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An operator form of the three-nucleons3Nd bound state is proposed. It consists of eight operators formed out
of scalar products in relative momentum and spin vectors, which are applied on a pure 3N spin 1/2 state. Each
of the operators is associated with a scalar function depending only on the magnitudes of the two relative
momenta and the angle between them. The connection between the standard partial wave decomposition of the
3N bound state and the operator form is established, and the decomposition of these scalar function in terms of
partial wave components and analytically known auxiliary functions is given. That newly established operator
form of the 3N bound state exhibits the dominant angular and spin dependence analytically. The scalar
functions are tabulated and can be downloaded. As an application the spin dependent nucleon momentum
distribution in a polarized 3N bound state is calculated to illustrate the use of the new form of the 3N bound
state.
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I. INTRODUCTION

Today it can be considered as standard to solve the
Schrödinger equation for three nucleons numerically with
high precision. This can be done either in the form of Fad-
deev equations[1,2], using hyperspherical expansion[3,4],
or the Gaussian-basis method[5]. Also the Green’s-function
Monte Carlo(GFMC) and no-core-shell model approaches
have been applied to the three-nucleon system[6,7]. These
methods except for the GFMC approach have always been
based on standard partial wave expansions. Only recently for
the study of three bound bosons has the Faddeev equation
been solved directly in terms of relative momentum vectors
[8–10]. Though any expectation value for a three-nucleon
s3Nd bound state can be determined numerically from wave
functions obtained by any of the above-mentioned methods,
no analytic insight can be extracted for the spin and momen-
tum (or configuration) dependence of the 3N bound state.

For the deuteron Rarita and Schwinger[11,12] introduced
an operator form of the deuteron state in terms of spin op-
erators and the relative position vector. This representation is
ideal for exhibiting the probabilities for finding any spin ori-
entations in relation to the relative position(or momentum)
vectors of the two nucleons in a polarized deuteron. In the
case of a momentum representation of the deuteron derived
from modern nucleon-nucleonsNNd forces this is illustrated
in Ref. [13] and for a coordinate representation in Ref.[14].

For three nucleons it is much more difficult to express the
spin and momentum dependences of the bound state in an
analytic form. Again, this analytic form has been worked out
a long time ago by Gerjuoy and Schwinger[15]. For the 3N
bound state, however, the functions multiplying the different
scalars built from spin and position vectors depend on three

variables, namely the magnitudes of the Jacobi vectors and
the angle between them. In Ref.[15] the wave function is
expanded in nine operators with nine corresponding scalar
functions, which were numerically unknown in those days. It
is the aim of this paper to establish an analytic link between
these functions and the usual partial wave representation of
the 3N bound state. This will lead to an alternative represen-
tation of the3H s3Hed bound states, which is more accessible
to analytic insights into the spin structure of the 3N bound
state. In our analysis we also find that the last term given in
Ref. [15] is redundant, further simplifying this representa-
tion.

The paper is organized as follows. In Sec. II we start from
the standard partial wave representation of the 3N bound
state and reformulate it in terms of scalar operators acting on
pure spin states with the correct spin quantum numbers of3H
s3Hed. This reformulation then leads at the same time to the
scalar functions. Section III is devoted to the numerical in-
vestigation of the scalar functions. In Sec. IV we give an
example for the application of the operator form of the3He
wave function and evaluate the probability to find a neutron
with given momentum vector that is polarized in the direc-
tion of the overall polarization of3He. Several appendixes
include technical steps for the derivations. Finally we sum-
marize in Sec. V.

II. THE OPERATOR FORM OF THE 3H „
3He…

BOUND STATE

A. Derivation

The starting point for the derivation of an operator form is
the standard partial wave representation of a 3N bound state.
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Here we do not use the isospin formalism and choose par-
ticles 1 and 2 to be neutrons(protons) and particle 3 to be the
proton (neutron). For the derivation we will assume a3H
bound state, but the generalization to3He is obvious. In mo-
mentum space the 3N bound state with total angular momen-
tum 1/2 and magnetic quantum numberm can be written as

Cmsp,qd ; kpquCml

= o
sSMS

uss1
2dSMSlkss1

2dSMSukpquCml

= o
sSMS

uss1
2dSMSlo

llL

CsLS1
2,m− MSMSd

3Yll
Lm−MSsp̂q̂dCllLsSspqd

= o
sS

o
llL

fYll
L sp̂q̂duss1

2dSlg
1
2

mCllLsSspqd, s1d

wherep andq are the standard Jacobi momenta[16], and the
p̂ and q̂ stand for the corresponding unit vectors. The 3N
spin stateuss1

2
dSMSl is constructed by coupling the spin state

of the two neutrons with total spins and the spin of the
proton s 1

2
d to the total spinS and magnetic quantum number

MS of the 3N system. Furthermore,l, l, andL are the rela-
tive orbital angular momenta of the two neutrons(related to
p), the orbital angular momentum of the proton(related to
q), and the total orbital angular momentum of the three
nucleons. The functionYll

LMsp̂q̂d is defined as

Yll
LMsp̂q̂d = o

m

CsllL,mM − mdYlmsp̂dYlM−msq̂d s2d

and is often refered to as “bipolar harmonics.” The set of
square brackets in Eq.(1) is a convenient abbreviation for
the LS coupling employed here. The quantitiesCllLsSspqd
represent the partial wave components of the 3N bound state.
They are, for example, determined by the solution of the
Faddeev equations[1,2]. Typical numbers for a good repre-
sentation ofCmsp ,qd are l ø3, lø3. The wave function is
antisymmetric in the two neutrons, which constrainsl +s to
be even. Note that we solve the Schrödinger equation using
the isospin formalism. The particle basis wave functions,
which enter in Eq.(1), are a combination of total isospin
T=1/2 andT=3/2 wave functions, namely,

CllLsSspqd = Î3Ss− 1dMT+3/2Î2

3
CllLsS

t=1 T=1/2spqd

+Î1

3
CllLsS

t=1 T=3/2spqdD s3d

where MT is the third component of the isospin, namely
MT=1/2 for 3He and −1/2 for3H. Note that the isospin of
the neutron-neutron or proton-proton two-body subsystem is
restricted tot=1. The overall factorÎ3 is a consequence of
the identity of the nucleons in the isospin formalism and
insures the correct normalization.

