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With a simplified model in the Hartree-Fock-BogoliuboMFB) approximation, the behavior of weakly
bounds,;; neutrons in the many-body pair correlation is studied by solving the HFB equation in coordinate
space with the correct asymptotic boundary conditions. It is shown that in one-neutron pickup reactions on the
even-even neutron-drip-line nuclei, which contain loosely bogjpdneutrons, the strength of ttsg,, neutron
can appear both at a discrete state and in the low-energy continuum spectra, with comparable strength. When
there is no weakly bound discrete state, the continuum spectra may exhibit a sharp peak jusi,atholve
which originates from the resonantlike behavior of the upper component of the HFB radial wave function,
Us1/2(Eqgp,T). This resonantlike behavior may be directly observed as-aave resonance close B=[\| in
neutron-scattering experiments on those nuclei. It is also shown that a very large root-mean-square radius of
loosely bounds,;, neutrons may appear also in the presence of many-body pair correlation, since the effective
pair gap in weakly bound neutron orbits with lofwalues is much reduced.
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I. INTRODUCTION In the present paper we employ the same model as used in

The study of nuclear structure for nuclei close to the dripRef- [1] and study in detail the properties related to the
lines is currently one of the most active and interesting fieldgveakly bounds, , neutron orbits. _ _ _
experimentally as well as theoretically. A special feature of In Sec. Il our model is briefly described, while numerical
the Weak|y bound neutron systems is the importance of COL[.BSU"[S and discussions are given in Sec. lll. Conclusions are
pling to the nearby continuum of unbound states; this phedrawn in Sec. IV.
nomenon is not present for weakly bound proton systems
because of the Coulomb barrier. Since weakly bound neu-
trons with small orbital angular momentuérhave an appre- Il. MODEL
ciable probability to be outside of the core nucleus, those
neutrons are insensitive to the strengtdius and/or depgh
of the potential provided by the well-bound nucleons in the
system. In particular, the behavior sfj, neutrons is an ex-
treme case since the centrifugal barrier is absent forfthe

In the present section only a brief summary of our model
is given, since the model is exactly the same as that used in
Ref. [1]. We consider the time-reversal invariant and spheri-
cally symmetric system with monopole pairing correlation.

=0 orbit. This difference in the properties of sméatheutrons Considering the coupling of the one-quasiparticle neutron

from those of weakly bound largé neutrons, for which the With € andj to the HF field,V(r) andV(r), and the pairing
wave functions stay mostly inside the potential, is known tofi€ld A(r), both of which are given by the core nucleus, our
lead to drastic effects on the shell structure in some neutroflFB €quation is reduced to the two-channel coupled equa-
drip line nuclei. In medium-heavy nuclei the occupancy oftion

weakly bounds,;, neutron orbits will never make a signifi- { @ e(+1) 2m }
cant contribution to the one-body potential and the many- =5+ [N+ Egp— V() = Vg(r)]
body pair correlation, since thosg,, particles are weakly dr r h

coupled to the core, in addition to the very small number of
particles which can occupy th&,, orbits. Nevertheless, the

nuclear matter density at large radii can be decisively influ- {

2m
X U(J‘ - ?A(f)l}gi = 0,

2 (1)
enced by such weakly boursg,, neutrons. d—2 - 6(6—:1) + Z—TD\ —Eqp— V(1) - Vso(r)]}
In Ref. [1] the Hartree-Fock-BogoliubofHFB) equation dr r h
in a simplified model was solved in coordinate space with 2m
the correct asymptotic boundary conditiofs-4], and the X g +?A(r)uei =0,
pair correlation in nuclei close to the neutron drip line was
studied. It was shown that the occupation probability of thewhereu,; andv; express the upper and lower components of
lower-¢ orbits of the Hartree-FockHF) potential decreases the radial wave functions in the HFB approximation, respec-
considerably when the binding energy of the HF one-particldively. We take positive quasiparticle energigg,>0 and
level becomes small, and those orbits soon become almosensider bound states<0. Then,(A\—E,) is always nega-

