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An operator form of the three-nucled¢8N) bound state is proposed. It consists of eight operators formed out
of scalar products in relative momentum and spin vectors, which are applied on a\bspin3L/2 state. Each
of the operators is associated with a scalar function depending only on the magnitudes of the two relative
momenta and the angle between them. The connection between the standard partial wave decomposition of the
3N bound state and the operator form is established, and the decomposition of these scalar function in terms of
partial wave components and analytically known auxiliary functions is given. That newly established operator
form of the 3 bound state exhibits the dominant angular and spin dependence analytically. The scalar
functions are tabulated and can be downloaded. As an application the spin dependent nucleon momentum
distribution in a polarized I8 bound state is calculated to illustrate the use of the new form of fhbdind
state.
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[. INTRODUCTION variables, namely the magnitudes of the Jacobi vectors and
the angle between them. In R¢i5] the wave function is
Today it can be considered as standard to solve thexpanded in nine operators with nine corresponding scalar
Schrédinger equation for three nucleons numerically withfunctions, which were numerically unknown in those days. It
high precision. This can be done either in the form of Faddis the aim of this paper to establish an analytic link between
deev equation$1,2], using hyperspherical expansi¢®,4], these functions and the usual partial wave representation of
or the Gaussian-basis methfi]. Also the Green's-function the 3N bound state. This will lead to an alternative represen-
Monte Carlo(GFMC) and no-core-shell model approachestation of the®H (®He) bound states, which is more accessible
have been applied to the three-nucleon sysféi|. These to analytic insights into the spin structure of thi Bound
methods except for the GFMC approach have always beestate. In our analysis we also find that the last term given in
based on standard partial wave expansions. Only recently fdRef. [15] is redundant, further simplifying this representa-
the study of three bound bosons has the Faddeev equatioion.
been solved directly in terms of relative momentum vectors The paper is organized as follows. In Sec. Il we start from
[8-10. Though any expectation value for a three-nucleonthe standard partial wave representation of tie [B®und
(3N) bound state can be determined numerically from wavestate and reformulate it in terms of scalar operators acting on
functions obtained by any of the above-mentioned methodgyure spin states with the correct spin quantum numbets! of
no analytic insight can be extracted for the spin and moment®He). This reformulation then leads at the same time to the
tum (or configuration dependence of theNsbound state. scalar functions. Section Il is devoted to the numerical in-
For the deuteron Rarita and Schwing&t,12 introduced vestigation of the scalar functions. In Sec. IV we give an
an operator form of the deuteron state in terms of spin opexample for the application of the operator form of firée
erators and the relative position vector. This representation iwave function and evaluate the probability to find a neutron
ideal for exhibiting the probabilities for finding any spin ori- with given momentum vector that is polarized in the direc-
entations in relation to the relative positigor momenturpy  tion of the overall polarization ofHe. Several appendixes
vectors of the two nucleons in a polarized deuteron. In thenclude technical steps for the derivations. Finally we sum-
case of a momentum representation of the deuteron derivaedarize in Sec. V.
from modern nucleon-nuclediNN) forces this is illustrated
in Ref. [13] and for a coordinate representation in Ré#].
For three nucleons it is much more difficult to express the Il. THE OPERATOR FORM OF THE 3H (®He)
spin and momentum dependences of the bound state in an BOUND STATE
analytic form. Again, this analytic form has been worked out
a long time ago by Gerjuoy and Schwingéb]. For the N
bound state, however, the functions multiplying the different The starting point for the derivation of an operator form is
scalars built from spin and position vectors depend on thre¢he standard partial wave representation ofNsb®und state.

A. Derivation
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Here we do not use the isospin formalism and choose par- ., _ Lo (o1 1\]3
ticles 1 and 2 to be neutroiigrotony and particle 3 to be the Wp,q) = ES: ; [Pa)|(53)3)]2™1 1 0 s 112(PA)

proton (neutron. For the derivation we will assume L
bound state, but the generalization®tte is obvious. In mo- + > [yllx(f’(j)|(s%)%>]§mpl \ 1s12(P9)
mentum space theNsbound state with total angular momen- s I\

tum 1/2 and magnetic quantum numipeican be written as 2[ ) |( 1)3>]1
+ 2 [ V()| (12)3) 2" Apa)
Y™(p,q) = (pq|T™ = Ix 2)2 IN113/

" 2, esha(=)swd el S DRGIDDE 22 e
= SZ |(S%)SMS>% C(LS3, m-MgMs) =2Syp+ ?Pyp+ *P1p+ Do 4)
e A e e, s on e s
= SES % [y:}\(f)@|(S%)Sﬂ%m‘l’m_ssqu), (1) 125, = |E [)/ﬁ(ﬁd)|(0%)§>]%m\lf| o0 14P)
even
5 and & stand for the cortesponding unt vecttre. THé 3 + 3 (RGO 01ualpa). (5)

spin statd(s%)SMs> is constructed by coupling the spin state ! odd

of the two neutrons with total spis and the spin of the The first spin state occurring in E¢5) will be denoted as
proton(3) to the total spinS and magnetic quantum number |,™ |t carries the correct spin quantum numbers of the 3
Mg of the N system. Furthermoré, X, andL are the rela- pound state and is explicitly given as
tive orbital angular momenta of the two neutrgnslated to
p), the orbital angular momentum of the prot(melated to m o ayiN_ Lo o
q), and the total orbital angular momentum of the three X" = |(05)5>'\;_§(X1X2_X1X2)X3' (6)
nucleons. The functiop’3"(pq) is defined as
By introducing the spin operator
V() = X COAL, M = WY1, (B)Yaw-,(@)  (2) X
Iz o(12) = ;3[a(1) - o(2)], (7)

and is often refered to as “bipolar harmonics.” The set ofyhich is odd under the exchange for particles 1 and 2, one
square brackets in Eql) is a convenient abbreviation for -5p verify by straightforward calculation that

the LS coupling employed here. The quantitidg, s{pa)

represent the partial wave components of thNeb®und state. o(12) - a-(3)|(0%)%m> =- \E|(1%)%m>. (8)
They are, for example, determined by the solution of the

