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With a simplified model in the Hartree-Fock-Bogoliubov(HFB) approximation, the behavior of weakly
bounds1/2 neutrons in the many-body pair correlation is studied by solving the HFB equation in coordinate
space with the correct asymptotic boundary conditions. It is shown that in one-neutron pickup reactions on the
even-even neutron-drip-line nuclei, which contain loosely bounds1/2 neutrons, the strength of thes1/2 neutron
can appear both at a discrete state and in the low-energy continuum spectra, with comparable strength. When
there is no weakly bound discrete state, the continuum spectra may exhibit a sharp peak just aboveEx= ulu,
which originates from the resonantlike behavior of the upper component of the HFB radial wave function,
us1/2sEqp,rd. This resonantlike behavior may be directly observed as ans-wave resonance close toEx= ulu in
neutron-scattering experiments on those nuclei. It is also shown that a very large root-mean-square radius of
loosely bounds1/2 neutrons may appear also in the presence of many-body pair correlation, since the effective
pair gap in weakly bound neutron orbits with low, values is much reduced.
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I. INTRODUCTION

The study of nuclear structure for nuclei close to the drip
lines is currently one of the most active and interesting fields
experimentally as well as theoretically. A special feature of
the weakly bound neutron systems is the importance of cou-
pling to the nearby continuum of unbound states; this phe-
nomenon is not present for weakly bound proton systems
because of the Coulomb barrier. Since weakly bound neu-
trons with small orbital angular momentum, have an appre-
ciable probability to be outside of the core nucleus, those
neutrons are insensitive to the strength(radius and/or depth)
of the potential provided by the well-bound nucleons in the
system. In particular, the behavior ofs1/2 neutrons is an ex-
treme case since the centrifugal barrier is absent for the,
=0 orbit. This difference in the properties of small, neutrons
from those of weakly bound large, neutrons, for which the
wave functions stay mostly inside the potential, is known to
lead to drastic effects on the shell structure in some neutron
drip line nuclei. In medium-heavy nuclei the occupancy of
weakly bounds1/2 neutron orbits will never make a signifi-
cant contribution to the one-body potential and the many-
body pair correlation, since thoses1/2 particles are weakly
coupled to the core, in addition to the very small number of
particles which can occupy thes1/2 orbits. Nevertheless, the
nuclear matter density at large radii can be decisively influ-
enced by such weakly bounds1/2 neutrons.

In Ref. [1] the Hartree-Fock-Bogoliubov(HFB) equation
in a simplified model was solved in coordinate space with
the correct asymptotic boundary conditions[2–4], and the
pair correlation in nuclei close to the neutron drip line was
studied. It was shown that the occupation probability of the
lower-, orbits of the Hartree-Fock(HF) potential decreases
considerably when the binding energy of the HF one-particle
level becomes small, and those orbits soon become almost
unavailable for the pair correlation of the many-body system.

In the present paper we employ the same model as used in
Ref. [1] and study in detail the properties related to the
weakly bounds1/2 neutron orbits.

In Sec. II our model is briefly described, while numerical
results and discussions are given in Sec. III. Conclusions are
drawn in Sec. IV.

II. MODEL

In the present section only a brief summary of our model
is given, since the model is exactly the same as that used in
Ref. [1]. We consider the time-reversal invariant and spheri-
cally symmetric system with monopole pairing correlation.
Considering the coupling of the one-quasiparticle neutron
with , and j to the HF field,Vsrd andVsosrd, and the pairing
field Dsrd, both of which are given by the core nucleus, our
HFB equation is reduced to the two-channel coupled equa-
tion

H d2

dr2 −
,s, + 1d

r2 +
2m

"2 fl + Eqp − Vsrd − VsosrdgJ
3 u, j −

2m

"2 Dsrdv, j = 0,

H d2

dr2 −
,s, + 1d

r2 +
2m

"2 fl − Eqp − Vsrd − VsosrdgJ
3 v, j +

2m

"2 Dsrdu, j = 0,

s1d

whereu, j andv, j express the upper and lower components of
the radial wave functions in the HFB approximation, respec-
tively. We take positive quasiparticle energiesEqp.0 and
consider bound statesl,0. Then,sl−Eqpd is always nega-
tive, while sl+Eqpd can be either negative or positive. The
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asymptotic boundary conditions and the normalization of the
wave functions are described in Refs.[1,2,4].