unavailable for the pair correlation of the many-body systemtive, while (\+Eg,) can be either negative or positive. The
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asymptotic boundary conditions and the normalization of the 1.0 'H'FE';' 'I t S
. . . 3 solutions E
wave functions are described in Ref$,2,4. _ £ 09 3 volume pairing A=80 e
Then, for simplicity, we replace the HF potential by the 2 0.8 3 A =eps =— 0.3 MaV =
Woods-Saxon potential together with the spin-orbit potential, S 07 3 A=10MeV E
of which the parameters are the standard ones usefl in Z 06 3 38yz-0rbit E
stable nuclei[1,5]. For the given radiuR=r AY® with rq § 05 3 E™4,=0.279 MeV 3
=1.27 fm, the diffusenesa=0.67 fm and the strength of 50'4_5 3
spin-orbit potential, we vary the potential strength by chang- S 03 3 3
ing the depth of the Woods-Saxon potenigls so that the : E g
correspondingHF) single-particle energy,ysis varied. We g 02 E 3
show numerical results with the volume-type pairing, © o1 E £
0.0 T+
A(r) o f(r), (2) 00 05 10 15 20 25 30
) E, (MeV)
where
FIG. 2. Occupation probability7) of HFB continuum solutions
f(r) = 1 3) for the 35/, orbit and\ =¢\ys=—0.3 MeV as a function of quasipar-
B - ticle energy. The quasiparticle energy of the discrete solution of the
1+ex _a HFB equation Eq5°=0.279 MeV, is indicated by the thick arrow.

The vertical thin line shows the position pf|. Note that the scale

since the surface-type pairing leads to essentially the sanfd they axis i; one orQer of magnitude different from that of Fig. 1.
physics conclusion. The averaged strength of the pair fiele€ the caption fo Fig. 1.

defined by
lIl. NUMERICAL RESULTS AND DISCUSSIONS
f r2drA(r)f(r) In numerical calculations we tak&=1.0 MeV and vary
A= 0 (4) ews keeping the condition)\zsws so that t_he particular
7, single-particle level witheys should be considerably occu-
. redr £(r) pied, hopefully by about 50%. As(<0) increases to zero,

we simulate neutron drip line nuclei, in which the one-
is an input of numerical calculations expressing the strengtRarticle level is placed on the Fermi level.
of the pair field. Since in Ref[1] some properties of HFB solutions of the

It should be emphasized that both the one-body potentia#si/ orbit are already shown taking ti#e=80 system, in the

V(r) and the pair field\(r) come almost exclusively from the present study we consider the same system. Indeedstje 3
well-bound or(weakly bound, buthigh-¢ particles, and not Orbit is the firsts; , orbit that can occur near the Fermi level
from loosely bounds,,, neutrons. Thus in our present work Of neutron drip line nuclei, for which the many-body pair
we study the behavior of weakly boursg, neutrons in the ~correlation may play a role. In Figs. 1-4 the calculated oc-

many-body pair correlation for givewi(r) and A(r). cupation probability is shown for the cases dFeys=
-1.0,-0.3,-0.2, and -0.1 MeV, respectively. In the first two

0.10 T T T T T [ T N T W A |

~0.09 _E HFB SOIUtion$4 E_ 10.0 T T S M S I S A S A A
oY E volume pairing A=80 E ~ 90 b HFB solutions r
© 0.08 -; A=gws =— 1.0 MeV ? "> ] volume pairing A=80 B
s E A=1.0MeV E 2 8.0 ) = ews=— 0.2MeV -
>, 0.07 =t E = i — L
£ 3 3s,-0rbit E > 7.0 A=10MeV -
5 0.06 el E £ i ) L
§ 0.05 E% = 0.491 MeV 3 5 60 3s,-0rbit C
2 E E =] _ B
c 0.04 3 3 g 50 B
<] E E i L
& 0.03 3 E 5 4.0 ] -
o pu E E=1 - -
2002 3 : g 397 i
0 0.01 3 § 2.2 . .
3 E 1.0 -
000 —T—— 1T T T T T T E =

00 05 10 1.5 20 25 30 0.0 T LI L B I B Y I O B
E, (MeV) 0.0 0.5 1.0 c 1(,39\/) 2.0 25 3.0

ap

FIG. 1. Occupation probability7) of HFB continuum solutions . babili ¢ . luti
for the 35,,, orbit and\ =sy,<=—-1.0 MeV as a function of quasipar- FIG. 3. Occupation probability7) of HFB continuum solutions

ticle energyE,,. The quasiparticle energy of the discrete solution of fprl the 3, Or,g't edu_qd)\:swgl _(_)'2 Mfe\k/] az?:;unctlon_ of quast')p"’?r' g
the HFB equationEqs°=0.491 MeV, is indicated by the thick ar- ticle energy. No discrete solution of the equation Is obtaine

row. The one-particle energy eigenvalue for the Woods-Saxon pof_or the present parameters. The vertical thin line shows the position

tential is expressed bg(ys The vertical thin line shows the position o_f [\|. Note that the sc.ale of the axis is one orde_r of magnitude
of [\|. See the text for details. different from that of Fig. 2. See the caption to Fig. 1.
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100 b b b b by TABLE I. Properties of 3, neutron orbits: Energy of discrete
~ 90 H':zjf:;”g;rr‘iﬁg A0 = solution (if it exists), occupation probabilities of discrete and con-
T 8.0 %= ewes — 0.1 MeV L tinuum solutions, and the expectation values of radius squared as a
E; 70 A=1.0MeV C function ofeys=\. No discrete quasiparticle solution was found for
Z 604 3sy-0rbit C the parametersys=), if the value of E§>° is not written. A
§ 5.0 L =1 MeV is used. See the text for the definition of various
S 40 C quantities.