Faddeev equationd,2]. Typical numbers for a good repre- This leads to the second spin state in Eg). Thus, taking
sentation ofP™(p,q) arel=<3, A=<3. The wave function is the antisymmetry with respect to nucleons 1 and 2 into ac-
antisymmetric in the two neutrons, which constrairs to  count, Eq.(5) can be rewritten as

be even. Note that we solve the Schrodinger equation using o1

the isospin formalism. The particle basis wave functions, 2 _m V2l + A A

which enter in Eq.(1), are a combination of total isospin %S0 = X" 2 47 PP DW11 00 44PQ)
T=1/2 andT=3/2 wave functions, namely,

| even

1 V2l +1
I3 32 | 2gt=1 T=1/2 + 75‘7(12) o3 X i
Vi) = V3| (- DM §\I’|XLssT_1 (pa) v I odd
1l XP(P -V 01 ydPO). 9
* \/;P'tiﬁssﬁalz(p@) (3)  Here the standard relation oP(pg) to the Legendre poly-

nomial P,(p-g) has been used. These are the first two ex-
where M is the third component of the isospin, namely amples for the operator form of tiel bound state. The state
M=1/2 for ®He and -1/2 for*H. Note that the isospin of |y™ with its correct spin quantum numbers i is multi-
the neutron-neutron or proton-proton two-body subsystem iglied by scalar functions and occurs either by itself or is
restricted tot=1. The overall factor3 is a consequence of acted upon by a rotational invariant expression formed from
the identity of the nucleons in the isospin formalism andspin operators. Below, additional rotational invariant expres-

insures the correct normalization. sions will appear in théH wave function, which are formed
The right hand side of Eq1) naturally decomposes into from spin operators and momentum vectors.

four parts according to the total sp=1/2 orS=3/2 and The second part of Eq4), 2Py, has the following ex-

the total orbital angular momentub=0, 1, and 2 as plicit form:
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_ Aav|(Al)1\T2 1
[*P12) = % [y'l%(pq)|<05)§>]2mql' x 10 14PQ) ?PYp)e1 = am 2 E P -V 11 1APPio(12) - 0(3)
I odd
1
+ 2 I:yﬂ)\(pq)|(1%)%>:|2wl AN11 llz(pq) XM|XWI> (16)
IN '
pPq
= |2PT/2>|5=0+ |2PT/2>|5=1- (10) and finaIIy to
First let us considef?P}),)|so, insert the Clebsch-Gordon
coefficients, and use the standard descending spin operator, 2P )t = 2 V11 udpac(p-q)
which is related to the spherical component3) [17]. Do- 4m \’2l od

ing this one obtains 1
X@{ig(lz) ‘pXq

2Pm:1/ — 3
P12 2>$0 \’3Iev§r92[ ool )y (pQ) -[o(3) X o(12)]- (p X P}x™. 17)
+ o (VP ™1V w ) The next term to calculate from E¢4) is [*P]),). Again
r(Palix (11014P9 (11) we insert the Clebsch-Gordon coefficients and find
1 an
In the last equation we also used the fact frhas positive |*PIEY2) = ——|(1%)§§> > VirNpEW | 1 1 34p9)
parity, which enforce$=\. Next we need to face the prob- V2 I odd
lem of the infinite sum ovet, which includes the angular 1 31 10
dependence op andq. As shown in Appendix A, the fol- 7 =[(13)23) 2 M%BOY, | 1 1 314pa)
lowing relation holds: odd
1 N
Vim(pa) = & (p - VT(PA), (12) + 51222 2 A e 11 5dpo).
(o]
where the coefficients(p-¢) are analytically known func- (18)

tions. Such a type of relation has been derived before; see,
for instance, Ref[18]. Thus, we obtain for Eql1) the ex- For the sake of a simpler notation we uset-1/2. As

pression shown in Appendix B, this can be cast into the form
2PI P s0= %[‘ ao(3VIAPE) + o (V1G] x™Y2) *PIH% = IEdd (P -V 11 34P09
N o
A LA 1 i X
X 3 GB-@¥ii0udpa. (13 X—([g-(lz) @ x (,(12)]] u)
| evers=2 A7 2 pqg
Further, one recognizes thatT(pg) can be expressed in XY™ (19

terms of the spherical components of the cross proguct

% q, which tums Eq(13) into the operator form Of course, this relation is also valid fon=—1/2.

Finally, we turn to the last part of Eg4), the expression

4 1/ )
5 1 [310(3)-pxgq for | D1,2|;> Again inserting the Clebsch-Gordon coeffi
|*Pls0= 22V 2] o Ix™ cients yields
LA - 1 Ayan
X S op-@¥ 1oudpa. (19 DEA=- (13D XAV s 21 Pl
| even=2 V10 I)\

Tls1, is a little 1\31
more complicated. Inserting the Clebsch-Gordon coefficients + \§|( )22>2 VR(PA)Y| ) 2 1 314P0)
and making use of the relation in E@) gives