Then, for simplicity, we replace the HF potential by the
Woods-Saxon potential together with the spin-orbit potential,
of which the parameters are the standard ones used inb
stable nuclei[1,5]. For the given radiusR=r0A

1/3 with r0
=1.27 fm, the diffusenessa=0.67 fm and the strength of
spin-orbit potential, we vary the potential strength by chang-
ing the depth of the Woods-Saxon potentialVWS so that the
corresponding(HF) single-particle energy«WS is varied. We
show numerical results with the volume-type pairing,

Dsrd ~ fsrd, s2d

where

fsrd =
1

1 + expS r − R

a
D s3d

since the surface-type pairing leads to essentially the same
physics conclusion. The averaged strength of the pair field
defined by

D̄ ;
E

0

`

r2drDsrdfsrd

E
0

`

r2dr fsrd
s4d

is an input of numerical calculations expressing the strength
of the pair field.

It should be emphasized that both the one-body potential
Vsrd and the pair fieldDsrd come almost exclusively from the
well-bound or(weakly bound, but) high-, particles, and not
from loosely bounds1/2 neutrons. Thus in our present work
we study the behavior of weakly bounds1/2 neutrons in the
many-body pair correlation for givenVsrd andDsrd.

III. NUMERICAL RESULTS AND DISCUSSIONS

In numerical calculations we takeD̄=1.0 MeV and vary
«WS keeping the conditionl=«WS so that the particular
single-particle level with«WS should be considerably occu-
pied, hopefully by about 50%. Asls,0d increases to zero,
we simulate neutron drip line nuclei, in which the one-
particle level is placed on the Fermi level.

Since in Ref.[1] some properties of HFB solutions of the
3s1/2 orbit are already shown taking theA=80 system, in the
present study we consider the same system. Indeed, the 3s1/2
orbit is the firsts1/2 orbit that can occur near the Fermi level
of neutron drip line nuclei, for which the many-body pair
correlation may play a role. In Figs. 1–4 the calculated oc-
cupation probability is shown for the cases ofl=«WS=
−1.0,−0.3,−0.2, and −0.1 MeV, respectively. In the first two

FIG. 1. Occupation probability(7) of HFB continuum solutions
for the 3s1/2 orbit andl=«WS=−1.0 MeV as a function of quasipar-
ticle energyEqp. The quasiparticle energy of the discrete solution of
the HFB equation,Eqp

disc=0.491 MeV, is indicated by the thick ar-
row. The one-particle energy eigenvalue for the Woods-Saxon po-
tential is expressed byeWS. The vertical thin line shows the position
of ulu. See the text for details.

FIG. 2. Occupation probability(7) of HFB continuum solutions
for the 3s1/2 orbit andl=«WS=−0.3 MeV as a function of quasipar-
ticle energy. The quasiparticle energy of the discrete solution of the
HFB equation,Eqp

disc=0.279 MeV, is indicated by the thick arrow.
The vertical thin line shows the position ofulu. Note that the scale
of they axis is one order of magnitude different from that of Fig. 1.
See the caption to Fig. 1.

FIG. 3. Occupation probability(7) of HFB continuum solutions
for the 3s1/2 orbit andl=«WS=−0.2 MeV as a function of quasipar-
ticle energy. No discrete solution of the HFB equation is obtained
for the present parameters. The vertical thin line shows the position
of ulu. Note that the scale of they axis is one order of magnitude
different from that of Fig. 2. See the caption to Fig. 1.
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cases a discrete solution is obtained atEqp
disc=0.491 and