§ 301 - di 2 2
§ 20 L sws=A qupsC Udisc  Ucont <r2>disc <r2>cont <r2>total <r2>WS
8 1o 3 (MeV) (MeV) (fm?  (fm?)  (fm?)  (fm?)
0.0 H—F Tt -10  0.957 0.476 227 227 233
00 05 10 15 20 25 30 -1 0.491 0.433 0.021 467 346 461 552
Eq (MeV)

-0.5 0.367 0.380 0.059 59.4 45.9 575 774

FIG. 4. Occupation probabilit§7) of HFB continuum solutions —0.3 0.279 0.274 0157 722 599 676 1024
for the 3/, orbit and\=¢ys=—0.1 MeV as a function of quasipar- -0.2 0.418 76.9 76.9 130.8
ticle energy. No discrete solution of the HFB equation is obtained_q 1 0.399 94.9 949 205.9
for the present parameters. The vertical thin line shows the positior
of [\|. Note that the scale of thg axis is one order of magnitude
different from that of Fig. 2. See the caption to Fig. 1. 10 70

UcontE fl

‘dEQP 0 dr|Usl/2(Eqp,I')|2, (8)
N

cases a discrete solution is obtained E{{;°=0.491 and
0.279 MeV, respectively, while in the latter two cases nognd that of the discrete solution,
discrete solutions are found. The presence of the discrete

solution withE%S°=0.279 MeV clearly shows that the effec-
tive pair gap for the 8/, orbit atA=¢,,=—-0.3 MeV is less
than 0.279 MeV, which is much smaller than the averaged , o
valueA=1 MeV. It is noted that the effective pair gap for &€ tabulated. Wheng,,, is calculated, the quasiparticle en-

large ¢ orbits, for example, thedlorbit, is always larger than ergy is integrat.ed until 10 MeV while the radial integration is
g 115, for examp glorbit, Is always larg carried out until 70 fm. Fok =gy s<—-1 MeV the amount of
the value ofA [1].

, . . .. v2,is negligibly small, while fon=gys>—0.221 MeV the

The occupation probability for the discrete solution is \ilie ofvgijis iero, since no discrete solution exists, It is
seen that varying\=eyg from -1 to -0.2 MeV the §;,,
occupation probability moves smoothly from the discrete to
continuum solutions. Furthermore, the peak energy of the
quantity(7) approache&,,=|\| ash =g <0) increases up
till about -0.22 MeV, while it goes away froi,,=|\| when
\=gysincreases further. And, the peak liessgt~|\| at the
value of A =gyg~=—-0.22 MeV after which the discrete solu-
" tion disappears; see Fig. 3 and note that the scale of the

J [|ue,-(Eqp,r)|2+ |v4,-(Eqp,r)|2]dr= 1, (6) axis in Figs. 3 and 4 is diﬁ‘erent_from those of_ Figs. 1 and 2

0 by two and one orders of magnitude, respectively.

The result presented in Figs. 1-4 suggests that if one per-
while that for the continuum solution, which is plotted in forms one-neutron pickup reactions on those even-even
Figs. 1-4, is neutron-drip-line nuclei, which contain loosely bousg,

neutrons around the Fermi level, the strength ofgheneu-
o tron can appear both at a discrete state and in the continuum
f |v€j(Eqp,r)|2dr, where (A + Eqp) >0, (7) spectra, with comparable magnitudes. Then, the occupation
0 probability of thes;;, orbit in the ground state of the target
nucleus must be estimated by summing up those two kinds
which represents the occupation number probability densitgf strength. In the case that the population of the discrete
per unit energy intervel2]. Since the dimensions of the two state is absent, the continuum spectra may exhibit a sharp
expressiong5) and(7) are different due to the difference in peak just abové&,=|\|, which originates from the resonant-
the normalization of radial wave functions, in Figs. 1 and 2like behavior of the upper radial wave functian »(Eqp, ).
the discrete quasiparticle energy is indicated by the thick The relation between the phase shifts of the upper com-
arrow, while in the cases of Figs. 3 and 4 there is no suclponent of the radial wave functian;(Eg,,r) in the presence
discrete quasiparticle solution. In Table | thg,3occupation and absence of the pairing potentia(r) is discussed in
probability of the continuum solution integrated over the rel-Refs.[2,4] in the case of the quasiparticle resonant solutions
evant energy region, induced by the bound single-particle states. Fer0 neu-

