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S. Rombouts and D. Van Neck
Universiteit Gent, Vakgroep Subatomaire en Stralingsfysica, Proeftuinstraat 86, B-9000 Gent, Belgium

J. Dukelsky
Instituto de Estructura de la Materia, CSIC, Serrano 123, 28006 Madrid, Spain

(Received 18 December 2003; published 11 June 2004)

Forty years ago Richardson showed that the eigenstates of the pairing Hamiltonian with constant interaction
strength can be calculated by solving a set of nonlinear coupled equations. However, in the case of fermions
these equations lead to singularities which made them very hard to solve. This paper explains how these
singularities can be avoided through a change of variables making the fermionic pairing problem numerically
solvable for arbitrary single-particle energies and degeneracies.
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Exactly solvable models serve as a guideline for under-
standing the properties of correlated many-body systems. Al-
ready in the 1960s, Richardson solved the eigenproblem of a
constant pairing interaction in a set nondegenerate single-
particle levels for Fermion[1] and Boson[2] systems. How-
ever, it turned out that in the Fermion case the solutions
exhibit singularities which are hard to treat numerically
[3,4]. Recently, exactly solvable pairing models have gained
new attention[5], with applications to nanometallic grains
[6] (for a review see Ref.[7]), Bose-Einstein condensates[8]
and nuclear physics[9]. It was first shown that the pairing
model was integrable by finding the complete set of commut-
ing integrals of motions[10], and subsequently, three new
families of fully integrable and exactly solvable models[11]
giving rise to a large class of pairing Hamiltonians with non-
uniform matrix elements[12] were presented. These models
are exactly solvable, except for the singularities occurring in
fermion systems for some critical values of the pairing
strength. This problem, in spite of some early attempts to
cure it[13,14], precluded for over forty years the use of these
exactly solvable models for a wide range of applications,
ranging from condensed matter to nuclear physics. More-
over, the recent developed extensions of the exact solution to
pairing Hamiltonians including the isospin degree of free-
dom [Os5d pairing] [15] with promising applications toN
,Z nuclei and high-Tc superconductivity, suffer from the
same kind of singularities.

This paper show how the Richardson equations can be
solved numerically, avoiding the singularities, through an ap-
propriate change of variables. This procedure provides a fast
and accurate way to solve the equations for a constant pair-
ing interaction. The method can be applied as well to more
general exactly solvable Hamiltonians associated with a
coupled set of nonlinear equations of the Richardson type.

The exactly solvable pairing Hamiltonian has the follow-
ing form:

H = o
j ,m

ejajm
† ajm −

g

4 o
j ,m,j8,m8

ajm
† ajm̄

† aj8m̄8aj8m8 s1d

with ej any set of single-particle energies andg the pairing
interaction strength. TheN-pair eigenstates of this Hamil-
tonian have the form

p
a=1

N Fo
j ,m

1

2ej − xa

ajm
† ajm̄

† Gu0l, s2d

where u0l is a state without paired particles(a Racah qua-
sispin vacuum state, Ref.[16]). The corresponding energy
Eshxjd is given by

Eshxjd = k0uHu0l + o
a

xa. s3d

The complex variablesxa can be found by solving a set of
nonlinear equations:

o
j

dj

2ej − xa

+ o
b=1,bÞa

N
1

xb − xa

+
1

2g
= 0, s4d

for a=1, . . . ,N. The parametersdj depend on the level de-
generacies and on the structure of the vacuum stateu0l. For
Fermions,dj =n j −V j /2, whereV j is the pair degeneracy(for
the nuclear shell modelV j = j +1/2), andn j is the seniority of
the level j . Note thatdj ø0 because of the Pauli principle.
Solving this set of nonlinear equations solves the eigenprob-
lem for the pairing Hamiltonian, Eq.(1). Unfortunately, the
algebraic solution becomes numerically unstable at certain
critical values of the interaction strength[3,4]. This is caused
by singularities in the first and second terms in Eq.(4), when
some of the variablesxa are approaching the value 2ej. One
can understand this from the electromagnetic analogy for the
exactly solvable pairing model[17]: in the fermion case, the
single-particle levelsej and the variablesxa correspond to
opposite charges. Therefore a group of variables can cluster
around a single-particle level in such a way that for each of
the variables the repulsive charge of the other variables is
compensated for by the attractive charge of the single-
particle level. These singularities occur for fermions in
double or multiple degenerate levels. In the case of doubly
degenerate equidistant levels these singularities can be
handled for the ground state[13], but the problem arises
again in the treatment of the excited states[18]. In previous
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calculations it was necessary to tune the solutions by hand as
soon as they approach a singularity. No general solution
method was known until now. Figure 1 illustrates the behav-
ior of the variables in case of multiply degenerate levels(see
below for the details of the model).