The right hand side of Eq.(1) naturally decomposes into
four parts according to the total spinS=1/2 or S=3/2 and
the total orbital angular momentumL=0, 1, and 2 as

Cmsp,qd = o
s

o
l

fYll
0sp̂q̂duss1

2d 1
2lg

1
2

mCl l 0 s 1/2spqd

+ o
s

o
ll

fYll
1 sp̂q̂duss1

2d 1
2lg

1
2

mCl l 1 s 1/2spqd

+ o
ll

fYll
1 sp̂q̂dus11

2d 3
2lg

1
2

mCl l 1 1 3/2spqd

+ o
ll

fYll
2 sp̂q̂dus11

2d 3
2lg

1
2

mCl l 2 1 3/2spqd

; 2S1/2 + 2P1/2 + 4P1/2 + 4D1/2. s4d

At first we consider the2S1/2 part, which can be separated in
even and odd terms with respect tol as

u2S1/2l = o
l even

fYll
0sp̂q̂dus01

2d 1
2lg

1
2

mCl l 0 0 1/2spqd

+ o
l odd

fYll
0sp̂q̂dus11

2d 1
2lg

1
2

mCl l 0 1 1/2spqd. s5d

The first spin state occurring in Eq.(5) will be denoted as
uxml. It carries the correct spin quantum numbers of the 3N
bound state and is explicitly given as

uxml ; us01
2d 1

2l =
1
Î2

sx1
+x2

− − x1
−x2

+dx3
m. s6d

By introducing the spin operator

ss12d ; 1
2fss1d − ss2dg, s7d

which is odd under the exchange for particles 1 and 2, one
can verify by straightforward calculation that

ss12d · ss3dus01
2d 1

2ml = − Î3us11
2d 1

2ml . s8d

This leads to the second spin state in Eq.(5). Thus, taking
the antisymmetry with respect to nucleons 1 and 2 into ac-
count, Eq.(5) can be rewritten as

u2S1/2l = uxml o
l even

Î2l + 1

4p
Plsp̂ · q̂dCl l 0 0 1/2spqd

+
1
Î3

ss12d · ss3duxml o
l odd

Î2l + 1

4p

3Plsp̂ · q̂dCl l 0 1 1/2spqd. s9d

Here the standard relation ofYll
0sp̂q̂d to the Legendre poly-

nomial Plsp̂ ·q̂d has been used. These are the first two ex-
amples for the operator form of the3H bound state. The state
uxml with its correct spin quantum numbers for3H is multi-
plied by scalar functions and occurs either by itself or is
acted upon by a rotational invariant expression formed from
spin operators. Below, additional rotational invariant expres-
sions will appear in the3H wave function, which are formed
from spin operators and momentum vectors.

The second part of Eq.(4), 2P1/2, has the following ex-
plicit form:
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u2P1/2l ; o
ll

fYll
1 sp̂q̂dus01

2d 1
2lg

1
2

mCl l 1 0 1/2spqd

+ o
ll

fYll
1 sp̂q̂dus11

2d 1
2lg

1
2

mCl l 1 1 1/2spqd

; u2P1/2
m lus=0 + u2P1/2

m lus=1. s10d

First let us consideru2P1/2
m lus=0, insert the Clebsch-Gordon

coefficients, and use the standard descending spin operator,
which is related to the spherical components−s3d [17]. Do-
ing this one obtains

u2P1/2
m=1/2ls=0 =

1
Î3

o
l evenù2

f− s0s3dYll
10sp̂q̂d

+ s−s3dYll
11sp̂q̂dguxm=1/2lCl l 1 0 1/2spqd.

s11d

In the last equation we also used the fact that3H has positive
parity, which enforcesl =l. Next we need to face the prob-
lem of the infinite sum overl, which includes the angular
dependence onp and q. As shown in Appendix A, the fol-
lowing relation holds:

Yll
1msp̂q̂d = clsp̂ · q̂dY11

1msp̂q̂d, s12d

where the coefficientsclsp̂ ·q̂d are analytically known func-
tions. Such a type of relation has been derived before; see,
for instance, Ref.[18]. Thus, we obtain for Eq.(11) the ex-
pression

u2P1/2
m=1/2ls=0 =

1
Î3

f− s0s3dY11
10sp̂q̂d + s−s3dY11

11sp̂q̂dguxm=1/2l

3 o
l evenù2

clsp̂ · q̂dCl l 1 0 1/2spqd. s13d

Further, one recognizes thatY11
1msp̂q̂d can be expressed in

terms of the spherical components of the cross productp
3q, which turns Eq.(13) into the operator form

u2P1/2
m ls=0 =

1

4p
Î3

2

1

i

ss3d ·p 3 q

pq
uxml

3 o
l evenù2

clsp̂ · q̂dCl l 1 0 1/2spqd. s14d

The otherP component of Eq.(10), u2P1/2
m lus=1, is a little

more complicated. Inserting the Clebsch-Gordon coefficients
and making use of the relation in Eq.(8) gives

u2P1/2
m=1/2ls=1 =

1

3
ss12d · ss3d o

l odd

Cl l 1 1 1/2spqd

3fs0s3dYll
10sp̂q̂d − s−s3dYll

11sp̂q̂dguxm=1/2l.

s15d

Using again the relation given in Eq.(12) and expressing the
quantity Y11

1msp̂q̂d in terms of the spherical components of
p3q leads to the intermediate result

u2P1/2
m ls=1 =

1

4p

1
Î2

o
l odd

clsp̂ · q̂dCl l 1 1 1/2spqdiss12d · ss3d

3
ss3d ·p 3 q

pq
uxml, s16d

and finally to

u2P1/2
m ls=1 =

1

4p

1
Î2

o
l odd

Cl l 1 1 1/2spqdclsp̂ · q̂d

3
1

pq
hiss12d ·p 3 q

− fss3d 3 ss12dg · sp 3 qdjuxml. s17d

The next term to calculate from Eq.(4) is u4P1/2
m l. Again

we insert the Clebsch-Gordon coefficients and find

u4P1/2
m=1/2l =

1
Î2

us11
2d 3

2
3
2l o

l odd

Yll
1−1sp̂q̂dCl l 1 1 3/2spqd

−
1
Î3

us11
2d 3

2
1
2l o

l odd

Yll
10sp̂q̂dCl l 1 1 3/2spqd

+
1
Î6

us11
2d 3

2 − 1
2l o

l odd

Yll
11sp̂q̂dCl l 1 1 3/2spqd.

s18d

For the sake of a simpler notation we usedm=1/2. As
shown in Appendix B, this can be cast into the form

u4P1/2
m=1/2l =

1

i
o
l odd

clsp̂ · q̂dCl l 1 1 3/2spqd

3
1

4p
SFss12d −

i

2
fss3d 3 ss12dgG ·

p 3 q

pq
D

3uxm=1/2l. s19d

Of course, this relation is also valid form=−1/2.
Finally, we turn to the last part of Eq.(4), the expression

for u4D1/2
m=1/2l. Again inserting the Clebsch-Gordon coeffi-

cients yields

u4D1/2
m=1/2l = −

1
Î10

us11
2d 3

2
3
2lo

ll

Yll
2−1sp̂q̂dCl l 2 1 3/2spqd

+
1
Î5

us11
2d 3

2
1
2lo

ll

Yll
20sp̂q̂dCl l 2 1 3/2spqd

−Î 3

10
us11

2d 3
2 − 1

2lo
ll

Yll
21sp̂q̂dCl l 2 1 3/2spqd

+ Î2
5us11

2d 3
2 − 3

2lo
ll

Yll
22sp̂q̂dCl l 2 1 3/2spqd.

