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Solving the Richardson equations for fermions
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Forty years ago Richardson showed that the eigenstates of the pairing Hamiltonian with constant interaction
strength can be calculated by solving a set of nonlinear coupled equations. However, in the case of fermions
these equations lead to singularities which made them very hard to solve. This paper explains how these
singularities can be avoided through a change of variables making the fermionic pairing problem numerically
solvable for arbitrary single-particle energies and degeneracies.
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Exactly solvable models serve as a guideline for under- N .
standlrjg the properties of correlated many—bpdy systems. Al- Im> %6 —x Ajmiy |0y, (2
ready in the 1960s, Richardson solved the eigenproblem of a a=1[ jm <57 e

constant pairing interaction in a set nondegenerate single-

particle levels for Fermioifil] and Bosor{2] systems. How- Where|0) is a state without paired particléa Racah qua-
ever, it turned out that in the Fermion case the solutionsispin vacuum state, Ref16]). The corresponding energy
exhibit singularities which are hard to treat numerically E({x}) is given by

[3.,4]. Recently, exactly solvable pairing models have gained

new attention[5], with applications to nanometallic grains E({x}) = (O[H|0) + >, X,. (3)
[6] (for a review see Ref7]), Bose-Einstein condensatsy o

and nuclear physicf9]. It was first shown that the pairing

model was integrable by finding the complete set of commutThe complex variableg, can be found by solving a set of
ing integrals of motiong10], and subsequently, three new nonlinear equations:

families of fully integrable and exactly solvable modgl4]

giving rise to a large class of pairing Hamiltonians with non- d. N 1 1
uniform matrix element$§l12] were presented. These models > —1 4 +—=0, (4)
are exactly solvable, except for the singularities occurring in i 26~ Xa pipraXg™Xa 29

fermion systems for some critical values of the pairing
strength. This problem, in spite of some early attempts tdor a=1,... N. The parameterd; depend on the level de-
cure it[13,14, precluded for over forty years the use of thesegeneracies and on the structure of the vacuum $@atd=or
exactly solvable models for a wide range of applicationsFermionsd;=v;—-();/2, where(); is the pair degeneragyor
ranging from condensed matter to nuclear physics. Morethe nuclear shell modél;=j+1/2), andv; is the seniority of
over, the recent developed extensions of the exact solution the levelj. Note thatd, <0 because of the Pauli principle.
pairing Hamiltonians including the isospin degree of free-Solving this set of nonlinear equations solves the eigenprob-
dom [O(5) pairing] [15] with promising applications tiN  |em for the pairing Hamiltonian, Eq1). Unfortunately, the
~Z nuclei and hight, superconductivity, suffer from the algebraic solution becomes numerically unstable at certain
same kind of singularities. _ _ critical values of the interaction strengjt,4]. This is caused
This paper show how the Richardson equations can bgy singularities in the first and second terms in &, when

ing interaction. The method can be applied as well to mor
general exactly solvable Hamiltonians associated with
coupled set of nonlinear equations of the Richardson type.

The exactly solvable pairing Hamiltonian has the follow-
ing form:

e'single-particle levels; and the variables, correspond to

pposite charges. Therefore a group of variables can cluster
around a single-particle level in such a way that for each of
the variables the repulsive charge of the other variables is
compensated for by the attractive charge of the single-
particle level. These singularities occur for fermions in
double or multiple degenerate levels. In the case of doubly
degenerate equidistant levels these singularities can be
with g any set of single-particle energies agdhe pairing  handled for the ground stafd 3], but the problem arises
interaction strength. Thé&l-pair eigenstates of this Hamil- again in the treatment of the excited staf#8]. In previous
tonian have the form

- t 9 t ot
H - E ejalma]m - Z E ajmajﬁaj/a/aj/m/ (l)
Jm jmj’m’
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dy

