.0
168Er a s10,4d ^ s20,4d→ s30,8d 62.0 76.9

b s10,4d ^ s20,4d→ s32,4d 11.2 4.6

c s12,0d ^ s20,4d→ s32,4d 11.3 6.0

d s10,4d ^ s22,0d→ s32,4d 6.8 4.8

e s10,4d ^ s20,4d→ s34,0d 4.8

f s10,4d ^ s14,10d→ s24,14d 2.3 9.7 92.7
172Yb a s12,0d ^ s24,0d→ s36,0d 93.5 2.6

b s12,0d ^ s16,10d→ s28,10d 5.4 35.0 22.3

c s4,10d ^ s16,10d→ s20,20d 61.6 74.8
176Hf a s0,12d ^ s8,18d→ s8,30d 98.7 98.6

b s3,9d ^ s11,15d→ s14,24d 100.0
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(see Table II). In this case the bandhead of theg band is
above the bandhead of theKp=02

+ band. For the152Nd
nucleus, a state of angular momentumJp=2+, Kp=2+ is not
known experimentally. Our results predict, with an uncer-
tainty that can be deduced by comparing theory with experi-
ment for other states, that such a state should exist at about
1.31 MeV. This value agrees with that of the otherJp=2+,
Kp=2+ states that are bandheads of theg band for the con-
sidered sequence of nuclei.

For the three nuclei in the middle of the shell(160Gd,
164Dy, and168Er), the bandhead of theg band lies below the
bandhead of theKp=02

+ band. The leading SU(3) irreps for
these nuclei have quantum numbersm.0 andl.m. Figure
2 shows the calculated SU(3) content for the bandheads in
160Gd, 164Dy, and 168Er. Members of the g.s.b. and theg
band are rather strongly mixed with the largest single irrep
percentage in states of theg band. TheKp=02

+ band is pri-
marily other SU(3) product configurations. For the164Dy
case, where the bandhead of theg band reaches its highest
energy value there is no mixing, that is, the bandhead is
100% in s10,4d ^ s14,10d→ s24,14d. Note that this is also
whenm reaches its largest value.

In the third region, the experimental situation is very simi-
lar to that of the first region. However there are some impor-
tant differences.

(i) The ground state for the172Yb nucleus is almost 100%
s12,0d ^ s24,0d→ s36,0d with a small admixture ofs12,0d
^ s16,10d→ s28,10d, a configuration that plays an impor-
tant, but not dominant role in theg and Kp=02

+ bandhead
configurations. Theg band shows the greatest amount of
mixing with the 02

+ but with the largest percentage
s<62%d in the triaxial irreps4,10d ^ s16,10d→ s20,20d.

(ii ) In the case of176Hf, the protons and the neutrons in
the normal parity states fill more than half the shell. This
means that the SU(3) quantum numbers for the leading pro-
ton (0, 12) and neutron(8, 18) irreps havel,m, which
correspond to oblate intrinsic shapes and as a result the
SU(3) quantum numbers for the leading irrep(8, 30) also
have l,m. In this case, based on the fact thatlÞ0 (for
oblate in contrast with prolate shapes) l and m must be in-
terchanged in making a determination ofK bands and theirL
content, that is, the “new” rule for oblate configurations is
the same as the “old” prolate rule but with thesl ,md
→ sm ,ld interchanged. Hence, one would anticipate that the
ground state and the bandhead of theg band share the same
SU(3) structure, and this is in fact what happens. But one
must also recognize that the shapes are now oblate rather
than prolate and this changes the excitation spectra, depend-

ing on the third order invariantfC3= 1
9s2l+m+3dsl−mdsl

+2m+3dg that enters the Hamiltonian. Further, it is also im-
portant to recall that it is the size of the coefficient multiply-
ing QQ, either directly or through the coefficientas multi-
plying C2, that determines the magnitude with whichQQ
enters the theory and in the case of176Hf the as parameter is
somewhat larger and as it is used to adjust the position of the
K=02 andg bandheads in a way similar to that found in the
first region.