s20d

Due to the overall positive parity and the antisymmetry of
the state with respect to the two neutrons the sum overl and
l splits as
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o
ll

Yll
2msp̂q̂dCl l 2 1 3/2spqd

= o
l odd

Yll
2msp̂q̂dCl l 2 1 3/2spqd

+ o
l odd

Yll+2
2m sp̂q̂dCl l+2 2 1 3/2spqd

+ o
l odd

Yl+2l
2m sp̂q̂dCl+2 l 2 1 3/2spqd. s21d

Now, however, the different types of coupled spherical har-
monics are more difficult to split into simple second-order
expressions and scalar functions. This is elaborated in Ap-
pendix C with the result

Yll
2msp̂q̂d = Y11

2msp̂q̂dAlsp̂ · q̂d + Blsp̂ · q̂dfY2msp̂d + Y2msq̂dg,

Yll+2
2m sp̂q̂d = Y11

2msp̂q̂dClsp̂ · q̂d + Dlsp̂ · q̂dY2msq̂d

+ Elsp̂ · q̂dY2msp̂d, s22d

Yl+2l
2m sp̂q̂d = Y11

2msp̂q̂dClsp̂ · q̂d + Dlsp̂ · q̂dY2msp̂d

+ Elsp̂ · q̂dY2msq̂d.

The quantitiesAl , . . . ,El are analytically known scalar func-
tions depending on the scalar productsp ·q. They can be
inferred from Appendix C and the first relevant ones are
given below in Eqs.(30) and (31). Again we refer to Ref.
[18], where the same relations have been given before. While
providing only recursive relations, close expressions are

given in Ref.[18]. Using the decompositions of Eq.(22) in
Eq. (21) leads to

o
ll

Yll
2msp̂q̂dCl l 2 1 3/2spqd

= Y11
2msp ·qd o

l odd

Xlsp ·qd + Y2msp̂do
lodd

Vlsp ·qd

+ Y2msq̂d o
l odd

Wlsp ·qd, s23d

with

Xlsp ·qd = Alsp̂ · q̂dCl l 2 1 3/2spqd + Clsp̂ · q̂d

3fCl l+2 2 1 3/2spqd + Cl+2 l 2 1 3/2spqdg,

s24d

Vlsp ·qd = Blsp̂ · q̂dCl l 2 1 3/2spqd + Elsp̂ · q̂d

3Cl l+2 2 1 3/2spqd + Dlsp̂ · q̂dCl+2 l 2 1 3/2spqd,

s25d

Wlsp ·qd = Blsp̂ · q̂dCl l 2 1 3/2spqd + Dlsp̂ · q̂d

3Cl l+2 2 1 3/2spqd + Elsp̂ · q̂dCl+2 l 2 1 3/2spqd.

s26d

For the representation of the spin statesus11
2

d 3
2MSl of Eq.

(20) in terms of the spin stateuxml we use an equivalent but
modified form as shown above. The details are shown in
Appendix D. After some algebra we arrive at

u4D1/2
m=1/2l =

1

2
Î 3

2p
Fss12d ·pss3d ·p

p2 −
1

3
ss12d · ss3dGuxmlo

lodd

Vlsp ·qd +
1

2
Î 3

2p
Fss12d ·qss3d ·q

q2 −
1

3
ss12d · ss3dG

3uxmlo
lodd

Wlsp ·qd +
1

2

3

4p

1
Î5

1

pq
Fss12d ·qss3d ·p + ss12d ·pss3d ·q −

2

3
p ·qss12d · ss3dGuxmlo

lodd

Xlsp ·qd. s27d

It is now the time to compare our results to the scalar
expressions given in Ref.[15]. We see that the first eight
terms of Eqs.(2)–(7) in Ref. [15] are identical to the ones
derived here[see Eqs.(9), (14), (17), (19), and(27)]. While
in Ref. [15] the scalar functions multiplying the scalar opera-
tors are unknown, here they are explicitly provided in terms
of the partial wave function components calculated, e.g., in a
Faddeev approach. We want to point out that the last expres-
sion in Eq.(7) of Ref. [15] is redundant. By itself it is not
antisymmetric under the exchange of particles 1 and 2(the
two neutrons). It has to be multiplied by a scalar function
that is formed from odd orbital angular momental. Doing
this, one arrives after some algebra at the following result:
The L=2 piece is already contained in the previous three
terms of u4D1/2

m l. The L=1 piece is identically zero, and the

L=0 part cancels among the two terms given in the last
expression in Eq.(7) of [15].

B. Normalization

In the preceding section we started from a partial wave
decomposition of the 3N wave functionCmsp ,qd [Eq. (4)].
By the very construction the individual terms are manifestly
orthogonal. In their new forms, as derived in the preceding
section, this is no longer obvious. However, since the new
forms are identical reformulations of the original terms, it is
simplest to go back to Eq.(4) to verify orthogonality and
normalization. Then one sees immediately that2S1/2,

2P1/2,
and4P1/2 given in Eqs.(9), (14), (17), and(19) are orthogo-
nal to each other. The normalization for those three pieces is
given as
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k2S1/2 + 2P1/2 + 4P1/2u2S1/2 + 2P1/2 + 4P1/2l

= o
sSll

o
L=0,1

E dpp2E dqq2CllLsS
2 spqd. s28d

The last term in Eq.(4), u4D1/2l, is more intricate in the form
of Eq. (27). Of course one can also go back to Eq.(4).
However, instead of doing this, we go back half way to Eq.
(20) and insert the decomposition given in Eq.(23). This
leads to the three terms

u4D1/2
m l = fY2sp̂dus11

2d 3
2lg

1
2

mo
lodd

Vlsp̂q̂d

+ fY2sq̂dus11
2d 3

2lg
1
2

mo
lodd

Wlsp̂q̂d

+ fY11
2 sp̂q̂dus11

2d 3
2lg

1
2

mo
lodd

Xlsp̂q̂d, s29d

which are in unique correspondence to the three terms in Eq.
(27). The question of normalization and orthogonality re-
quires knowledge of the analytically known coefficients
Al , . . . ,El insideVl, Wl, andXl.