+ + Fk(xa) = 0, Oa e Ck,
2ek_xuz BeCy.B+a X,B_Xa
(5)
with
1 d; 1
=+ 3 s . ®
29 jj#k 267X ppec XgTX

The functionF,(x) describes the influence of the other levels
and the variables of the other clusters on the variables in the
cluster C,. Because of the way the clusters are set up, the
0 0.25 05 075 ] 1o 15  functionF(x) will be a smooth function in the region around
e where the variables of the cluster are located. The singu-
larities will occur in the first two terms of E@5). In the case
that some of the variables in the cluster approach the value
2¢,, the divergences in the first and the second term of Eq.
(5) must cancel out. Multiplying Eq(5) by 2e-x,, and
summing over tha, variablesx, at the singular point, leads

to the condition

20

Nk = _2dk+ 1 (7)

[=]

Im(x) (MeV)

with n, the number of variables that actually convergeégn 2
For fermions the valué-2d,) corresponds to the pair degen-
eracy of the leveb,: because of the Pauli principle, no more
fermion pairs can occupy the level. Trying to put more pairs
in that level results in a singularity. In fact, the structure of

10}

-20 1 I 1 1 . 1 -

0 0.25 0.5 0.75 1 125 15 the ground state E@2) does not result in a forbidden occu-
g (MeV) pation of the level. However, on expanding the wave func-
tion of EQ.(2) in terms of the pair creation operatcaﬁlaj%,

FIG. 1. Real and imaginary part of the variables for the  gne finds that the leading term cancels out because of the
model described in the text. Fermionic anticommutation rules. This translates into the nu-

merical difficulties encountered in the solution of the equa-

) ) ) tions. For bosongl, >0, and hence Eq.7) shows that sin-
calculations it was necessary to tune the solutions by hand ag,|arities do not occur in the bosonic case. This can also be
soon as they approach a singularity. No general solutiognderstood from the electrostatic analogy: boson pairs and
method was kl’]OWﬂ Unt” now. Figure 1 i||UStl’ateS the behaV'Sing|e_partic|e levels have Charges of the same Sign_ There-
ior of the variables in case of multiply degenerate leve&®  fore the variables try to avoid each other at all times, and
below for the details of the model singularities do not occur.

A general approach to solve the Richardson equations Eq. The above procedure suggests a way to remove the sin-
(4), starts from an approximate solution in the weak-gularities from the equations: multiplying E¢p) with (2,
interaction limit (see below Then this solution is evolved -x,)P, for some powep, and summing over all variables,
adiabatically up to the desired interaction strength by graduin the cluster. The resulting equations become,forl:
ally increasing the value dj. At each step irg, the previous o1
solution has to be updated. For dealing with the singularities, o+ Nu p + }E
it is useful to note first that the variables in Eq. (4) are kKt Tk Sp-1 S
most sensitive to the other variables nearby. Therefore one
can divide the set of variables, into severalclustersof ~ With
variables, grouped around different single-particle levels. By
solving the equations for each cluster separately, one can S$= EC (28~ %,)P ©)
obtain a solution for the whole system iteratively. A practical e
way to organize the clusters, is to link each variable to its
nearest single-particle levekz and to consider a cluster for Rp= > (2e- Xa) PFi(Xa) (10
each level that has variables around it. *<Ci

The question now is how to solve the equations for eactThe compact form of Eq(8) suggests that it might be ad-
cluster, particularly in the case of singularities. Let us con-vantageous to solve them for the new varialiginstead of
sider the set of indice€, of the N variables that cluster the original variables,. Note that given a set of variables
around a level &. Then one can consider the equations S, ...,Sy,, one can easily construct the polynomial whose