A general approach to solve the Richardson equations Eq.
(4), starts from an approximate solution in the weak-
interaction limit (see below). Then this solution is evolved
adiabatically up to the desired interaction strength by gradu-
ally increasing the value ofg. At each step ing, the previous
solution has to be updated. For dealing with the singularities,
it is useful to note first that the variablesxa in Eq. (4) are
most sensitive to the other variables nearby. Therefore one
can divide the set of variablesxa into severalclustersof
variables, grouped around different single-particle levels. By
solving the equations for each cluster separately, one can
obtain a solution for the whole system iteratively. A practical
way to organize the clusters, is to link each variable to its
nearest single-particle level 2ej, and to consider a cluster for
each level that has variables around it.

The question now is how to solve the equations for each
cluster, particularly in the case of singularities. Let us con-
sider the set of indicesCk of the Nk variables that cluster
around a level 2ek. Then one can consider the equations

dk

2ek − xa

+ o
bPCk,bÞa

1

xb − xa

+ Fksxad = 0, ∀ a P Ck,

s5d

with

Fksxd =
1

2g
+ o

j ,jÞk

dj

2ej − x
+ o

b,b¹Ck

1

xb − x
. s6d

The functionFksxd describes the influence of the other levels
and the variables of the other clusters on the variables in the
clusterCk. Because of the way the clusters are set up, the
functionFksxd will be a smooth function in the region around
ek where the variables of the cluster are located. The singu-
larities will occur in the first two terms of Eq.(5). In the case
that some of the variables in the cluster approach the value
2ek, the divergences in the first and the second term of Eq.
(5) must cancel out. Multiplying Eq.(5) by 2ek−xa, and
summing over thenk variablesxa at the singular point, leads
to the condition

nk = − 2dk + 1 s7d

with nk the number of variables that actually converge to 2ek.
For fermions the values−2dkd corresponds to the pair degen-
eracy of the levelek: because of the Pauli principle, no more
fermion pairs can occupy the level. Trying to put more pairs
in that level results in a singularity. In fact, the structure of
the ground state Eq.(2) does not result in a forbidden occu-
pation of the level. However, on expanding the wave func-
tion of Eq. (2) in terms of the pair creation operatorsajm

† ajm̄
† ,

one finds that the leading term cancels out because of the
Fermionic anticommutation rules. This translates into the nu-
merical difficulties encountered in the solution of the equa-
tions. For bosonsdk.0, and hence Eq.(7) shows that sin-
gularities do not occur in the bosonic case. This can also be
understood from the electrostatic analogy: boson pairs and
single-particle levels have charges of the same sign. There-
fore the variables try to avoid each other at all times, and
singularities do not occur.

The above procedure suggests a way to remove the sin-
gularities from the equations: multiplying Eq.(5) with s2ek

−xadp, for some powerp, and summing over all variablesxa

in the cluster. The resulting equations become, forp.1:

Sdk + Nk −
p

2
DSp−1 +

1

2o
k=2

p−1

Sk−1Sp−k + Rp = 0 s8d

with

Sp = o
aPCk

s2ek − xadp s9d

Rp = o
aPCk

s2ek − xadpFksxad. s10d

The compact form of Eq.(8) suggests that it might be ad-
vantageous to solve them for the new variablesSp instead of
the original variablesxa. Note that given a set of variables
S1, . . . ,SNk