As shown in Appendix C, they are given as follows. If we
keep onlyl =l=1, then

A1sp̂ · q̂d = 1,

B1sp̂ · q̂d = 0, s30d

and the coefficientsC, D, andE do not occur. If we allow in
addition l =3 andl=3, but no higher values, then

A3sp̂ · q̂d =
1

9
Î7

2
s25P2sp̂ · q̂d + 11d,

B3sp̂ · q̂d = −Î 35

12p
P1sp̂ · q̂d,

C1sp̂ · q̂d =Î2

3
,

D1sp̂ · q̂d = −Î 5

4p
P1sp̂ · q̂d,

E1sp̂ · q̂d = 0. s31d

Note that the coefficientsC1, D1, andE1 occur together with
l =3. The evaluation of the termsl =5 and higher can be
found from the general formula given in Appendix C. The
coefficients given in Eqs.(30) and (31) agree with those
from Ref. [18] after correcting some misprints in Ref.[18]
(see Appendix C).

If one keeps only thel =1 partial wave function compo-
nent, thenu4D1/2

m l reduces to the simple expression

u4D1/2
m lul=1 = fY11

2 sp̂q̂dus11
2d 3

2lg
1
2

m
C1 1 2 1 3/2spqd, s32d

which is orthogonal to the previous states and normalized as

k4D1/2
m u4D1/2

m lul=1 =E dpp2E dqq2C1 1 2 1 3/2
2 spqd. s33d

If one includes thel =3 or l=3 partial wave function com-
ponents, which are in fact tiny contributions, one arrives at

u4D1/2
m ll=1,3= fY2sp̂dus11

2d 3
2lg

1
2

mS−
1

Î4p
Î5DSÎ7

3
C3 3 2 1 3/2spqd + C1 3 2 1 3/2spqdDP1sp̂ · q̂d + fY2sq̂dus11

2d 3
2lg

1
2

m

3S−
1

Î4p
Î5DSÎ7

3
C3 3 2 1 3/2spqd + C3 1 2 1 3/2spqdDP1sp̂ · q̂d + fY11

2 sp̂q̂dus11
2d 3

2lg
1
2

mSC1 1 2 1 3/2spqd

+
11

9
Î7

2
C3 3 2 1 3/2spqd +Î2

3
fC1 3 2 1 3/2spqd + C3 1 2 1 3/2spqdg +

25

9
Î7

2
C3 3 1 2 1 3/2spqdP2sp̂ · q̂dD .

s34d

Now the three terms are no longer orthogonal to each other,
but of course an identical reformulation of

u4D1/2
m lul=1,3= fY11

2 sp̂q̂dus11
2d 3

2lg
1
2

m
C1 1 2 1 3/2spqd

+ fY33
2 sp̂q̂dus11

2d 3
2lg

1
2

m
C3 3 2 1 3/2spqd

+ fY13
2 sp̂q̂dus11

2d 3
2lg

1
2

m
C1 3 2 1 3/2spqd

+ fY31
2 sp̂q̂dus11

2d 3
2lg

1
2

m
C3 1 2 1 3/2spqd.

s35d

as given in Eq.(4). Consequently, the stateu4D1/2
m l is normal-

ized as
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k4D1/2
m u4D1/2

m lul=1,3=E dpp2E dqq2fC1 1 2 1 3/2
2 spqd

+ C3 3 2 1 3/2
2 spqd + C1 3 2 1 3/2

2 spqd

+ C3 1 2 1 3/2
2 spqdg. s36d

The direct verification of this result in form of Eq.(27) is
straightforward but tedious.

Summarizing this section, the sum of the expressions in
Eqs.(9), (14), (17), (19), and(27) is the operator form of the
3N bound state in momentum space we were looking for. It
has the form

Cmsp,qd = o
i=1

8

fisp,qduxil, s37d

where theuxil are composed out of 8 scalar operators acting
on the special 3N spin stateuxml, introduced in Eq.(6). For
the convenience of the reader, we list the statesuxil again:

ux1l = uxml,

ux2l =
1
Î3

ss12d · ss3duxml,

FIG. 1. (Color online) The de-
pendence of the function
f1sp,q,x=1d on p andq. For bet-
ter visibility also contour lines are
given.

FIG. 2. (Color online) The de-
pendence of the function
f8sp,q,x=1d on p andq. For bet-
ter visibility also contour lines are
given.
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ux3l =Î3

2

1

i

ss3d ·p 3 q

pq
uxml,

ux4l =
1
Î2

1

pq
hiss12d ·p 3 q

− fss3d 3 ss12dg · sp 3 qdjuxml,

ux5l =
1

i
SFss12d −

i

2
fss3d 3 ss12dgG ·

p 3 q

pq
Duxml,

ux6l =Î3

2
Fss12d ·pss3d ·p

p2 −
1

3
ss12d · ss3dGuxml,

ux7l =Î3

2
Fss12d ·qss3d ·q

q2 −
1

3
ss12d · ss3dGuxml,

ux8l =
3

2

1
Î5

1

pq
Fss12d ·qss3d ·p + ss12d ·pss3d ·q

−
2

3
p ·qss12d · ss3dGuxml. s38d

Each term is composed of scalar operators consisting of spin
operators and momentum vectors, applied on the pure spin
state uxml, which carries the overall quantum numberJ
=1/2. Furthermore, each of those terms in Eq.(37) includes
scalar functionsfi formed out of the two Jacobi momentap
andq. Their dependence on the standard partial wave func-

FIG. 3. (Color online) The de-
pendence of the function
f7sp,q,x=1d on p andq. For bet-
ter visibility also contour lines are
given.

FIG. 4. (Color online) The de-
pendence of the function
f2sp,q,x=1d on p andq. For bet-
ter visibility also contour lines are
given.
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tion components has been explicitly worked out and will be
investigated in the following Sec. III. Of course, exactly the
same forms are valid in configuration space. In this case the
Jacobi momentap and q would have to be replaced by the
corresponding conjugate configuration space Jacobi vectors.

III. THE SCALAR FUNCTIONS

The operator form of the 3N bound state as given in Eq.
(37) contains the scalar functionsfi. They will be investi-
gated now and are given according to Eqs.(9), (14), (17),
(19), and(27) by

f1sp,qd =
1

4p
o

l even

Î2l + 1Plsp̂ · q̂dCl l 0 0 1/2spqd,

f2sp,qd =
1

4p
o
l odd

Î2l + 1Plsp̂ · q̂dCl l 0 1 1/2spqd,

f3sp,qd =
1

4p
o

l even,lù2
clsp̂ · q̂dCl l 1 0 1/2spqd,

f4sp,qd =
1

4p
o
l odd

clsp̂ · q̂dCl l 1 1 1/2spqd,

f5sp,qd =
1

4p
o
l odd

clsp̂ · q̂dCl l 1 1 3/2spqd,

f6sp,qd =
1

2Îp
o
l odd

fBlsp̂ · q̂dCl l 2 1 3/2spqd + Elsp̂ · q̂d

3Cl l+2 2 1 3/2spqd + Dlsp̂ · q̂dCl+2 l 2 1 3/2spqdg,

f7sp,qd =
1

2Îp
o
l odd

fBlsp̂ · q̂dCl l 2 1 3/2spqd + Dlsp̂ · q̂d

3Cl l+2 2 1 3/2spqd + Elsp̂ · q̂dCl+2 l 2 1 3/2spqdg,

f8sp,qd =
1

4p
o
l odd

hAlsp̂ · q̂dCl l 2 1 3/2spqd + Clsp̂ · q̂d

3fCl l+2 2 1 3/2spqd + Cl+2 l 2 1 3/2spqdgj.