3 1)}3 1 lian
-\ (1h)2-1 v
Pl 1= 30012 0 S Wi 11 14p0 10l 12)2 = I WEWYi 2 22 2P0

| odd
AA = +\/Z 11‘ 3_3 EyZZ(AA)q, .
X [oo(3VEPA) - o (3 VPG ™). £(13)3-3) DAY 2 1 2P0
(15 20)
Using agaln the relation given in E(L2) and expressing the Due to the overall positive parity and the antisymmetry of

quantity yn pg) in terms of the spherical components of the state with respect to the two neutrons the sum baed
p X g leads to the intermediate result \ splits as
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o given in Ref.[18]. Using the decompositions of E¢R2) in
% VPOV, 2 1 314p0) e i
= > VPGV, | 2 1 314p9) % VDAV, 2 1 34p0)

| odd

+ > VP PA)W) 142 2 1 3/4PO) =Vi(p -q)IEddX|(p Q)+ Yzﬂ(ﬁ)lE Vi(p-q)
| odd o odd

+ 2 VP Via ) 21 24P0). (21) + Yz#(ﬁ);ddV\A(p -q), (23
I odd 0

Now, however, the different types of coupled spherical harWith

monics are more difficult to ;pht mto_smple second—qrder X(p-q)=AP- Y| 21 34p9 +Ci(p -9
expressions and scalar functions. This is elaborated in Ap-

pendix C with the result X[W 142 2 1 34PD + Wisz | 2 1 3APA)],

VRH(BE) = Y2EPAAD - 8) + Bi(P - D) You(P) + Yo (@)], (24)
Vi(p-q)=Bi(p- Q¥ 21 34pa) +E(p-§)

XW) 112 21 34PAD +Di(P-DWiz ) 2 1 34PD),
(25)

VEE(P8) = VA(PAIC/(P - 8) + Dy(P - 6)Y2,(6)
+E(D - 9)YauP), (22)

21 (H§) = V2(HE)C (P - § 5 -3)Y (P
Hia(Pd) = Vi (PAIC(P - O+ D - Y2, (P) Wi(p-a)=Bi(p -V 2 1 3ApA) +Dy(p - q)

+ . . ..
B DY2.(Q XV 142 21 34PA +E(P - QW2 2 1 3AP9)-

The quantitiesA, ... ,E, are analytically known scalar func- (26)
tions depending on the scalar produgtsy. They can be
inferred from Appendix C and the first relevant ones are For the representation of the spin stall(e:%)gMQ of Eq.
given below in Eqs(30) and (31). Again we refer to Ref. (20) in terms of the spin statg™ we use an equivalent but
[18], where the same relations have been given before. Whilmodified form as shown above. The details are shown in
providing only recursive relations, close expressions aré\ppendix D. After some algebra we arrive at

a1 [3[0(12-po(3)p 1 ; 1 [3[o(12-q0(3) - 1
[*DI7" = 5\/5{% - 5012 -a(3>]|x 2 V(e +5\/5[% - 50012 .0(3)}

1311 2
X|x™ 2 Wi(p - q) + 54—?—[0(12) -qo(3) -p+o(12) - po(3) -q - Zp - qo(12) -0(3)}|x”‘>2 X(p-q). (27)
lodd TVS P4 3 lodd

It is now the time to compare our results to the scala.=0 part cancels among the two terms given in the last
expressions given in Refl5]. We see that the first eight expression in Eq(7) of [15].
terms of Egs(2)—(7) in Ref. [15] are identical to the ones
derived herdsee Eqs(9), (14), (17), (19), and(27)]. While B. Normalization

in Ref.[15] the scalar functions multiplying the scalar opera- |, {he preceding section we started from a partial wave

tors are urjknown, here _they are explicitly provided in ter_msdecomposition of the 8 wave function¥™(p,q) [Eq. (4)].

of the partial wave function components calculated, €.g., in @y the very construction the individual terms are manifestly
Faddeev approach. We want to point out that the last expregsiihogonal. In their new forms, as derived in the preceding
sion in Eq.(7) of Ref. [19] is redundant. By itself it is not  section, this is no longer obvious. However, since the new
antisymmetric under the exchange of particles 1 anth2  forms are identical reformulations of the original terms, it is
two neutrong It has to be multiplied by a scalar function simplest to go back to Eq4) to verify orthogonality and
that is formed from odd orbital angular momentaDoing  normalization. Then one sees immediately tP@f,, 2Py,

this, one arrives after some algebra at the following resultand“P,, given in Eqs.(9), (14), (17), and(19) are orthogo-
The L=2 piece is already contained in the previous threenal to each other. The normalization for those three pieces is
terms of|*DJ),). TheL=1 piece is identically zero, and the given as
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2 2 in |2 2 4
(®Syjp+ “Prjp+ *P1sgl*Syja + “Prjp+ Py

1 /7
Ay(p - G) =5\ 5(25P,(p - ) + 11),

9V2
=2 2 f dpp? f daq¥iedpa).  (28)
sSh L=0,1 \/75
Bs(p-G)=—\/-—=—Pip-§
The last term in Eq4), |*D1,2), is more intricate in the form o(P-0) 127 1(P-9),
of Eq. (27). Of course one can also go back to Kdg).
However, instead of doing this, we go back half way to Eq. o 2
(20) and insert the decomposition given in E&3). This Cyp-9)= 3’
leads to the three terms
1 n LA 5 ..
DI =[Y2(®)[(13)3)]2"2 Vi(pa) Dy(p-8) ==/ P -0,
lodd
1 “n A Ay
+[Y(9](23)3)]2™> wipa) Ey(p-@)=0. (31
lodd Note that the coefficient€;, D;, andE; occur together with
+[y§1(pq |( _)g>] mz X,(p), (29) I=3. The evaluation of the termis=5 and higher can be

found from the general formula given in Appendix C. The
coefficients given in Eqs(30) and (31) agree with those
which are in unique correspondence to the three terms in Edrom Ref. [18] after correcting some misprints in R¢L8]
(27). The question of normalization and orthogonality re-(see Appendix €

quires knowledge of the analytically known coefficients If one keeps only thé=1 partial wave function compo-

lodd

A, ... ,E insideV,, W, andX;. nent, then*DY),) reduces to the simple expression
As shown in Appendix C, they are given as follows. If we
keep onlyl=A=1, then |4Dr1n/2>‘|=1: [yz ( ) >] Wi12134P09), (32
Ap-§) =1, which is orthogonal to the previous states and normalized as
B,(p-§) =0, (30) ‘DY D1/2>||:1=J dppzf dqqZ‘Iff 121 34Pd). (33
and the coefficient€, D, andE do not occur. If we allow in  If one includes thd=3 or A\=3 partial wave function com-
addition|=3 and\ =3, but no higher values, then ponents, which are in fact tiny contributions, one arrives at