70
UgiscE JO dr|vsllz(Eglpscar)|2, (9

fo v (EGsSr)[2dr,  where (\+EZS9 <0,  (5)

for which the normalization of the wave functions is written
as
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FIG. 5. Calculated phase shift of the upper component of the FIG. 7. Comparison between the shapes of tsigeradial wave
radial wave functionusg »(Eqp,r) for the parameters of Fig. 3. The functions for the parameters of Fig. 2; the normalizeg3eigen-
vertical thin line shows the position &f|, while the horizontal thin ~ function of the Woods-Saxon potentigly{r), the discrete solution

line denotes the value of/2. The used depth of the Woods-Saxon Of the HFB equation(E§5°=0.279 MeVr), and the continuum
potential is denoted byys solution of the HFB equationv(Ey,=0.314 MeVy) where

0.314 MeV is the peak energy of the continuum occupation prob-
ability shown in Fig. 2. All three wave functions are bound-state

trons the phase shif®) of the radial wave functions does not . -
wave functions, however, only the shapes of those wave functions

increase throughr/2 as energy increases, if the pair poten-

. . . .should be compared, since the continuum solutiofE,
tial A(r) is absent. In contrast, in the presence of the PaIL 314 MeVr) shown by the dashed curve has a different girjmen-
potential the phase shift ok, ,(E,,,r) may increase through  gion from the other two.

/2 as energy increases, but the energy=atr/2 does not

in general co_rrespond to a resonance behawqr of The sharp resonantlike behavior afy/,(Egp,) obtained
Usy/2(Eqp, ). In Fig. 5 we show the calculated phase shift of ¢, o —) ~_0.2 MeV suggests that the cross section of the
Usy/2(Eqp, ) for the parameters of Fig. 3. We observe & sharheytron scattering on those even-even nuclei will show the
increase of the pha;e shift, or a large positive valug of th@ wave resonance structure at an energy clos&,tol\|.
derivativeds/dEgp, slightly aboveEy,=[\|=0.2 MeV, which  Neutrons-wave resonances in heavy nuclei at very low en-
leads to the sharp peak of the occupation probability in Figergy have been extensively studied since their discovery in
3 around the same energy. For reference, the calculated phaggss for example, see p. 176 of Ré5)). In those reactions
shift for the parameters of Fig. 2 is shown in Fig. 6, whichon g stable nuclei the relevant nuclear states are at high
exhibits a large negative value of the derivatd&/ dE,, at  excitation energy(E,~S,~5-7 Me\) and the spectro-
Eqp=I\|=0.3 MeV. For the present set of parameters thescopic factors of thes,, state is of the order of 6. In
value ofds/dEy,, slightly aboveEyp=|\| changes from =10 conirast, the spectroscopic factor of the present example of
+ when the value of eys=\ increases through gyave resonance, which may be observed at very low exci-
-0.221 MeV. And, at this energy the dlscr.ete solutionyation energyE,~ |\| (typically, a few hundred ke for
[namely the bound-state solution @, >(Eqp.1)] disappears. some neutron drip line nuclei, may be of the order of
101-102 In the absence of pair field for a given one-body

e e potential such neutros-wave resonances are expected to
0.  FFBsolutions E occur just before the potential strength becomes strong
2 04 ] volume paring E enough to make as-wave one-particle bound state. In con-
S 1 A=w . trast, in the presence of pair field teavave resonance may
5-06 7 o be observed for neutron drip line nuclei, in which s
S .08 C level lies around the Fermi leval (=—a few hundred keY
5 1 Aotws-03MeV - In Fig. 7 the shape of threg,, radial wave functions are
2 1.0 1 s g compared taking the same parameters as those used in Fig. 2.
T 12 Vi = - 30.43 MV’ c The wave functiongydr) of the Woods-Saxon eigenstate
4.4 o with the eigenvalue —0.3 MeV is shown by the dotted curve
] i which are normalized to unity, while the lower radial wave
18 000'10'20'30'405 function v(Eg';C:O.279 MeVy) is denoted by the solid