52 SaiStR=0  (8)
k=2
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TABLE I. Woods-Saxon single-particle level21]. 10
Energy Degeneracy  Pair occupation  Seniority
Level  g(MeV) Q; (Ground statg v
1ds,  —21.5607 3 3 0
1ds,  —-19.6359 2 2 0
1f,,  -10.4576 4 4 0
2p3), -8.4804 2 1 0
1fs5)o -7.7003 3 0 0 o  Lanczos
2p12 -7.6512 1 0 0 15 Hiclhardson . . . !
3s1/ -0.3861 1 0 0 0 0.1 0.2 0.3 04 0.5
2ds,  0.2225 3 0 0 g (MeV)
19012 0.5631 5 0 0 FIG. 2. Lanczos and Richardson results for the energies of the

lowest zero-seniority states, relative to the non-interacting ground-

) state energy.
roots correspond to the values 2 x,. Hence one can switch

from one set of variables to the other. The problem COMeS .« ofm. As a result. the value o&_cannot be determined
with the quantitieR,: these are functions of the,, and it is ‘ .I ¢ h ' t of fion o i
not straightforward to express them as functions of $he accurately from the set of equations, &) One can avol -
However, for a given set of variables, one can easily this problem by limiting the cluster sizes to at most the criti-
evaluate the valueS, andR,. Furthermore, one can evaluate cal valueN=ny=-2d,+1, and by usingS., as an unknown

the gradient matrixG, with G, the derivative with respect to V2rable instead ofy. If more variables are found near to
S, of Eq. (8) for p=1+1 the same single-particle level, one can always divide the

cluster into smaller, well-separated clusters, because at most
G=G%+GR, (11 n, of the variables can approach the single-particle level
closely. KnowingS_; andS,, ... Sy,-1, One can still straight-
where forwardly construct the polynomial whose roots give the cor-
[+1 responding values,. Therefore one can easily switch be-
d¢+Ny—-——, for m=l| tween the two sets of variables. Furthermgi®; behaves
G = 2 (12) smoothly,. even at a singularity. To set up an efficient gradient
—m for m<I method, it is useful to replace E¢B) for the last valuep

0, for m>1| =N,+1, by a similar equation obtained usipgO:

dgSq+ =0 (15

diﬂ_zdlﬂd_xa " | K9S 1+ 9Ry
ds, _aeck dx, dS, with RO:EaeC'ka(Xa)'. ' '

For weak-interaction strengths the functidf(x,) is
for I,m=1,... N.. GR can be evaluated accurately using adominated by the constant term Ij2see Eq.(6). In the
special inversion algorithm for Vandermonde matrifgg].  weak-interaction limit one can takg to be a constant. The
Therefore one can solve the new set of equations(&gqfor  resulting functionsR, take the simple form
p=2,... Nc+1, in the new variableS,, ... SN, using a stan-
dard gradient techniqgue such as the multidimensional R = S (16)
Newton-Raphson methof20]. However, in the case of a P29
singularity, the gradient matrix becomes ill-conditioned: the

G =

diagonal elements of the gradient matrix are given by Now the equations, Eq8) and(15), can be solved straight-
forwardly to yield the variable§, from which one can con-
S_ g +N I+1 14 struct the polynomial that gives a unique set of varialles
Gir = d + Ny~ 2 (14) The resulting eigenstate will depend on the size of the cluster

for each of the single-particle levels. This establishes a one-
for I1=1,... Ni. The diagonal element will vanish for the to-one correlation between the eigenstates of the noninteract-
index 1s=2(d+Ny)—1. This will occur as soon ad\,= ing system(g=0) and the eigenstates of the weakly interact-
—2d,+1, which matches the value for which singularities caning system. One can conclude that the Richardson equations
occur, see Eq7). In such a case the lower-triangular matrix are complete: their solutions generate all eigenstates, and
GS becomes singular. The other part of the gradient matrixhere are no spurious solutions.
GRis derived from the smooth functiof,. A series expan- One can obtain the solutions for strong interaction
sion of Fy(x) in x will be dominated by the lowest orders. strengths by solving the weakly interacting first case, and
Therefore the elements fon are very small for larger val- then gradually increasing the interaction strength. At each
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step one can use the gradient method outlined above in ordegs,,
to update the solution to the new interaction strength. It is
useful to adapt the stepsize in interaction strength to the con
vergence of the iterative procedure by taking smaller steps ir