1 7
DY =12=[Y2(D)(13)3 )]2 (‘ \TT\’F)< \/;‘1’3 32134PD+Wi35, 3/2(pQ)>P1(I5 -q) + [YZ(Q)|(1%)§’>]%”‘

1 7 A ~n
X(‘ E\’EX\/;‘P?, 32134PD+W315, 3/2(FJQ)>P1(P Q)+ [yil(pQ)I(lé)%ﬂ%m(‘Pl 121 3/4P0

11 |7 2 25 |7 A A
t 9 2‘1'3 321 34P0) + \/;[‘I’l 32134PQ) + V3121 349+ 9 \/;\1’3 3121 34PYPAP - Q))-
(34)
|
Now the three terms are no longer orthogonal to each other, (. 1)a %m
but of course an identical reformulation of [ (1§)§>] V3121 34P0)-

(35

07| ss= 260 (13)2) 1 1 1 skpa
+[ 300l (13)9)]"
[ 13(pq)|( 1) >]

I\)Ir—'

W3 321 34P0)
as given in Eq(4). Consequently, the staftD7},) is normal-
W1 321 34P0) ized as

I\Jll—\
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FIG. 1. (Color onling The de-
pendence of the function
¢1(p,q,x=1) onp andq. For bet-
ter visibility also contour lines are

given.
5 8
(DI D15 f dppzf d9eT¥7 121 APA T(p,a) = 2 i(p,a)x), (37)
i=1
+W5 551 4P + ¥ 55 1 54P0)
i \If§ 121 34P9)]. (36) where thely;) are composed out of 8 scalar operators acting

on the special R spin statgly™, introduced in Eq(6). For
the convenience of the reader, we list the stat@sagain:

The direct verification of this result in form of E@27) is

straightforward but tedious. X0 =[x,
Summarizing this section, the sum of the expressions in

Egs.(9), (14), (17), (19), and(27) is the operator form of the

3N bound state in momentum space we were looking for. It _1 _ m

has the form |X2> - \Ea(lz) 0(3)|X >!

0.064

0.032

0.000

FIG. 2. (Color onling The de-
pendence of the function
¢s(p,q,x=1) on p andg. For bet-
ter visibility also contour lines are
given.
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0.021 =-=----
0.014 «»vemsse
0007 ................
07 [fm”]
0.024
0.012 FIG. 3. (Color onling The de-
pendence of the function
0.000 ¢7(p,q,x=1) on p andq. For bet-
ter visibility also contour lines are
given.
...... o
0
1 ]
!
g [fm 7]
2
_ [3103-pxq . _\ﬁ[a(lz)-qa@)-q_; ] n
Ixa) = \/;i o IX™, X7 =3 7 3712 - o |Ix",
11, X = §ii[auz) .qa(3)-p+a(12)-po(d) -
Xa) = Ep_q{m(lz) pXq 2\5pq
2
-[o(3) X (12)] - (p X Q)}[X™, -3P .qo(12) - 0(3)}| ™. (38)

pXq Each term is composed of scalar operators consisting of spin

1 i
Ixs) = .—({0-(12) - 5[0-(3) X 0(12)]} -—)|Xm>, operators and momentum vectors, applied on the pure spin
: Pq state | Y™, which carries the overall quantum numbér
=1/2.Furthermore, each of those terms in E8j7) includes
3 12). 3). 1 scalar fungtlonsﬁi formed out of the two Jacobl_momerpa
Ixe) = \/;{%0()[3 - 50(12) -o(3)]|xm>, andg. Their dependence on the standard partial wave func-

2

0.000

FIG. 4. (Color onling The de-
pendence of the function
¢-(p,q,x=1) onp andq. For bet-
ter visibility also contour lines are
given.

-0.074

-0.148
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2.2 T
(x 1)p=024fm" q=0.25m"
(x10)p=0.24fm’;, q=1.14fm  -------
(x50)p=1.15fm™, g =1.14 fm™ =
—
(o)
E ________________________ FIG. 5. (Color onling The
= E T T I angle dependence of
-6-1_ ¢1(p,q,cosd) for different pairs
of momentap and p as indicated
............................................. in the figure. Note the multiplica-
................................................................................... tive factors in three cases.
0.0 .
-1 0 1
cos o

tion components has been explicitly worked out and will be
investigated in the following Sec. Ill. Of course, exactly the ¢7(P.d) =
same forms are valid in configuration space. In this case the

Jacobi moment® andq would have to be replaced by the
corresponding conjugate configuration space Jacobi vectors.

1 o .
P > [Bi(p &)W, 2 1 34pA) + Dy(p - )

N7 odd

XW) 142 21 34APD +EP - DWi2 2 1 3APD],

Ill. THE SCALAR FUNCTIONS

The operator form of thel® bound state as given in Eq.