The parameters of the Hamiltonian(1) that were obtained
through a fitting procedure applied to all of the nuclei con-
sidered in this study, are given in Table III. A full understand-
ing of the collective properties of the g.s.b. as well as the first
excitedKp=02

+ and the 2g
+ bands must take into account the

mixing of nonleading SU(3) configurations into their states,
mixing that is driven by the Hamiltonian(1). For example,
the single particle terms and the pairing interactions split and
mix SU(3) irreps[24], and since the mixing normally draws
in states with largerm values the net effect of pairing is to
reduce the axial deformation of the system by pulling in
configurations that display greater triaxiality.(This is consis-
tent with the notion that claims pairing drives a system to-
wards a spherical shape.) The quadrupole-quadrupole inter-
action drives the proton and neutron systems towards prolate
shapes if the oscillator shell is less than half full, towards
oblate shapes if the respective shell is more than half full,
and to largeb values at maximum asymmetry for shells
which are roughly half full. In addition to the quadrupole-
quadrupolesxd and the pairing strengths(Gp andGn) which
change very smoothly as a function of mass, the “fine-
tuning” of the energies of the nonyrast band states required
the use of the other four parametersa3, a, b, andas, which
were sufficient to determine the correct behavior of the states
under consideration and differences in energies of the nuclei
with equivalent configurations. The latter applies to the cases
of 152Nd, 156Sm and164Dy, 168Er (see Table I). The equiva-
lence of their corresponding SU(3) configurations is a result
of the fact that the current version of the model focuses only
on the particles in the normal parity orbits. The nuclei with
the same SU(3) leading irreps(see Table I) differ by the
number of particles in the unique parity states of the Nilsson
scheme. With the interaction strengths given in Table III, the
theoretical spectra of the nuclei considered are in good
agreement with one another(systematic changes in interac-
tion strengths as a function of mass) and with the experimen-
tal data, not only for bandhead configurations that we fo-
cused on here, but also for the excited states within those
bands. As an example, the low lying spectra for the nucleus
160Gd is presented in Fig. 3.

TABLE III. Interaction strengths(coef) determined by fitting calculated eigenenergies to the experimental
numbers for the nuclei(nucl) considered in the analysis.

coef/nucl 152Nd 156Sm 160Gd 164Dy 168Er 172Yb 176Hf

a3310−4 2.57 2.59 1.93 0.65 0.75 0.31 0.43

a 0.000 0.000 0.001 −0.001 −0.002 −0.001 −0.007

b 0.00 0.55 0.153 0.042 0.022 0.12 0.3

as 0.000 0.000 0.004 0.001 0.001 0.001 0.006
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The four parameters given in Table III that were fit to
obtain a correct reproduction of the energies of the states
under consideration are quite important and must be consid-
ered in conjunction with the SU(3) representations in deter-
mining the shapes of the various nuclei. For example, de-
pending upon the sign and magnitude ofa3, which
determines the strength of the third order invariantC3 of
SU(3) in the Hamiltonian, one can add to or subtract from
the deformation of the system by favoring or not favoring
triaxial configurations. The parameterb primarily tracks the
behavior of the 2g

+ bandhead. The strength of the quadrupole-
quadrupole interaction, which enters directly with the coeffi-
cient x, is enhanced or moderated depending upon the sign
and magnitude ofas since apart from an additiveL2 part that
alters the effective moment of inertia of the system, the sec-
ond order invariantC2 of SU(3) is just QQ.

V. CONCLUSIONS

Algebraic models have emerged as a result of attempts to
reproduce experimental observations with simple calcula-
tions. In the evolution of the SU(3) model, and later the
pseudo-SU(3) model, one of the main motivations was to
achieve a good description of deformed nuclei using a small
but realistic configuration space. In the present study the
configuration spaces are certainly small compared with typi-
cal ones that are used in shell-model calculations based on
m-scheme configurations; nevertheless, they contain the
main features of the observed complex behavior of the low-
lying, nonyrast collective bands. This is a result of the mi-
croscopic basis of the theory and the fact that it correctly
takes into account the distribution of particles among the
single-particle levels of the valence shell. Very important to

obtaining the correct results is the combination of proton and
neutron representations that enter the bases states. The SU(3)
coupled representations that emerge from this analysis yield
information about the deformation of each system’s collec-
tive states. The truncation scheme that is used is also gov-
erned by symmetry principles and tracks the onset of a de-
formation trough in the coupled configuration space. The
Hamiltonian of the model includes terms that are not invari-
ants of SU(3) and therefore split and mix the resultant eigen-
vectors. The single particle terms and the pairing interactions
play an important role in determining the distribution of
eigenstates across the allowed SU(3) configurations. The
four parameters that are used for fine tuning the spectra per-
mit not only a very good reproduction of the experimental
data, but also give predictions as to the position of states that
have not yet been experimentally identified in this region.

A microscopic interpretation of the relative position of
collective bands, as well as that of the levels within these
bands, follows from an evaluation of the primary SU(3) con-
tent of the collective states. The latter is closely linked to
nuclear deformation[9]. In particular, a proper description of
collective properties of the first excitedKp=2+ and Kp=02

+

states must take into account the mixing of different SU(3)
irreps which is driven by the Hamiltonian.