Eq (MeV) curve. The wave function(Ey,=0.314 MeVy) is shown by
the dashed curve, where 0.314 MeV is the peak energy of the
FIG. 6. Calculated phase shift of the upper component of thecontinuum occupation probability exhibited in Fig. 2.
radial wave functionuzg »(Eqp, 1) for the parameters of Fig. 2. The Though all three wave functions are bound-state wave func-
vertical thin line shows the position ¢f|, while the horizontal thin  tions, we should compare only the shape of those wave func-
line denotes the value ofr/ 2. tions in Fig. 7, since the wave function denoted by the
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dashed curve has a dimension different from the other two. It 07 4 _O'mit B 'volu;ne 'amn' Ll
is seen that wave functions expressed by the dashed and 06_‘ o - 80 paling e i
solid curves, which are calculated in the presence of pair =~ | Z=t10Mev —e Vaa?
correlation, extend to the far outside of the radius of the £05 - oo Ve |
Woods-Saxon potential, because the effective pair gap for the § ] I
3sy/, orbit with such a small binding energy is very much g°‘4 l |
reduced. In Table | we show the expectation value iof the S 0.3 - L
discrete solution - -
3 0.2 H -
70 ‘ S o1 o B
J r2drlv(EGsSnI? 1] I
0
<r2>discE 5 , (10) 0.0 T T T T T ¢
Ugisc 12 10 -08 06 -04 -02 00 02
7\.=8ws (MeV)

the one in the continuum solution ) . ) 5
FIG. 8. Occupation probabilities,, v2,,, andvs,, as a func-
10 70 tion of N\=eywg The relation\=¢g does not hold for the open
J dEf r2dr|v(E,r)|2 square plotted aty,=+0.02 MeV forvtzotal, which was obtained by
_ 7N 0

2 using Vyys<=-36.259 MeV and\=-0.02 MeV. See the text for
<r >cont: 2 ’ (11) details.

Ucont

2 2 2
. . . =02 +v2 14
the averaged value over the discrete and continuum solutions Vtotal = Vdisc ™ Ucont (14)
as a function of\=gys>-1.0 MeV. It is remarkable to ob-

70 5 disc 12 10 70 ) 5 serve thatvtzOtal of the s/, state is only slightly decreasing
f redriv(Egy )| +J dEf redrlv(E,r)| until A=&,,4 <0) approaches within a few tens of keV to the
() = 0 A 0 continuum. In order to obtain an indication of an approxi-
total 2 2 ! 2
Vgiset Veont mate value ob;,,,, for eys=0, by an open square we denote

(12) the value ofvZ , at eys=+0.02 MeV. The value was esti-
mated for the depth of the Woods-Saxon potentig)s=
—-36.259 MeV, which was obtained by extrapolating the re-
lation betweere,ysandVysfor eys=0, while we used\ =
—-0.02 MeV sincex must be negative in the present discus-
sion. For reference, we obtaineys=0 for Vys=

70
(Phue= fo (2t b2, (13 ~36.878 MeV.

and the one in the normalized,3 eigenstate witfz,ysof the
Woods-Saxon potential

IV. CONCLUSIONS

It is seen from Table | that even in the presence of the many- Using a simplified model in HFB approximation, we have
body pair correlation the root-mean-square radius of e 3 studied the characteristic feature of weakly bound neutrons
neutron orbit can become very large in the limitiofeys  UNidue to those irsy, orbits in neutron drip line nuclei. The
—0, due to the considerably reduced effective pair gap foFffd":'Ct'\’de pair gapd Of.tlr?ct’setly fbountsll,z nel.JttI:olns IS ;T‘UCh
loosely bounds;, neutrons. Consequently, we expect that'€duced compared with that of neutrons with largemlues.
so-called halo phenomerim particular, the presence of an The small pair gap leads to a large root-mean-square radius

; . ; of thoses;;» neutrons lying close to the Fermi level, even in
appreciable ta"..Of th? ground-state matter density at anomgpq presence of many-body pair correlation. If one-neutron
lously large radii, which must come frosj,, neutron$ can

. . .__pickup reactions on those even-even neutron-drip-line nuclei
be generated in the presence of many-body pair correlatlongan be performed, the strength of the neutron may appear

For a different conclusion concerning this interesting quesyoih at a discrete state and in the continuum. If the pickup
tion, see Ref[6]. , strength of thes,;, neutrons is not observed at a discrete
In Fig. 8 we plotvgs. from Eq.(9), ve,n from Eq.(8), and  state, the cross section of the neutron scattering on the even-
the total occupation probability of th®, state, even nuclei can exhibis-wave resonance structure at the
positive energies corresponding|dd =~ a few hundred keV.
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