(37) contains the scalar functiong;. They will be i
gated now and are given according to E(®, (14)
(19), and(27) by

1 e
¢ip.a) =7~ 2 21+ 1P(p-

| even

DY 00 v4PI

1 A
o(p,q) = an 2 N2+1P(P 9P o 1 14PO)

| odd

1 ~ A
¢3(p,q) = — 2 (P -V 10 14P9),

4 evenl=2

1
$a(p,q) = 2 c(p

A7\ odg

QW11 4P,

1 .
és(p,q)=— > c(p

4 -V 11 34P0),
| odd

1 o .
6P, ) === [B(P- D)V 21 34p0) +E((P-§

2\ odd
XW 142 21 34PD +Di(P- D Wiz 21 3

1 o A A
dg(p,q) = n > AP - 51 34p9) +Ci(P - §)
T odd

nvesti-

» (1),

X[W 14221 34PAD + Wiz 2 1 3P}
(39

These functionsp,(p,q) depend on three variableg, q,
andp-g. They are determined by the partial wave compo-
nents of the Bl bound state and analytically known coeffi-
cient functions. In Figs. 1-4 we display,(p,q,cosf),
¢s(p,q,cosb), ¢-(p,q,cosh), andp,(p,q,cosd) for a fixed
angle #=0°. We see that the numerically largest function is
¢1(p,q,cosd); the other three ones shown are at least an
order of magnitude smaller. While);(p,q,cosf) has a
simple, bell-like shape with maxima @=0 andq=0, for
¢g(p,q,cosd) the maximum is shifted tp=~0.2 andq
~0.4 fml. The reason for this is thabg(p,q,coss) does
not contains-wave contributions but instead includes tensor
force couplings. The functiorp,(p,q,cosé) is similar in
shape togg(p,q,cosh). Finally, ¢»(p,q,cosé) also has its
minimum shifted away from the origin.

The dependence on the angbeq is generally rather
weak. In order to show the angular dependence explicitly, the
function ¢4(p,q, cosé) is displayed in Fig. 5 for some fixed
values ofp andq as function of co®. Similarly, we show in
Fig. 6 the angular dependencedd(p,q, cosé). The angular
dependence ofp,(p,q,cosd) and ¢,(p,q,cosé) is domi-
nantly given byP;(cos#), and thus not displayed.

’

)
pa)],
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0.070 .
r— .
o | ThEase ‘_ﬂ_,——""/
& | T s : FIG. 6. (Color online The
= 0093 I+ 7 angle dependence of
-é-‘o ¢s(p,q,cosd) for different pairs
of momentap and p as indicated
in the figure. Note the multiplica-
tive factors in one case.
(x1.0)p=0.35fm’, q=0.49 fm”| ——
(x1.0)p=049fm,, q=049fm | ---mumn
0.000 L
-1 0 1
cos 0

For the calculations presented in the following, we used alependent momentum distribution of a neutron inside a po-
wave function based on tH¢N force AV18[19] in conjunc-  larized ®*He nucleus. This quantity is defined as
tion with the Urbana-IX three-nucleon for¢20]. We show 1/ 1 oy
results for the’He. Theg; functions for other interactions are N(@) = (™48 — dop)3[1 + o3 T™H2).  (42)

qualitatively similar, especially, their relative importance is It should be noted that in theNBcenter-of-massc.m) sys-

not changed. Tabulated functions for several force combinat-em the Jacobi momentuny is the momentum of one
tions are provided by the authof®1].

: Lo ., nucleon, here nucleon 3. Regarding the eight operator struc-
In order to quantify the relative importance of the eight 9 9 gnt op

. i N ispl in E i h ly the fol-
functions ¢(p,q) we consider the normalization of theN3 fg\:ﬁﬁgdﬁfeagﬁfoelrlgm i(jﬁzsoggcﬁc.:ogmzest at only the fo
bound state, '

O]_ =1,
(Wm=L2pmeL2) = B Jdde<Xi|Xi>¢>i2
i 0,=0(12 - 0(3),

+2 Rei2<j dpdq<Xi|Xj>¢i¢ja (40) 0;=0(3)-A =04(A),
using the representation given in E@7). The numerical 0,=0(12) -B = 0,B)
evaluation is straightforward, and the contributions of the '
different products of they(p,q) (denoted ad;;) to the norm _ _
are listed in Table I. Clearly, the major contribution to the Os = 0(12) - Co(3) - D = O5(C.D). (42)
norm(91.42% is given by$2(p,q). The second largest con- Here the vectord, B, C, andD represent different momen-
tribution is already more than one order of magnitudetum vectors. It is a straightforward exercise to evaluate once
smaller and is given bybg(p,q). All other contributions are and for all the matrix elements

even smaller. , s "
(O/0p) = (X"O/ O X™. (43

o _ The nonvanishing ones are listed below:
As an example of the application of the above-derived

operator form of the B bound state we consider the spin (0,0)=1,

IV. APPLICATION

TABLE I. The contributionsN;; from ¢;(p,q)#;(p,q) to the total normalization of the 3N state.

ij 11 22 33 44 55 66 67 68 7 78 88

N;j (%) 9142 076 002 002 002 013 011 025 098 244 435
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(0,05) = Ay, _1(04pxq) i0sq,p)=O0s(p.9) ), m
Ixs) =~ -5 XM,
I pPq 2 pPq
(0,0, =3,
|X6>_ 5 —2_502 |X )
(0,05) =C - D +i(C X D), P
<Oéol> = A(’)
_ /3| Os(q,9) 1 m
, . XD=\5| == —30|Ix",
(O503) =A"-A+i(A" X Ao, 2 q 3
(0,02 =By
X9 = 5= ~-[05(a,p) + Os(p, ) - 2p - 40 ]X™
(0,04)=B" B, X8 25pq 514, 50, 3 A2
) (48)
(0,05) = (B’ - C)Dy,
(00, =C’-D' =i(C’ X D), Using the expectation values listed in Appendix E, one can
determine the matrix elemern;ri|0|xj> in a straightforward
(0L0y =(B-C'")D} fashion. As example we give

(Og05) =(C" -C)[D’ - D +i(D" X D)g]. (44)

For the evaluation of the specific expectation vahi@)
considered in Eq(41) we need in addition matrix elements
of the form

- VE 1/i p(z)
(x4|Olxe) = ?p_q §(p ) Ep “q+pdo . (49

, _ , Here the index 0 denotes a spherical component. The above
(Of 0(3)0;) = (X"IO] 7o(3) O} ") (45 expression nicely exhibits the analytic angular dependence.