s39d

These functionsfisp ,qd depend on three variables,p, q,
and p̂ ·q̂. They are determined by the partial wave compo-
nents of the 3N bound state and analytically known coeffi-
cient functions. In Figs. 1–4 we displayf1sp,q,cosud,
f8sp,q,cosud, f7sp,q,cosud, andf2sp,q,cosud for a fixed
angleu=0°. We see that the numerically largest function is
f1sp,q,cosud; the other three ones shown are at least an
order of magnitude smaller. Whilef1sp,q,cosud has a
simple, bell-like shape with maxima atp=0 andq=0, for
f8sp,q,cosud the maximum is shifted top<0.2 and q
<0.4 fm−1. The reason for this is thatf8sp,q,cosud does
not contains-wave contributions but instead includes tensor
force couplings. The functionf7sp,q,cosud is similar in
shape tof8sp,q,cosud. Finally, f2sp,q,cosud also has its
minimum shifted away from the origin.

The dependence on the anglep̂ ·q̂ is generally rather
weak. In order to show the angular dependence explicitly, the
function f1sp,q,cosud is displayed in Fig. 5 for some fixed
values ofp andq as function of cosu. Similarly, we show in
Fig. 6 the angular dependence off8sp,q,cosud. The angular
dependence off7sp,q,cosud and f2sp,q,cosud is domi-
nantly given byP1scosud, and thus not displayed.

FIG. 5. (Color online) The
angle dependence of
f1sp,q,cosud for different pairs
of momentap and p as indicated
in the figure. Note the multiplica-
tive factors in three cases.
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For the calculations presented in the following, we used a
wave function based on theNN force AV18 [19] in conjunc-
tion with the Urbana-IX three-nucleon force[20]. We show
results for the3He. Thefi functions for other interactions are
qualitatively similar, especially, their relative importance is
not changed. Tabulated functions for several force combina-
tions are provided by the authors[21].

In order to quantify the relative importance of the eight
functionsfisp ,qd we consider the normalization of the 3N
bound state,

kCm=1/2uCm=1/2l = o
i
E dpdqkxiuxilfi

2

+ 2 Reo
i, j

E dpdqkxiux jlfif j , s40d

using the representation given in Eq.(37). The numerical
evaluation is straightforward, and the contributions of the
different products of thefisp ,qd (denoted asNij) to the norm
are listed in Table I. Clearly, the major contribution to the
norm (91.42%) is given byf1

2sp ,qd. The second largest con-
tribution is already more than one order of magnitude
smaller and is given byf8

2sp ,qd. All other contributions are
even smaller.

IV. APPLICATION

As an example of the application of the above-derived
operator form of the 3N bound state we consider the spin

dependent momentum distribution of a neutron inside a po-
larized 3He nucleus. This quantity is defined as

Nsqd = kCm=1/2udsq − qopd
1
2f1 + s0s3dguCm=1/2l. s41d

It should be noted that in the 3N center-of-mass(c.m.) sys-
tem the Jacobi momentumq is the momentum of one
nucleon, here nucleon 3. Regarding the eight operator struc-
tures displayed in Eq.(38) one recognizes that only the fol-
lowing five different terms occur:

O1 ; 1,

O2 ; ss12d · ss3d,

O3 ; ss3d ·A ; O3sAd,

O4 ; ss12d ·B ; O4sBd,

O5 ; ss12d ·Css3d ·D ; O5sC,Dd. s42d

Here the vectorsA, B, C, andD represent different momen-
tum vectors. It is a straightforward exercise to evaluate once
and for all the matrix elements

kOi8Ojl ; kxmuOi8Ojuxml. s43d

The nonvanishing ones are listed below:

kO1O1l = 1,

FIG. 6. (Color online) The
angle dependence of
f8sp,q,cosud for different pairs
of momentap and p as indicated
in the figure. Note the multiplica-
tive factors in one case.

TABLE I. The contributionsNij from fisp ,qdf jsp ,qd to the total normalization of the 3N state.

i j 11 22 33 44 55 66 67 68 77 78 88

Nij (%) 91.42 0.76 0.02 0.02 0.02 0.13 0.11 0.25 0.98 2.44 4.35
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kO1O3l = A0,

kO2O2l = 3,

kO2O4l = B0,

kO2O5l = C ·D + isC 3 Dd0,

kO38O1l = A08

kO38O3l = A8 ·A + isA8 3 Ad0,

kO48O2l = B08

kO48O4l = B8 ·B,

kO48O5l = sB8 ·CdD0,

kO58O2l = C8 ·D8 − isC8 3 D8d0,

kO58O4l = sB ·C8dD08

kO58O5l = sC8 ·CdfD8 ·D + isD8 3 Dd0g. s44d

For the evaluation of the specific expectation valueNsqd
considered in Eq.(41) we need in addition matrix elements
of the form

kOi8s0s3dOjl ; kxmuOi8s0s3dOjuxml. s45d

The resulting, nonvanishing matrix elements are listed in Ap-

pendix E. With this, the specific operatorÔ for evaluating
Nsqd from Eq. (41) has spin matrix elements given as

kOi8ÔOjl ; kOi8
1
2s1 + s0s3ddOjl , s46d

and the nonvanishing matrix elements are also listed in Ap-
pendix E. Next one expresses the statesuxil in terms of the 5
operatorsOi,

uxil = o
j

AijOjsVi jduxml, s47d

whereVi j denotes the arguments of the operatorsOj which
varies withuxil. One explicitly obtains

ux1l = O1uxml,

ux2l =
1
Î3

O2uxml,

ux3l =Î3

2

1

i

O3sp 3 qd
pq

uxml,

ux4l =
1
Î2

1

pq
fiO4sp 3 qd − O5sq,pd + O5sp,qdguxml,

ux5l =
1

i
SO4sp 3 qd

pq
−

i

2

O5sq,pd − O5sp,qd
pq

Duxml,

ux6l =Î3

2
FO5sp,pd

p2 −
1

3
O2Guxml,

ux7l =Î3

2
FO5sq,qd

q2 −
1

3
O2Guxml,

ux8l =
3

2

1
Î5

1

pq
fO5sq,pd + O5sp,qd − 2

3p ·qO2guxml.