0.279 MeV, respectively, while in the latter two cases no
discrete solutions are found. The presence of the discrete
solution withEqp

disc=0.279 MeV clearly shows that the effec-
tive pair gap for the 3s1/2 orbit at l=«WS=−0.3 MeV is less
than 0.279 MeV, which is much smaller than the averaged

value D̄=1 MeV. It is noted that the effective pair gap for
large, orbits, for example, the 1g orbit, is always larger than

the value ofD̄ [1].
The occupation probability for the discrete solution is

E
0

`

uv, jsEqp
disc,rdu2dr, where sl + Eqp

discd , 0, s5d

for which the normalization of the wave functions is written
as

E
0

`

fuu, jsEqp,rdu2 + uv, jsEqp,rdu2gdr = 1, s6d

while that for the continuum solution, which is plotted in
Figs. 1–4, is

E
0

`

uv, jsEqp,rdu2dr, where sl + Eqpd . 0, s7d

which represents the occupation number probability density
per unit energy interval[2]. Since the dimensions of the two
expressions(5) and (7) are different due to the difference in
the normalization of radial wave functions, in Figs. 1 and 2
the discrete quasiparticle energy is indicated by the thick
arrow, while in the cases of Figs. 3 and 4 there is no such
discrete quasiparticle solution. In Table I the 3s1/2 occupation
probability of the continuum solution integrated over the rel-
evant energy region,

vcont
2 ; E

ulu

10

dEqpE
0

70

druvs1/2sEqp,rdu2, s8d

and that of the discrete solution,

vdisc
2 ; E

0

70

druvs1/2sEqp
disc,rdu2, s9d

are tabulated. Whenvcont
2 is calculated, the quasiparticle en-

ergy is integrated until 10 MeV while the radial integration is
carried out until 70 fm. Forl=«WS,−1 MeV the amount of
vcont

2 is negligibly small, while forl=«WS.−0.221 MeV the
value of vdisc

2 is zero, since no discrete solution exists. It is
seen that varyingl=«WS from −1 to −0.2 MeV the 3s1/2
occupation probability moves smoothly from the discrete to
continuum solutions. Furthermore, the peak energy of the
quantity(7) approachesEqp= ulu asl=«WSs,0d increases up
till about −0.22 MeV, while it goes away fromEqp= ulu when
l=«WS increases further. And, the peak lies atEqp<ulu at the
value ofl=«WS<−0.22 MeV after which the discrete solu-
tion disappears; see Fig. 3 and note that the scale of they
axis in Figs. 3 and 4 is different from those of Figs. 1 and 2
by two and one orders of magnitude, respectively.

The result presented in Figs. 1–4 suggests that if one per-
forms one-neutron pickup reactions on those even-even
neutron-drip-line nuclei, which contain loosely bounds1/2
neutrons around the Fermi level, the strength of thes1/2 neu-
tron can appear both at a discrete state and in the continuum
spectra, with comparable magnitudes. Then, the occupation
probability of thes1/2 orbit in the ground state of the target
nucleus must be estimated by summing up those two kinds
of strength. In the case that the population of the discrete
state is absent, the continuum spectra may exhibit a sharp
peak just aboveEx= ulu, which originates from the resonant-
like behavior of the upper radial wave function,us1/2sEqp,rd.

The relation between the phase shifts of the upper com-
ponent of the radial wave functionu, jsEqp,rd in the presence
and absence of the pairing potentialDsrd is discussed in
Refs.[2,4] in the case of the quasiparticle resonant solutions
induced by the bound single-particle states. For,=0 neu-

FIG. 4. Occupation probability(7) of HFB continuum solutions
for the 3s1/2 orbit andl=«WS=−0.1 MeV as a function of quasipar-
ticle energy. No discrete solution of the HFB equation is obtained
for the present parameters. The vertical thin line shows the position
of ulu. Note that the scale of they axis is one order of magnitude
different from that of Fig. 2. See the caption to Fig. 1.

TABLE I. Properties of 3s1/2 neutron orbits: Energy of discrete
solution (if it exists), occupation probabilities of discrete and con-
tinuum solutions, and the expectation values of radius squared as a
function of«WS=l. No discrete quasiparticle solution was found for

the parameters«WS=l, if the value of Eqp
disc is not written. D̄

=1 MeV is used. See the text for the definition of various
quantities.