The resulting, nonvanishing matrix elements are listed in Ap-The final step in obtaining the momentum distributis(g)

pendix E. With this, the specific operaté?r for evaluating is then to write
N(q) from Eq.(41) has spin matrix elements given as

(0/00)) = (0/3(1 +00(3))0), (46) N(q) = J dp(¥™2(p§)| 0w ™2(pa))
and the nonvanishing matrix elements are also listed in Ap-
X . ~ b in -
ggg?;);oial\il,ext one expresses the staggsin terms of the 5 = J dp(; #*xi|Olxi) + 22 bidRexi|Ox;)).
(50

|Xi>:EAijOj(Qij)|Xm>a (47)
i An inspection of all analytically given spin matrix ele-
ments reveals that only four types of angular integrations

where();; denotes the arguments of the operatoysvhich
] occur. These are

varies with|y;). One explicitly obtains

[x0) =Oalx™,
1
1 fa A Po
|x2) = =04 x™, J dpf(p-q) X\ (51)
V3 Po
(p X Q3.
3105(p X Qq)
|X3>: 5-‘3—|Xm>,
Pq Because of the rotational invariance around the quantization
axis (z axis) one can choose the vectqrto be in thex-z
11 lane. Then it is most convenient to rotate #haxis into the
-+ _ m plane. Then it is mos
[xa) V2 pq[|04(p X d) = Os(a,p) + Os(p. ) JIX™. direction ofq by the angled= 6,. The result is
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1 1
fdA o Po i fl q p coséx
pf(p-q) X pS =27 . xf(x) X p2[0052 o+ % sir? (1 —x2)] . (52

(p X Q)3 P41 -x9)

Collecting all the results one ends up with the final expressioiNfag) =N(q, 6) given by

* ! 1 1
N(g,6) = 2wf dppzf dx) ¢5(p,0.%) + = 5(P,0,X) + (.0, %) (P, 0, X) —=(3 cog - 1)(3x* - 1)
0 -1 3 3V2

+ (.0, X) (P, 0, X) (3 cog 60— 1) + ¢y(p,q,X) (P, G, %) h(S cog 6- 1)x+ ¢5(p,q,X)~ (1 cog 0)(1-x?)

+¢5(p.a,X) (3 +c0$ 6)(1 -x?) + ¢4(p,q,%) ¢5(P, 0, X) ~(cos? 0= 3)(1=x%) + ¢4(p,q,X) d6(p,q, X) (3 cog 9-1)

X (1 =x3)x+ ¢a(p,q,X) pg(P,0, x) ~(3 cog - 1)(1 -x2) + $2(p,q,X) = (cos-2 9+ 9)(1-x%
1 /3 ) 3 o o 1
+ cbs(p,q,X)d)e(p,q,X)E 5(3 cog 0-1)(1 -x3)x + ¢s(p,q,x)¢s(p,q,><)4—%(3 cog 0-1)(1-x3) + ¢>e(p,q,X)1—2

1
X[4+(3 cog 6-1)(3x - 1)1+ ¢g(p,q,X) b7(P, G, X) = (3 cog 9+ 1)(3x* = 1) + ¢(p,q,X) (P, 0, )2 =

X[8+(3cog -1)(3x%+ 1)]x + ¢$(p,q,x)%(3 cog 0+ 1) + ¢-(p,q,X) (P, q,X) \/%(3 cos 6+ 1)x

+ ¢3(p, 0, x) [48 +(15 cog 6 - 1)(5x% + 3)]} (53)

Though the angular dependence for the direction of the nucleon momenitunelation to the quantization axis is analytically
given, the full expression is quite lengthy. However the dependence on the @iglguite simple, namel\N(q, #) =a(q)
+b(q)cos 6. Moreover most of the contributions are numerically insignificant, as illustrated in the preceding section. There-
fore, we only keepp,, ¢s, ¢, &,. It turns out that for the specific quantiN(q, 6) only these components visibly contribute.
Therefore, in this case the lengthy expression of (58) shrinks to the few leading terms

* : 1 2
N(q,0) = 2wJ0 ol|0|02f_l d»{ #5(p,q,x) + §¢§(p,q,><) + ¢2(p,q,X)¢7(p,q,X)%(3 cog §-1)
2 1 2
+ ¢z(p,q,x)¢g(p,q,><)@(3 cos 9- 1)x+ d>§(p,q,X)g(3 cog 6+ 1) + ¢7(p,q,X) dg(p, 9, %) \/;5(3 cog 0+ 1)x

+ ¢3(p, 0, x) [48 +(15 cog 6- 1)(5x% + 3)]} (54)

The numerical results foK(q) are displayed as function tion of N(q, 6) up to abouty=1 fm™. The dip around 2 frmt
of q in Fig. 7 for the fixed angle#=0 (i.e., the nucleon is mostly filled in by adding the term containimﬁ, shown
momentum is parallel to the quantization gxasd in Fig. 8 as dash-dotted line. When adding terms containlagrep-
for #=90". We compare the full result given in E63) to  resented by the dotted line, one is very close to the full
various truncated sums. The solid line in Figs. 7 and 8 corfesult. Adding the terms containing,, i.e., calculating the
responds to the full calculation using E&3). The simplest expression given in Eq54), shows that all other terms in
approximation would be to consider only the first term in Eq.Eq. (53) are insignificant.
(53) or Eq.(54), namelydﬁ, given by the dashed line. We see  We expect that also for other observables the operator
that this simple term alone already gives a good representderm of the N bound state will be useful. It should provide
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0°) [fm”]