g when the convergence of the Newton-Raphson method fol
the variablesS becomes slower, which typically occurs
around the criticay values. One more ingredient is needed 1dyp i
to avoid problems with the singularities: when the interaction
strength passes through a critical value, the variak)gmss-
ing through a singularity can change from real to complexor | Re(x,)=Re(xs)
vice versa. At the same time the variablgswill become
very small, except fot=-1. Even using the new variables,
the gradient method does not lead to the right solution wher
it has to pass through critical values of the interaction
strength. One can avoid this problem by including an ex-
trapolation step based upon the previous solutions. This ex- FIG. 3. Behavior of the variables near the singularity around the
trapolation has to be done in the variab®sbecause they 2d,, level. Variablesx, and x5 are complex conjugates; is real
vary smoothly through the singularities and they remain reabver the whole range aj values.

all the time. Assume that converged solutiofjsandx], were

obtained for valueg’ andg” of the interaction strength. The

variablesx/, are grouped into clusters. For each cluster, ond.anczos method and requires much less computer memory.
evaluates the variable, and S). Because the variable8, It is accurate fomll eigenstates, not just for the lowest lying
behave smoothly, even near a singularity, one can estimatsigenvalues. Moreover, the procedure can deal with much
the variablesS, for the new interaction strengiip by linear  |arger systems, well beyond the limits of large-scale exact

,,,,,,,,,,,,,,,,,, Im(x4)=-Im(xs)
Xg

0.1 0.2 0.3 0.4 0.5
g (MeV)

extrapolation: diagonalizations: our largest run sofar for a system with mul-
- e tiply degenerate levels has been for 100 pairs distributed

S,= 9-9)8-(9-9g )Sp. (17)  over 40 levels. The limiting factor is the size of the pair

g'-qg clusters around one single-particle level, which is directly

related to the degeneracy of the levels. The present imple-
The resulting values of, can then be updated using the mentation(in 64-bit precision becomes unstable when clus-
Newton-Raphson method or another gradient method. Thgys get as large as 60—80 pairs. The reason is that switching
extrapolation step avoids the problems with the singularitieg;om the S to the x variables requires finding all roots of a
and greatly improves the convergence of the method. polynomial equation with high enough accuracy.

| As aﬂ examhple, consider th? _Ieve_l SChe”.‘e I|s_|t_$]c_j n Ti‘jblle This work shows that the exactly solvable pairing models
, together with a constant pairing interaction. This model, o inqeed solvable in practice, even for fermions with mul-

e ooerios par poon e s s GeGEneracie. 1 opens up a whole v ange o sl
MonF;e Carlo r%et%ocpl] The eigenstates can alsgo beqfound tions for these models. Furthermore, similar techniques
' 9 might be useful to solve the nonlinear equations for other

through the solution of Richardson’s equations, E4, or ] iy .
through Lanczos diagonalisation in a seniority bg€g]. exactly-solvable pairing and spin mod¢l,15,23,24

The full many-body space has a dimension of the order of
10", while the zero-seniority basis has dimension 14 894. In , ¢
Fig. 2 the lowest zero-seniority eigenvalues for this model
are shown as a function of the interaction strength, calculatec1.o
using the Lanczos method and using the method explainet
above(only 50 Lanczos iterations were ugedo calculate 0.5
the ground state, a straightforward implementation of the

Newton-Raphson method for the original equations, (&y. 0.0

works well up to an interaction strength g&=0.2. It turns 05|

out that a singularity occurs around theés level at a value -

of g=0.245. AFORTRAN-95 computer program was written 49 [ S, (MeV) _
based upon the procedure outlined above. It was able t¢ | ... S, (MeV?)

solve the equations for all interaction strengths in a matter of-1.5 | - 84 (MeV?) ST
seconds. Figure 3 shows the behavior of the threariables | - 9S4 S
that cluster around thed},, level as a function og. In Fig. 20 o1 oz 03 o4 o5
4 one can see that the corresponding varialdebehave g (MeV)

much more smoothly. More singularities occur around other
levels at higher interaction strengths, as is shown in Fig. 1. FIG. 4. Smooth behavior of the new variables near tidg,2
The solution of the Richardson equations is faster than theingularity.