s48d

Using the expectation values listed in Appendix E, one can

determine the matrix elementskxiuÔux jl in a straightforward
fashion. As example we give

kx4uÔux6l =
Î3

2

1

pq
S i

3
sp 3 qd0 −

p0
2

p2p ·q + p0q0D . s49d

Here the index 0 denotes a spherical component. The above
expression nicely exhibits the analytic angular dependence.
The final step in obtaining the momentum distributionNsqd
is then to write

Nsqd =E dpkCm=1/2sp̂q̂duÔuCm=1/2sp̂q̂dl

=E dpso
i

fi
2kxiuÔuxil + 2o

i, j

fif jRekxiuÔux jld.

s50d

An inspection of all analytically given spin matrix ele-
ments reveals that only four types of angular integrations
occur. These are

E dp̂fsp̂ · q̂d 3 5
1

p0

p0
2

sp 3 qd0
2.

s51d

Because of the rotational invariance around the quantization
axis (z axis) one can choose the vectorq to be in thex-z
plane. Then it is most convenient to rotate thez axis into the
direction ofq by the angleu;uq. The result is
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E dp̂fsp̂ · q̂d 35
1

p0

p0
2

sp 3 qd0
2

= 2pE
−1

1

dxfsxd 35
1

p cosux

p2fcos2 ux2 + 1
2 sin2 us1 − x2dg

1
2p2s1 − x2d

. s52d

Collecting all the results one ends up with the final expression forNsqd;Nsq,ud given by

Nsq,ud = 2pE
0

`

dpp2E
−1

1

dxHf1
2sp,q,xd +

1

3
f2

2sp,q,xd + f2sp,q,xdf6sp,q,xd
1

3Î2
s3 cos2 u − 1ds3x2 − 1d

+ f2sp,q,xdf7sp,q,xd
Î2

3
s3 cos2 u − 1d + f2sp,q,xdf8sp,q,xd

2
Î15

s3 cos2 u − 1dx + f3
2sp,q,xd

3

4
s1 − cos2 uds1 − x2d

+ f4
2sp,q,xd

1

4
s3 + cos2 uds1 − x2d + f4sp,q,xdf5sp,q,xd

1

2Î2
scos2 u − 3ds1 − x2d + f4sp,q,xdf6sp,q,xd

Î3

2
s3 cos2 u − 1d

3s1 − x2dx + f4sp,q,xdf8sp,q,xd
3

2Î10
s3 cos2 u − 1ds1 − x2d + f5

2sp,q,xd
1

8
scos2 u + 9ds1 − x2d

+ f5sp,q,xdf6sp,q,xd
1

2
Î3

2
s3 cos2 u − 1ds1 − x2dx + f5sp,q,xdf8sp,q,xd

3

4Î5
s3 cos2 u − 1ds1 − x2d + f6

2sp,q,xd
1

12

3f4 + s3 cos2 u − 1ds3x2 − 1dg + f6sp,q,xdf7sp,q,xd
1

6
s3 cos2 u + 1ds3x2 − 1d + f6sp,q,xdf8sp,q,xd

1

2Î30

3f8 + s3 cos2 u − 1ds3x2 + 1dgx + f7
2sp,q,xd

1

6
s3 cos2 u + 1d + f7sp,q,xdf8sp,q,xdÎ 2

15
s3 cos2 u + 1dx

+ f8
2sp,q,xd

1

200
f48 +s15 cos2 u − 1ds5x2 + 3dgJ . s53d

Though the angular dependence for the direction of the nucleon momentumq in relation to the quantization axis is analytically
given, the full expression is quite lengthy. However the dependence on the angleu is quite simple, namelyNsq,ud;asqd
+bsqdcos2 u. Moreover most of the contributions are numerically insignificant, as illustrated in the preceding section. There-
fore, we only keepf1, f8, f7, f2. It turns out that for the specific quantityNsq,ud only these components visibly contribute.
Therefore, in this case the lengthy expression of Eq.(53) shrinks to the few leading terms

Nsq,ud = 2pE
0

`

dpp2E
−1

1

dxHf1
2sp,q,xd +

1

3
f2

2sp,q,xd + f2sp,q,xdf7sp,q,xd
Î2

3
s3 cos2 u − 1d

+ f2sp,q,xdf8sp,q,xd
2

Î15
s3 cos2 u − 1dx + f7

2sp,q,xd
1

6
s3 cos2 u + 1d + f7sp,q,xdf8sp,q,xdÎ 2

15
s3 cos2 u + 1dx

+ f8
2sp,q,xd

1

200
f48 +s15 cos2 u − 1ds5x2 + 3dgJ . s54d

The numerical results forNsqd are displayed as function
of q in Fig. 7 for the fixed angleu=0 (i.e., the nucleon
momentum is parallel to the quantization axis) and in Fig. 8
for u=90°. We compare the full result given in Eq.(53) to
various truncated sums. The solid line in Figs. 7 and 8 cor-
responds to the full calculation using Eq.(53). The simplest
approximation would be to consider only the first term in Eq.
(53) or Eq.(54), namelyf1

2, given by the dashed line. We see
that this simple term alone already gives a good representa-

tion of Nsq,ud up to aboutq<1 fm−1. The dip around 2 fm−1

is mostly filled in by adding the term containingf8
2, shown

as dash-dotted line. When adding terms containingf7, rep-
resented by the dotted line, one is very close to the full
result. Adding the terms containingf2, i.e., calculating the
expression given in Eq.(54), shows that all other terms in
Eq. (53) are insignificant.

We expect that also for other observables the operator
form of the 3N bound state will be useful. It should provide
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an easy access to the wave function without the need of
having access to a modern triton code.

V. SUMMARY

An old idea by Gerjuoy and Schwinger[15] has been
revived to present the 3N bound state in operator form. This
form analytically exhibits the dominant angular and spin de-
pendence of the wave function in form of scalar operators

formed out of momentum and spin vectors, which are ap-
plied on a pure spin 1/2 state. Each such operator is accom-
panied by a scalar function depending on the magnitudes of
the two Jacobi momenta and the angle between them. We
established the connection of this form with the standard
partial wave decomposition. This connection provided the
explicit form of the scalar functions in terms of partial wave
function components. The key point in the derivation was to
extract from an infinite sum of partial wave expressions the

FIG. 7. (Color online) The
momentum distribution Nsq,u
=0d. The solid line represents the
calculation containing all terms in
Eq. (53). The dashed line displays
the result based on the first term
only, the dash-dotted the one con-
taining in addition the contribu-
tion of f8. For the dotted line con-
tributions containing f7 are
added. The long dashed-line con-
tains in addition contributions in-
cludingf2 and corresponds to Eq.
(54).

FIG. 8. (Color online) Same as
Fig. 7, but forNsq,u=90d.
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operator form and the accompanying scalar functions. The
presented operator form of the 3N wave function is indepen-
dent of the appliedNN and 3N force.