«WS=l Eqp
disc vdisc

2 vcont
2 kr2ldisc kr2lcont kr2ltotal kr2lWS

sMeVd sMeVd sfm2d sfm2d sfm2d sfm2d

−10 0.957 0.476 22.7 22.7 23.3

−1 0.491 0.433 0.021 46.7 34.6 46.1 55.2

−0.5 0.367 0.380 0.059 59.4 45.9 57.5 77.4

−0.3 0.279 0.274 0.157 72.2 59.9 67.6 102.4

−0.2 0.418 76.9 76.9 130.8

−0.1 0.399 94.9 94.9 205.9
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trons the phase shiftsdd of the radial wave functions does not
increase throughp /2 as energy increases, if the pair poten-
tial Dsrd is absent. In contrast, in the presence of the pair
potential the phase shift ofus1/2sEqp,rd may increase through
p /2 as energy increases, but the energy atd=p /2 does not
in general correspond to a resonance behavior of
us1/2sEqp,rd. In Fig. 5 we show the calculated phase shift of
us1/2sEqp,rd for the parameters of Fig. 3. We observe a sharp
increase of the phase shift, or a large positive value of the
derivativedd /dEqp, slightly aboveEqp= ulu=0.2 MeV, which
leads to the sharp peak of the occupation probability in Fig.
3 around the same energy. For reference, the calculated phase
shift for the parameters of Fig. 2 is shown in Fig. 6, which
exhibits a large negative value of the derivativedd /dEqp at
Eqp<ulu=0.3 MeV. For the present set of parameters the
value ofdd /dEqp slightly aboveEqp= ulu changes from −̀ to
+` when the value of «WS=l increases through
−0.221 MeV. And, at this energy the discrete solution
[namely the bound-state solution ofus1/2sEqp,rd] disappears.

The sharp resonantlike behavior ofus1/2sEqp,rd obtained
for «WS=l<−0.2 MeV suggests that the cross section of the
neutron scattering on those even-even nuclei will show the
s-wave resonance structure at an energy close toEx= ulu.
Neutrons-wave resonances in heavy nuclei at very low en-
ergy have been extensively studied since their discovery in
1935(for example, see p. 176 of Ref.[5]). In those reactions
on b stable nuclei the relevant nuclear states are at high
excitation energysEx<Sn<5–7 MeVd and the spectro-
scopic factors of thes1/2 state is of the order of 10−6. In
contrast, the spectroscopic factor of the present example of
s-wave resonance, which may be observed at very low exci-
tation energyEx<ulu (typically, a few hundred keV) for
some neutron drip line nuclei, may be of the order of
10−1–10−2. In the absence of pair field for a given one-body
potential such neutrons-wave resonances are expected to
occur just before the potential strength becomes strong
enough to make ans-wave one-particle bound state. In con-
trast, in the presence of pair field thes-wave resonance may
be observed for neutron drip line nuclei, in which ans1/2
level lies around the Fermi levell (<−a few hundred keV).

In Fig. 7 the shape of threes1/2 radial wave functions are
compared taking the same parameters as those used in Fig. 2.
The wave functionfWSsrd of the Woods-Saxon eigenstate
with the eigenvalue −0.3 MeV is shown by the dotted curve
which are normalized to unity, while the lower radial wave
function vsEqp

disc=0.279 MeV,rd is denoted by the solid
curve. The wave functionvsEqp=0.314 MeV,rd is shown by
the dashed curve, where 0.314 MeV is the peak energy of the
continuum occupation probability exhibited in Fig. 2.
Though all three wave functions are bound-state wave func-
tions, we should compare only the shape of those wave func-
tions in Fig. 7, since the wave function denoted by the

FIG. 5. Calculated phase shift of the upper component of the
radial wave functionu3s1/2sEqp,rd for the parameters of Fig. 3. The
vertical thin line shows the position ofulu, while the horizontal thin
line denotes the value ofp /2. The used depth of the Woods-Saxon
potential is denoted byVWS.

FIG. 6. Calculated phase shift of the upper component of the
radial wave functionu3s1/2sEqp,rd for the parameters of Fig. 2. The
vertical thin line shows the position ofulu, while the horizontal thin
line denotes the value of −p /2.