, one can easily construct the polynomial whose

FIG. 1. Real and imaginary part of the variablesxa for the
model described in the text.
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roots correspond to the values 2ek−xa. Hence one can switch
from one set of variables to the other. The problem comes
with the quantitiesRp: these are functions of thexa, and it is
not straightforward to express them as functions of theSp.
However, for a given set of variablesxa, one can easily
evaluate the valuesSp andRp. Furthermore, one can evaluate
the gradient matrixG, with Glm the derivative with respect to
Sm of Eq. (8) for p= l +1,

G = GS+ GR, s11d

where

Glm
S =5dk + Nk −

l + 1

2
, for m= l

Sl−m, for m, l

0, for m. l

s12d

Glm
R =

dRl+1

dSm
= o

aPCk

dRl+1

dxa

dxa

dSm
s13d

for l ,m=1, . . . ,Nk. GR can be evaluated accurately using a
special inversion algorithm for Vandermonde matrices[19].
Therefore one can solve the new set of equations, Eq.(8), for
p=2, . . . ,Nk+1, in the new variablesS1, . . . ,SNk

using a stan-
dard gradient technique such as the multidimensional
Newton-Raphson method[20]. However, in the case of a
singularity, the gradient matrix becomes ill-conditioned: the
diagonal elements of the gradient matrix are given by

Gll
S = dk + Nk −

l + 1

2
s14d

for l =1, . . . ,Nk. The diagonal element will vanish for the
index ls=2sdk+Nkd−1. This will occur as soon asNkù
−2dk+1, which matches the value for which singularities can
occur, see Eq.(7). In such a case the lower-triangular matrix
GS becomes singular. The other part of the gradient matrix
GR is derived from the smooth functionFk. A series expan-
sion of Fksxd in x will be dominated by the lowest orders.
Therefore the elements ofGlm

R are very small for larger val-

ues ofm. As a result, the value ofSls
cannot be determined

accurately from the set of equations, Eq.(8). One can avoid
this problem by limiting the cluster sizes to at most the criti-
cal valueNk=nk=−2dk+1, and by usinggS−1 as an unknown
variable instead ofSNk

. If more variables are found near to
the same single-particle level, one can always divide the
cluster into smaller, well-separated clusters, because at most
nk of the variables can approach the single-particle level
closely. KnowingS−1 andS1, . . . ,SNk−1, one can still straight-
forwardly construct the polynomial whose roots give the cor-
responding valuesxa. Therefore one can easily switch be-
tween the two sets of variables. FurthermoregS−1 behaves
smoothly, even at a singularity. To set up an efficient gradient
method, it is useful to replace Eq.(8) for the last value,p
=Nk+1, by a similar equation obtained usingp=0:

dkgS−1 + gR0 = 0 s15d

with R0=oaPCk
Fksxad.

For weak-interaction strengths the functionFksxad is
dominated by the constant term 1/2g, see Eq.(6). In the
weak-interaction limit one can takeFk to be a constant. The
resulting functionsRp take the simple form

Rp =
Sp

2g
. s16d

Now the equations, Eqs.(8) and(15), can be solved straight-
forwardly to yield the variablesSl, from which one can con-
struct the polynomial that gives a unique set of variablesxa.
The resulting eigenstate will depend on the size of the cluster
for each of the single-particle levels. This establishes a one-
to-one correlation between the eigenstates of the noninteract-
ing systemsg=0d and the eigenstates of the weakly interact-
ing system. One can conclude that the Richardson equations
are complete: their solutions generate all eigenstates, and
there are no spurious solutions.

One can obtain the solutions for strong interaction
strengths by solving the weakly interacting first case, and
then gradually increasing the interaction strength. At each

TABLE I. Woods-Saxon single-particle levels[21].