N(q,0=

10’

PHYSICAL REVIEW 9, 064002(2004)

FIG. 7. (Color onling The
momentum distribution N(q, 6
=0). The solid line represents the
calculation containing all terms in
Eq. (53). The dashed line displays
the result based on the first term
only, the dash-dotted the one con-
taining in addition the contribu-
tion of ¢g. For the dotted line con-
tributions containing ¢; are
added. The long dashed-line con-
tains in addition contributions in-
cluding ¢, and corresponds to Eq.
(59).

an easy access to the wave function without the need dbrmed out of momentum and spin vectors, which are ap-
plied on a pure spin 1/2 state. Each such operator is accom-
panied by a scalar function depending on the magnitudes of
the two Jacobi momenta and the angle between them. We
established the connection of this form with the standard

having access to a modern triton code.

An old idea by Gerjuoy and Schwinggf5] has been

V. SUMMARY

partial wave decomposition. This connection provided the

revived to present theNBbound state in operator form. This explicit form of the scalar functions in terms of partial wave
form analytically exhibits the dominant angular and spin de-function components. The key point in the derivation was to
pendence of the wave function in form of scalar operatorextract from an infinite sum of partial wave expressions the

90°) [fm"]

N(q,6

10’
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FIG. 8. (Color onling Same as

Fig. 7, but forN(qg, =90).
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operator form and the accompanying scalar functions. The V2l +1
presented operator form of thé&l3vave function is indepen- WP = (- 1) 2
dent of the appliedNN and 3N force.

We illustrated the application of this new form of thBl 3 the previous Eq(A2) can be rewritten as
bound state wave function by calculating the spin dependent

single nucleon momentum distribution in a polarizeN 3 Lpfan |2 ( |+1\[ X
bound state. It turned out that for this quantity only four parts i (pa) = |(|+1) =1 (2= DP4(p-G)

P(p-a), (A3)

out of the total number of eight parts forming th Bound

state were needed to achieve a sufficiently accurate represen- XYH(PE) + 1 /(l - 1)(| ) )

tation. Several sets of spin matrix elements depending on the 1 2l - Hear-2

Jacobi momentum vectors, which have to be calculated only (A4)
once, have been evaluated. They will also be needed in other

applications. This is a recursive formula and leads to the relation given in

We expect that this operator form allows an easy access t8d. (12). In practice only low orbital angular momenta occur
the 3N bound state. The eight scalar functions carrying theand one easily works out the lowest terms as
specific dynamical information have been tabulated on a suf-

ficiently fine grid and can be downloaded from R§21]. c(p-4) =1,
There are sets of scalar functions for various modéxhand o -
3N force combinations. Co(Pp-@)==V5P1(p-q),
P 7 A a
ACKNOWLEDGMENTS Ca(P Q) =3 5[5Pz(p -Q) +1]. (A5)
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Nuclear Theory at the University of Washington for their ro

The first step is to generate the spin states of @§)
m the state$y™ given in Eq.(6). It is easy to see that

hospitality during some part of the work. |(1§)§§> = 0(12),|x™), (B1)
whereo,(12) is the spherical component of the spin operator
APPENDIX A: RELATION FOR THE COUPLED given in Eqg.(7). This form can be rewritten as
SPHERICAL HARMONICS
(13)35) = [30-12) + 30112 J ™

Here the relation of Eq(12) for the coupled spherical :
harmonics Y#*(pg) will be verified. We consider - §<a+(12) ~ o3 x 0.(12)]+>|Xm=1/2>
W(pa)V(pa), which can be rewritten by standard tech- 2
niques(see e.g., Refl16]) as (B2)

0/ 2 2~ _3 | using the spherical component of the vector product.
yﬁ (p)Yr1(PG) = \2| * 12( 1)*C(11a,00 Next, we express the second spin state in @&) with
the help of the lowering operator as

XC(I1b, 00){ }y b(pg). (Al)

111 (13)23) = (S,-i8,)(13)3D)

wilr

The sum overa andb will give four terms. After inserting
the explicit expression for the Clebsch-Gordon coefficients - i_[g (1) +0.(2)+0 (3)]l[0 (1) - .(2)]
and the 6} symbol, one arrives at V6 B IR R "

L 3 1 1 X m=1/
WAPA) V(P = - —— ——— ™
Ty 2| +1 \6 11
—=-{2(00(1) — 0p(2) + 7_(3)

[l+D(+2) " 62
X( 2| + 3 yl+1 I+1(pq) X[a’+(l) _ 0_+(2)]}|Xm:1/2>

I(I+1)

Dy pn). a2) = o)~ 0]+ (D) - of2)]
Using the relation X a(3)})x™ 2

064002-13



I. FACHRUDDIN, W. GLOCKLE, CH. ELSTER, AND A. NOGGA

2
= %{00(12 ——[a(s) X 0'(12)]0}|Xm_1/2> (B3)
Finally, starting from
|(12)3-2) = 2SS0l (13)32), (B4)

inserting the formB3) and reshuffling leads to

(BS)
Now we use the relatio2.10 and the property
3 1(px
W(pa) =i = P D (86)
472 |pllel

With this one arrives directly at Eq19).