FIG. 7. Comparison between the shapes of threes1/2 radial wave
functions for the parameters of Fig. 2; the normalized 3s1/2 eigen-
function of the Woods-Saxon potentialfWSsrd, the discrete solution
of the HFB equationvsEqp

disc=0.279 MeV,rd, and the continuum
solution of the HFB equationvsEqp=0.314 MeV,rd where
0.314 MeV is the peak energy of the continuum occupation prob-
ability shown in Fig. 2. All three wave functions are bound-state
wave functions, however, only the shapes of those wave functions
should be compared, since the continuum solutionvsEqp

=0.314 MeV,rd shown by the dashed curve has a different dimen-
sion from the other two.
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dashed curve has a dimension different from the other two. It
is seen that wave functions expressed by the dashed and
solid curves, which are calculated in the presence of pair
correlation, extend to the far outside of the radius of the
Woods-Saxon potential, because the effective pair gap for the
3s1/2 orbit with such a small binding energy is very much
reduced. In Table I we show the expectation value ofr in the
discrete solution

kr2ldisc;
E

0

70

r2druvsEqp
disc,rdu2

vdisc
2 , s10d

the one in the continuum solution

kr2lcont;
E

ulu

10

dEE
0

70

r2druvsE,rdu2

vcont
2 , s11d

the averaged value over the discrete and continuum solutions

kr2ltotal ;
E

0

70

r2druvsEqp
disc,rdu2 +E

ulu

10

dEE
0

70

r2druvsE,rdu2

vdisc
2 + vcont

2 ,

s12d

and the one in the normalized 3s1/2 eigenstate with«WSof the
Woods-Saxon potential

kr2lWS; E
0

70

r2drufWSsrdu2. s13d

It is seen from Table I that even in the presence of the many-
body pair correlation the root-mean-square radius of the 3s1/2
neutron orbit can become very large in the limit ofl=«WS
→0, due to the considerably reduced effective pair gap for
loosely bounds1/2 neutrons. Consequently, we expect that
so-called halo phenomena(in particular, the presence of an
appreciable tail of the ground-state matter density at anoma-
lously large radii, which must come froms1/2 neutrons) can
be generated in the presence of many-body pair correlations.
For a different conclusion concerning this interesting ques-
tion, see Ref.[6].

In Fig. 8 we plotvdisc
2 from Eq.(9), vcont

2 from Eq.(8), and
the total occupation probability of thes1/2 state,

vtotal
2 = vdisc

2 + vcont
2 , s14d

as a function ofl=«WS.−1.0 MeV. It is remarkable to ob-
serve thatvtotal

2 of the s1/2 state is only slightly decreasing
until l=«WSs,0d approaches within a few tens of keV to the
continuum. In order to obtain an indication of an approxi-
mate value ofvtotal

2 for «WS*0, by an open square we denote
the value ofvtotal

2 at «WS= +0.02 MeV. The value was esti-
mated for the depth of the Woods-Saxon potentialVWS=
−36.259 MeV, which was obtained by extrapolating the re-
lation between«WS andVWS for «WS&0, while we usedl=
−0.02 MeV sincel must be negative in the present discus-
sion. For reference, we obtain«WS=0 for VWS=
−36.878 MeV.

IV. CONCLUSIONS

Using a simplified model in HFB approximation, we have
studied the characteristic feature of weakly bound neutrons
unique to those ins1/2 orbits in neutron drip line nuclei. The
effective pair gap of loosely bounds1/2 neutrons is much
reduced compared with that of neutrons with larger, values.
The small pair gap leads to a large root-mean-square radius
of thoses1/2 neutrons lying close to the Fermi level, even in
the presence of many-body pair correlation. If one-neutron
pickup reactions on those even-even neutron-drip-line nuclei
can be performed, the strength of thes1/2 neutron may appear
both at a discrete state and in the continuum. If the pickup
strength of thes1/2 neutrons is not observed at a discrete
state, the cross section of the neutron scattering on the even-
even nuclei can exhibits-wave resonance structure at the
positive energies corresponding toulu < a few hundred keV.
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FIG. 8. Occupation probabilitiesvdisc
2 , vcont

2 , andvtotal
2 as a func-

tion of l=«WS. The relationl=«WS does not hold for the open
square plotted at«WS= +0.02 MeV forvtotal

2 , which was obtained by
using VWS=−36.259 MeV andl=−0.02 MeV. See the text for
details.
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