Energy Degeneracy Pair occupation Seniority

Level ejsMeVd V j (Ground state) n j

1d5/2 −21.5607 3 3 0

1d3/2 −19.6359 2 2 0

2s1/2 −19.1840 1 1 0

1f7/2 −10.4576 4 4 0

2p3/2 −8.4804 2 1 0

1f5/2 −7.7003 3 0 0

2p1/2 −7.6512 1 0 0

3s1/2 −0.3861 1 0 0

2d5/2 0.2225 3 0 0

1g9/2 0.5631 5 0 0 FIG. 2. Lanczos and Richardson results for the energies of the
lowest zero-seniority states, relative to the non-interacting ground-
state energy.
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step one can use the gradient method outlined above in order
to update the solution to the new interaction strength. It is
useful to adapt the stepsize in interaction strength to the con-
vergence of the iterative procedure by taking smaller steps in
g when the convergence of the Newton-Raphson method for
the variablesSi becomes slower, which typically occurs
around the criticalg values. One more ingredient is needed
to avoid problems with the singularities: when the interaction
strength passes through a critical value, the variablesxa pass-
ing through a singularity can change from real to complex or
vice versa. At the same time the variablesSl will become
very small, except forl =−1. Even using the new variables,
the gradient method does not lead to the right solution when
it has to pass through critical values of the interaction
strength. One can avoid this problem by including an ex-
trapolation step based upon the previous solutions. This ex-
trapolation has to be done in the variablesSl, because they
vary smoothly through the singularities and they remain real
all the time. Assume that converged solutionsxa8 andxa9 were
obtained for valuesg8 andg9 of the interaction strength. The
variablesxa9 are grouped into clusters. For each cluster, one
evaluates the variablesSp8 and Sp9. Because the variablesSp
behave smoothly, even near a singularity, one can estimate
the variablesSp for the new interaction strengthg by linear
extrapolation:

Sp =
sg − g8dSp9 − sg − g9dSp8

g9 − g8
. s17d

The resulting values ofSp can then be updated using the
Newton-Raphson method or another gradient method. The
extrapolation step avoids the problems with the singularities
and greatly improves the convergence of the method.

As an example, consider the level scheme listed in Table
I, together with a constant pairing interaction. This model
describes neutrons in56Fe; its ground state and finite-
temperature properties have been studied using a quantum
Monte Carlo method[21]. The eigenstates can also be found
through the solution of Richardson’s equations, Eq.(4), or
through Lanczos diagonalisation in a seniority basis[22].
The full many-body space has a dimension of the order of
1015, while the zero-seniority basis has dimension 14 894. In
Fig. 2 the lowest zero-seniority eigenvalues for this model
are shown as a function of the interaction strength, calculated
using the Lanczos method and using the method explained
above(only 50 Lanczos iterations were used). To calculate
the ground state, a straightforward implementation of the
Newton-Raphson method for the original equations, Eq.(4),
works well up to an interaction strength ofg.0.2. It turns
out that a singularity occurs around the 1d3/2 level at a value
of g=0.245. A FORTRAN-95 computer program was written
based upon the procedure outlined above. It was able to
solve the equations for all interaction strengths in a matter of
seconds. Figure 3 shows the behavior of the threex variables
that cluster around the 1d3/2 level as a function ofg. In Fig.
4 one can see that the corresponding variablesSl behave
much more smoothly. More singularities occur around other
levels at higher interaction strengths, as is shown in Fig. 1.
The solution of the Richardson equations is faster than the

Lanczos method and requires much less computer memory.
It is accurate forall eigenstates, not just for the lowest lying
eigenvalues. Moreover, the procedure can deal with much
larger systems, well beyond the limits of large-scale exact
diagonalizations: our largest run sofar for a system with mul-
tiply degenerate levels has been for 100 pairs distributed
over 40 levels. The limiting factor is the size of the pair
clusters around one single-particle level, which is directly
related to the degeneracy of the levels. The present imple-
mentation(in 64-bit precision) becomes unstable when clus-
ters get as large as 60–80 pairs. The reason is that switching
from the S to the x variables requires finding all roots of a
polynomial equation with high enough accuracy.

This work shows that the exactly solvable pairing models
are indeed solvable in practice, even for fermions with mul-
tiple degeneracies. It opens up a whole new range of appli-
cations for these models. Furthermore, similar techniques
might be useful to solve the nonlinear equations for other
exactly-solvable pairing and spin models[11,15,23,24].

FIG. 3. Behavior of the variables near the singularity around the
2d3/2 level. Variablesx4 and x5 are complex conjugates,x6 is real
over the whole range ofg values.

FIG. 4. Smooth behavior of the new variables near the 2d3/2

singularity.
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