We illustrated the application of this new form of the 3N
bound state wave function by calculating the spin dependent
single nucleon momentum distribution in a polarized 3N
bound state. It turned out that for this quantity only four parts
out of the total number of eight parts forming the 3N bound
state were needed to achieve a sufficiently accurate represen-
tation. Several sets of spin matrix elements depending on the
Jacobi momentum vectors, which have to be calculated only
once, have been evaluated. They will also be needed in other
applications.

We expect that this operator form allows an easy access to
the 3N bound state. The eight scalar functions carrying the
specific dynamical information have been tabulated on a suf-
ficiently fine grid and can be downloaded from Ref.[21].
There are sets of scalar functions for various modernNN and
3N force combinations.
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APPENDIX A: RELATION FOR THE COUPLED
SPHERICAL HARMONICS

Here the relation of Eq.(12) for the coupled spherical
harmonics Yll

1msp̂q̂d will be verified. We consider
Yll

00sp̂q̂dY11
1msp̂q̂d, which can be rewritten by standard tech-

niques(see e.g., Ref.[16]) as

Yll
00sp̂q̂dY11

1msp̂q̂d =
3

4p
Î2l + 1o

ab

s− 1da+lCsl1a,00d

3Csl1b,00dHb a 1

1 1 l
JYab

1msp̂q̂d. sA1d

The sum overa and b will give four terms. After inserting
the explicit expression for the Clebsch-Gordon coefficients
and the 6-j symbol, one arrives at

Yll
00sp̂q̂dY11

1msp̂q̂d = −
3

4p

1
Î2l + 1

1
Î6

3S−Îsl + 1dsl + 2d
2l + 3

Yl+1 l+1
1m sp̂q̂d

+Î lsl + 1d
2l − 1

Yl−1 l−1
1m sp̂q̂dD . sA2d

Using the relation

Yll
00sp̂q̂d = s− 1dl

Î2l + 1

4p
Plsp̂ · q̂d, sA3d

the previous Eq.(A2) can be rewritten as

Yll
1msp̂q̂d =Î 2l + 1

lsl + 1d
Ss− 1dl+1Î2

3
s2l − 1dPl−1sp̂ · q̂d

3Y11
1msp̂q̂d +Îsl − 1dsl − 2d

2l − 3
Yl−2l−2

1m sp̂q̂dD .

sA4d

This is a recursive formula and leads to the relation given in
Eq. (12). In practice only low orbital angular momenta occur
and one easily works out the lowest terms as

c1sp̂ · q̂d = 1,

c2sp̂ · q̂d = − Î5P1sp̂ · q̂d,

c3sp̂ · q̂d =
1

3
Î7

2
f5P2sp̂ · q̂d + 1g. sA5d

These expressions agree with Eq.(17a) in Ref. [18].

APPENDIX B: VERIFICATION OF THE RELATION GIVEN
IN EQ. (19)

The first step is to generate the spin states of Eq.(18)
from the statesuxml given in Eq.(6). It is easy to see that

us11
2d 3

2
3
2l = ss12d+uxm=1/2l, sB1d

wheres+s12d is the spherical component of the spin operator
given in Eq.(7). This form can be rewritten as

us11
2d 3

2
3
2l = f 2

3s+s12d + 1
3ss+ds12dguxm=1/2l

= 2
3Ss+s12d −

i

2
fss3d 3 ss12dg+Duxm=1/2l

sB2d

using the spherical component of the vector product.
Next, we express the second spin state in Eq.(18) with

the help of the lowering operator as

us11
2d 3

2
1
2l = sSx − iSydus1

1
2d 3

2
3
2l

1
Î3

=
1
Î6

fs−s1d + s−s2d + s−s3dg
1

2
fs+s1d − s+s2dg

3uxm=1/2l

=
1
Î6

1

2
h2ss0s1d − s0s2d + s−s3d

3fs+s1d − s+s2dgjuxm=1/2l

=
1
Î6

1

2
Š2fs0s1d − s0s2dg + ihfss1d − ss2dg

3 ss3dj0‹uxm=1/2l
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=
2
Î6
Hs0s12d −

i

2
fss3d 3 ss12dg0Juxm=1/2l. sB3d

Finally, starting from

us11
2d 3

2 − 1
2l = 1

2sSx − iSYdus11
2d 3

2
1
2l , sB4d

inserting the form(B3) and reshuffling leads to

us11
2d 3

2 − 1
2l =

2
Î3

Sss12d− −
i

2
fss3d 3 ss12dg−Duxm=1/2l.

sB5d

Now we use the relation(2.10) and the property

Y11
1msp̂q̂d = i

3

4p

1
Î2

sp→ 3 q→dm

up→uuq→u
. sB6d

With this one arrives directly at Eq.(19).

APPENDIX C: VERIFICATION OF THE RELATION
GIVEN IN EQ. (22)

With standard recoupling techniques one finds

Yll
00sp̂q̂dY11

2msp̂q̂d =
3

4p

1

2l + 1
SÎsl + 1dsl + 2ds2l + 5d

30s2l + 3d

3Yl+1l+1
2m sp̂q̂d −Î lsl + 1d

5

3fYl+1,l−1
2m sp̂q̂d + Yl−1l+1

2m sp̂q̂dg

+Î lsl − 1ds2l − 3d
s2l − 1d 3 30

Yl−1,l−1
2m sp̂q̂dD ,

sC1d

which leads to the recursive relation

Yll
2msp̂q̂d =Î 30s2l + 1d

lsl + 1ds2l + 3dH4p

3
s2l − 1dYl−1l−1

00 sp̂q̂d

3Y11
2msp̂q̂d +Îsl − 1dl

5
fYll−2

2m sp̂q̂d + Yl−2l
2m sp̂q̂dg

−Îsl − 1dsl − 2ds2l − 5d
s2l − 3d30

Yl−2l−2
2m sp̂q̂dJ . sC2d

Similarly, starting from

Yll
00sp̂q̂dY2msp̂d =

1
Î4p

SÎ3

2
Î sl + 1dsl + 2d

s2l + 1ds2l + 3d
Yl+2l

2m sp̂q̂d

−Î lsl + 1d
s2l − 1ds2l + 3d

3Yll
2msp̂q̂d

+Î3

2
Î lsl − 1d

s2l − 1ds2l + 1d
Yl−2l

2m sp̂q̂dD , sC3d

one finds the additional recursive relations

Yl+2l
2m sp̂q̂d =Î2

3
Îs2l + 1ds2l + 3d

sl + 1dsl + 2d HÎ4pYll
00sp̂q̂dY2msp̂d

+Î lsl + 1d
s2l − 1ds2l + 3d

Yll
2msp̂q̂d

−Î3

2
Î lsl − 1d

s2l − 1ds2l + 1d
Yl−2,l

2m sp̂q̂dJ sC4d

and similarly

Yl,l+2
2m sp̂q̂d =Î2

3
Îs2l + 1ds2l + 3d

sl + 1dsl + 2d HÎ4pYll
00sp̂q̂dY2msq̂d

+Î lsl + 1d
s2l − 1ds2l + 3d

Yll
2msp̂q̂d

−Î3

2
Î lsl − 1d

s2l − 1ds2l + 1d
Yl,l−2

2m sp̂q̂dJ . sC5d

Inserting these equations into each other yields the relations
given in Eqs.(22). For the calculation of a 3N bound state,
the scalar functionsAl to El are in practice only needed for
small values ofl. In our context we only need odd values of
l. The two lowest cases are given here.