APPENDIX C: VERIFICATION OF THE RELATION
GIVEN IN EQ. (22)

With standard recoupling techniques one finds

3
MABEGVET(PE) = —

1 <\/(I +1)(1+2)(21 +5)
472l +1

30021 + 3)

I(1+1)
5

X[V -1 (P@) + VP, (PE)]

W=D -3) on o )
(21-1) X 30 Vi-1)-1(PQ) |,
(C1)

X IE.I+1([3Q) -

which leads to the recursive relation

o 302+1) | 4nm
VE"(p4) = \/—I(I D@ +3){ (2 = DIy-1(pa)

D
X VET(pa) + ) —[Am(pa) + V2% (pa)]
- 1)(1-2)2 - -
\/( (; )( )ylz—rgl—z(DQ)} . (€2

Similarly, starting from

PHYSICAL REVIEW &9, 064002(2004
[ +D(1+2) o an
'477( \[ (21 +1)(21 + 3) 2+ D@+ 3 e
~ [ 1(+1)
(21 = 1)(2l + 3)

X Vi"(pG)

I(1-1
\/7\/ ( (2|)+ 1)y| 2|(pQ)) (C3

one finds the additional recursive relations
50 = 2 \/%{@yﬁ%mm@
NE Vot (pq)} (ca
and similarly

[2I+1)(2 +3
Vio(pa) = [ ((| : 1;8 :2)){\477320 (B@)Yam(@)
[(I+1) m(54)
"V 1)(2|+3)y2 (Pq
-1 o
f Vatoain mﬂ) 2(pQ)}- (C5)

ViAPE) Yor(P)

Inserting these equations into each other yields the relations

given in Egs.(22). For the calculation of al$ bound state,
the scalar functiong\ to E, are in practice only needed for

small values of. In our context we only need odd values of

I. The two lowest cases are given here.

If only =1 is kept, then one trivially has;=1 andB;
=0, and all other terms are absent. If ohlyl andl=3 are
kept, then one obtains from Eq€4) and(C5)

V31(pa) = \[ ViT(pa) - \/ —Py(p - 8)Yan(D),
Vi5(pa) = \[ ViT(pa) - \/ —P(p - 8)Yar(@).

(Co)
Furthermore, Eq(C2) yields
35 1
V53(pa) = \/%{y% pq)( Po(p &) - \/%>
6
+ \[gwi;“(ﬁa) + y%T(bd)]} ()

and after insertion of the resul(€6) we get
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71 line in Eqg. (170 of Ref. [18], which should read in their
V55(pa) = V57(pa) 5gl25P2(p - 6) + 11] notation:
— [ oePilp D Yan() + Yan(@)]. (C8) e 1){ ’ }1’2
3(L+1)(L+2)(2L+3)
Thus, one obtains in the end the coefficients given in Eq. 10
(31). For the convenience of the reader we restate the last ><<P|”B§’0+ P/B5 - \/;P[ﬂBfl). (C9

APPENDIX D: THE OPERATORS OF EQ. (27)
The starting points for the derivation are E¢®0) and(23). According to Eqs(B2), (B3), and(B5) these lead to

AGERS \/7 (cruz) - Jlo(3) x a(lz)]) W2 xS [EHBEX(PA) + Yo s(IVI(BE) + Y- @WA(PE)]

| odd

+ \/g (0’(12) - —0(3) X 0(12)> IX™Y2) x 2 [VEAPAX(PA) + YaoPIVI(BA) + Yool G)Wi(PE)]

lodd

32
- \/%vs( (12) - —[0(3) X o 12)]) X2 > 2 DAPAX(PA) + YaaPVI(BE) + Yar @WI(BE)]

| odd

2 |1
+ \E \@a_<3>a_<12)|xm=“2>lzdd [VEHRAX(PE) + Y2 PIVI(PE) + VoA W (HA)]. (P1)

As an example let us regard the termSYg)L(f)), which have 1
jon i i Ya(pE) = = )
the well known representation in terms of spherical compo- 1n\Pq 4 |p||q| P-0o * PoC+).
nents ofp:
~av_ 3 PO,
. _ 1 15 YE(pa) = — (D3)
YeiP) =5 5\ 7 Pop-. H 47 pllal
If one now inserts Eqe.D2) into Eq. (D1) and looks only
into the terms withV,, one can easily combine the expres-
Yzo(m:p\f (P65 + pp-) sions to
1 /3 | 0(12) -pa(3) - p
|4Dr1r}2>|vI =5\ o, > V|(F’Q)[ 2
R 1 15 | odd p
Y21(P) = 202\ 7 PoPs 1
-30012 0@ IX™- (D4)
. 1 15 The term inX, is somewhat more tedious.
Y22(P)=P 2—(p+) . (D2)
p ™ APPENDIX E: THE NONVANISHING MATRIX
For the convenience of the reader we also provide the ELEMENTS OF EQS. (45) and (46)
relations The nonvanishing matrix elements of E45) are given
by
VP = £ )
11 \’24 |p||q| Pod- + P-Jo), <Ola-o(3)ol>: 1,

(010¢(3)03) = Ay,
Apg) = 3i<i—pq+pq)+\/§pq)
H dmlpllgl\ye T N grp (0,04(3)0) = - 1
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(0,04(3)04) = By, <02602) =1,
(0200(3)0s) = 2CoDo = C - D = i(C X D)o, (0,00,) = By,
(0300(3)0p) = Ay, .
(0,005) = CyDy,
(0300(3)03) = 2A0Ag = A" - A =i(A" X A)j,

’ ! Oléo = Iv
(O404(3)05) =By, (05002 =4
(OL0o(3)0,) =B -B, (03003) = AgA,,
(040¢(3)0s) = (B" - C)Dy, (0,00, =B,
(OL5o(3)0,) = 2C/D} — C' -D’ +i(C’ X D'),, .
500(3)O; oo 0 (0100, =B’ ‘B,

(O504(3)0,) = (B - C")D} )
. (0,005 = (B' - C)Dy,
(050¢(3)0s5) = (C' - C)[2DgDg— D’ - D =i(D’ X D)g].
ED (0500, = C4Dy,
The nonvanishing matrix elements of E¢6) are given by
<01601> = 1, <OSOO4> = (B ' C’)D01

(0,005 = A, (04005) = (C' - C)D{D. (E2)
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