061303-4



RAPID COMMUNICATIONS

SOLVING THE RICHARDSON EQUATIONS FOR FERMIONS PHYSICAL REVIEW 69, 061303R) (2004

We wish to thank R. Richardson, S. Pittel, J. Draayer, FResearch - Flande(8elgium), the Research Board of Ghent
Pan, and K. Heyde for the interesting discussions and sudJniversity and by the Spanish DGI Grant No. BFM2003-
gestions. This work was supported by the Fund for Scientifid®5316-C02-02.

[1] R. W. Richardson, Phys. Letg, 277(1963; R. W. Richardson  [14] M. Hasegawa and S. Tazaki, Phys. Rev3E, 1508(1987).

and N. Sherman, Nucl. Phy&2, 221 (1964. [15] F. Pan and J. P. Draayer, Phys. Rev66, 044314(2002); J.
[2] R. W. Richardson, J. Math. Phy9, 1327(1968. Links, H.-Q. Zhou, M. D. Gould, and R. H. McKenzie, J.
[3] R. W. Richardson and N. Sherman, Nucl. Phys2, 253 Phys. A 35, 6459(2002.
(1964). [16] P. Ring and P. SchuckThe Nuclear Many-Body Problem
[4] R. W. Richardson, J. Math. Phy§, 1034 (1965. (Springer, Berlin, 1980 Chap. 6.
[5] M. Heritier, Nature(London) 414, 6859(2001). [17] J. Dukelsky, C. Esebbag, and S. Pittel, Phys. Rev. L&#.
[6] G. Sierra, J. Dukelsky, G. G. Dussel, J. von Delft, and F. 062501(2002.
Braun, Phys. Rev. B51, R11890(2000. [18] J. M. Roman, G. Sierra, and J. Dukelsky, Phys. Rev6B
[7] J. von Delft and D. C. Ralph, Phys. Rep45 61 (200D. 064510(2003.
[8] J. Dukelsky and P. Schuck, Phys. Rev. L&i6, 4207 (2001). [19] G. H. Golub and C. F. Van LoaMatrix ComputationgThe
[9] J. Dukelsky and S. Pittel, Phys. Rev. LeB6, 4791(2001); J. Johns Hopkins University Press, London, 198%hap. 4.
Dukelsky, C. Esebbag, and S. Pittiid. 88, 062501(2002); [20] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flan-
M. Hasegawa and K. Kaneko, Phys. Rev. &, 024304 nery, Numerical Recipes in FortragCambridge University
(2003. Press, Cambridge, 1992hap. 9.
[10] M. C. Cambiaggio, A. M. F. Rivas, and M. Saraceno, Nucl. [21] S. Rombouts, K. Heyde, and N. Jachowicz, Phys. ReG8C
Phys. A624, 157 (1997). 3295(1998.
[11] J. Dukelsky, C. Esebbag, and P. Schuck, Phys. Rev. B&t. [22] A. Wolya, B. A. Brown, and V. Zelevinsky, Phys. Lett. BO9,
066403(2001). 37 (200).
[12] J. Dukelsky, J. M. Roman, and G. Sierra, Phys. Rev. L&. [23] F. Pan, J. P. Draayer, and W. E. Ormand, Phys. Le#28 1
249803(2003. (1998.
[13] R. W. Richardson, Phys. Ret41, 949 (1966. [24] A. Dhar and B. S. Shastry, Phys. Rev. Le#t, 2813(2000.

061303-5