The theory can be used to predict the onset of deformation
in the ground state and the low-lying, nonyrast collective
bands as a function of mass number. The success of this
study suggests that its applicability to otherF0 multiplets, as
contained in the boson representations of the sps4,Rd algebra
[25], should be explored. This study also reaffirms that pseu-
dospin zero neutron and proton configurations with a rela-
tively few pseudo-SU(3) irreps with largest deformations(C2
values) suffice to obtain reasonable agreement with known
experimental energies of low-lying yrast and nonyrast band
states in deformed nuclei(see Fig. 3). The theory simulta-
neously tracks changes within the bands and in the bandhead
configurations themselves across a series of nuclei that differ
from one another by ana-particle-like(two proton plus two
neutron) clusters.

ACKNOWLEDGMENTS

Support from the U.S. National Science Foundation,
Grant No. PHY-0140300, and the Southeastern Universities
Research Association is gratefully acknowledged. The au-
thors are grateful to Dr. S. L. Drenska for the help in the
empirical investigation of the behavior of the nonyrast band-
heads.

[1] P. E. Garrett, J. Phys. G27, R1 (2001).
[2] R. K. Sheline, Rev. Mod. Phys.32, 1 (1960).
[3] A. Bohr and B. R. Mottelson,Nuclear Structure(Benjamin-

Cummings, Reading, MA, 1975), Vol. II.
[4] R. F. Casten, P. von Brentano, and N. V. Zamfir, Phys. Rev. C

49, 1940(1994).
[5] S. Drenska, A. Georgieva, V. Gueorguiev, R. Roussev, and P.

Raychev, Phys. Rev. C52, 1853(1995).
[6] S. Drenska, A. Georgieva, and N. Minkov, Phys. Rev. C65,

054303(2002).
[7] J. P. Draayer, inAlgebraic Approaches to Nuclear Structure:

Interacting Boson and Fermion Models, Contemporary Con-
cepts in Physics VI, edited by R. F. Casten(Harwood Aca-
demic, Chur, 1993), p. 423.

FIG. 3. Experimental and calculated low-lying energy spectrum
for 160Gd.

G. POPA, A. GEORGIEVA, AND J. P. DRAAYER PHYSICAL REVIEW C69, 064307(2004)

064307-6



[8] J. P. Draayer and K. J. Weeks, Ann. Phys.(N.Y.) 156, 41
(1984).

[9] T. Beuschel, J. G. Hirsch, and J. P. Draayer, Phys. Rev. C61,
054307(2000).

[10] C. Vargas, J. G. Hirsch, P. O. Hess, and J. P. Draayer, Phys.
Rev. C 58, 1488(1998).

[11] Y. Leshber and J. P. Draayer, Phys. Lett. B190, 1 (1987); O.
Castanos, J. P. Draayer, and Y. Leshber, Z. Phys. A329, 33
(1988).

[12] P. C. Sood, D. M. Headly, and R. K. Sheline, At. Data Nucl.
Data Tables47, 89 (1991); http://www.nndc.bnl.gov

[13] D. G. Burke and P. C. Sood, Phys. Rev. C51, 3525(1995).
[14] A. Aprahamianet al., Phys. Rev. C65, 031301(2002).
[15] J. P. Elliott, Proc. R. Soc. London, Ser. A245, 128 (1958);

245, 562 (1958).
[16] F. Iachello and A. Arima,The Interacting Boson Model(Cam-

bridge University Press, Cambridge, 1978).

[17] S. G. Nilsson, K. Dan. Vidensk. Selsk. Mat. Fys. Medd.29,
No. 16, 1(1955).

[18] J. Escher, J. P. Draayer, and A. Faessler, Nucl. Phys.A586, 73
(1995).

[19] C. Bahri and J. P. Draayer, Comput. Phys. Commun.83, 59
(1994).

[20] O. Mikoshiba, R. Sheline, T. Udagava, and Shiro Yoshida,
Nucl. Phys.A101, 202 (1967).

[21] G. Popa, J. G. Hirsch, and J. P. Draayer, Phys. Rev. C62,
064313(2000).

[22] H. A. Naqvi and J. P. Draayer, Nucl. Phys.A516, 351(1990);
A536, 297 (1992).

[23] Y. Leschber, Hadronic J. Suppl.3, 1 (1987).
[24] C. Bahri, J. Escher and J. P. Draayer, Nucl. Phys.A592, 171

(1995).
[25] A. Georgieva, M. Ivanov, P. Raychev, and R. Roussev, Int. J.

Theor. Phys.25, 1181(1985).

SYSTEMATICS IN THE STRUCTURE OF LOW-LYING,… PHYSICAL REVIEW C 69, 064307(2004)

064307-7