If only l =1 is kept, then one trivially hasA1=1 andB1
=0, and all other terms are absent. If onlyl =1 andl =3 are
kept, then one obtains from Eqs.(C4) and (C5)

Y31
2msp̂q̂d =Î2

3
Y11

2msp̂q̂d −Î 5

4p
P1sp̂ · q̂dY2msp̂d,

Y13
2msp̂q̂d =Î2

3
Y11

2msp̂q̂d −Î 5

4p
P1sp̂ · q̂dY2msq̂d.

sC6d

Furthermore, Eq.(C2) yields

Y33
2msp̂q̂d =Î35

18
HY11

2msp̂q̂dS5Î5

3
P2sp̂ · q̂d −Î 1

45
D

+Î6

5
fY13

2msp̂q̂d + Y31
2msp̂q̂dgJ sC7d

and after insertion of the results(C6) we get
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Y33
2msp̂q̂d = Y11

2msp̂q̂dÎ7

2

1

9
f25P2sp̂ · q̂d + 11g

−Î 35

12p
P1sp̂ · q̂dfY2msp̂d + Y2msq̂dg. sC8d

Thus, one obtains in the end the coefficients given in Eq.
(31). For the convenience of the reader we restate the last

line in Eq. (17c) of Ref. [18], which should read in their
notation:

dl8,l±2s− 1dlF 2

3sL + 1dsL + 2ds2L + 3dG1/2

3SPl9B2,0
2 + Pl8

9 B0,2
2 −Î10

3
PL+19 B1,1

2 D . sC9d

APPENDIX D: THE OPERATORS OF EQ. (27)

The starting points for the derivation are Eqs.(20) and (23). According to Eqs.(B2), (B3), and(B5) these lead to

u4D1/2
m=1/2l = −

2

3
Î 1

10
Sss12d −

i

2
fss3d 3 ss12dgD

+
uxm=1/2l 3 o

l odd

fY11
2−1sp̂q̂dXlsp̂q̂d + Y2−1sp̂dVlsp̂q̂d + Y2−1sq̂dWlsp̂q̂dg

+Î1

5

2
Î6

Sss12d −
i

2
ss3d 3 ss12dD

0
uxm=1/2l 3 o

lodd

fY11
20sp̂q̂dXlsp̂q̂d + Y20sp̂dVlsp̂q̂d + Y20sq̂dWlsp̂q̂dg

−Î 3

10

2
Î3

Sss12d −
i

2
fss3d 3 ss12dgD

−
uxm=1/2l 3 o

l odd

fY11
21sp̂q̂dXlsp̂q̂d + Y21sp̂dVlsp̂q̂d + Y21sq̂dWlsp̂q̂dg

+Î2

5
Î1

2
s−s3ds−s12duxm=1/2l o

l odd

fY11
22sp̂q̂dXlsp̂q̂d + Y22sp̂dVlsp̂q̂d + Y22sq̂dWlsp̂q̂dg. sD1d

As an example let us regard the terms inY2msp̂d, which have
the well known representation in terms of spherical compo-
nents ofp:

Y2−1sp̂d =
1

2p2Î15

p
p0p−,

Y20sp̂d =
1

2p2Î 5

p
sp0

2 + p+p−d,

Y21sp̂d =
1

2p2Î15

p
p0p+,

Y22sp̂d =
1

2p2Î 15

2p
sp+d2. sD2d

For the convenience of the reader we also provide the
relations

Y11
2−1sp̂q̂d =

1
Î2

3

4p

1

upuuqu
sp0q− + p−q0d,

Y11
20sp̂q̂d =

3

4p

1

upuuquS 1
Î6

sp+q− + p−q+d +Î2

3
p0q0D ,

Y11
21sp̂q̂d =

1
Î2

3

4p

1

upuuqu
sp+q0 + p0q+d,

Y11
22sp̂q̂d =

3

4p

p+q+

upuuqu
. sD3d

If one now inserts Eqs.(D2) into Eq. (D1) and looks only
into the terms withVl, one can easily combine the expres-
sions to

uu4D1/2
m luVl

=
1

2
Î 3

2p
o

l odd

Vlsp̂q̂dFss12d ·pss3d ·p

p2

−
1

3
ss12d · ss3dGuxml. sD4d

The term inXl is somewhat more tedious.

APPENDIX E: THE NONVANISHING MATRIX
ELEMENTS OF EQS. (45) and (46)

The nonvanishing matrix elements of Eq.(45) are given
by

kO1s0s3dO1l = 1,

kO1s0s3dO3l = A0,

kO2s0s3dO2l = − 1,

OPERATOR FORM OF3H s3Hed AND ITS SPIN STRUCTURE PHYSICAL REVIEW C69, 064002(2004)

064002-15



kO2s0s3dO4l = B0,

kO2s0s3dO5l = 2C0D0 − C ·D − isC 3 Dd0,

kO38s0s3dO1l = A08,

kO38s0s3dO3l = 2A08A0 − A8 ·A − isA8 3 Ad0,

kO48s0s3dO2l = B08,

kO48s0s3dO4l = B8 ·B,

kO48s0s3dO5l = sB8 ·CdD0,

kO58s0s3dO2l = 2C08D08 − C8 ·D8 + isC8 3 D8d0,

kO58s0s3dO4l = sB ·C8dD08

kO58s0s3dO5l = sC8 ·Cdf2D08D0 − D8 ·D − isD8 3 Dd0g.

sE1d

The nonvanishing matrix elements of Eq.(46) are given by

kO1ÔO1l = 1,

kO1ÔO3l = A0,

kO2ÔO2l = 1,

kO2ÔO4l = B0,

kO2ÔO5l = C0D0,

kO38ÔO1l = A08,

kO38ÔO3l = A08A0,

kO48ÔO2l = B08,

kO48ÔO4l = B8 ·B,

kO48ÔO5l = sB8 ·CdD0,

kO58ÔO2l = C08D08,

kO58ÔO4l = sB ·C8dD08,

kO58ÔO5l = sC8 ·CdD08D0. sE2d
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